ppl

Springs of digital disruption: mediation of blockchain technology adoption in retail supply chain management

Supply chain management practices are vital for success and survival in today's competitive Indian retail market. The advent of COVID-19 pandemic necessitates a digital disruption in retail supply chain management centred on efficient technology like blockchain in order to enhance supply chain performance. The present research aims to decipher the nature of associations between supply chain management practices, blockchain technology adoption and supply chain performance in retail firms. The research is based on primary survey of specific food and grocery retailers operating on a supermarket format stores in two Indian cities. The findings pointed towards the presence of significant and positive association of all the constructs with each other. Moreover, the mediating role of blockchain technology adoption was also revealed, i.e., it partially mediates the effects of supply chain management practices on supply chain performance.




ppl

Application of integrated image processing technology based on PCNN in online music symbol recognition training

To improve the effectiveness of online training for music education, it was investigated how to improve the pulse-coupled neural network in image processing for spectral image segmentation. The study proposes a two-scale descent method to achieve oblique spectral correction. Subsequently, a convolutional neural network was optimised using a two-channel feature fusion recognition network for music theory notation recognition. The results showed that this image segmentation method had the highest accuracy, close to 98%, and the accuracy of spectral tilt correction was also as high as 98.4%, which provided good image pre-processing results. When combined with the improved convolutional neural network, the average accuracy of music theory symbol recognition was about 97% and the highest score of music majors was improved by 16 points. This shows that the method can effectively improve the teaching effect of online training in music education and has certain practical value.




ppl

Application of AI intelligent technology in natural resource planning and management

This article studies the application of artificial intelligence technology in natural resource planning and management. This article first introduces the background of NR and AI intelligent technology, then conducts academic research and summary on NR planning management and AI intelligent technology. Then, an algorithm model based on multi-objective intelligent planning algorithm is established. Finally, simulation experiments are conducted, and experiments summary and discussion are provided. The experimental results show that the average efficiency value of the four stages of NR planning and management before use is 5.25, and the average efficiency value of the four stages of NR planning and management after use is 7. The difference in the average efficiency value before and after use is 1.75. It can be seen that the use of AI intelligent technology can effectively improve the efficiency of natural resource planning and management.




ppl

Application of digital twin virtual design and BIM technology in intelligent building image processing

Intelligent digital virtual technology has become an indispensable part of modern construction, but there are also some problems in its practical application. Therefore, it is necessary to strengthen the design of intelligent building image processing systems from many aspects. Starting from image digital processing methods, this paper studies the digital twin virtual design scene construction method and related algorithms, converts the original image into a colour digital image through a greyscale algorithm, and then combines morphological knowledge and feature point extraction methods to complete the construction of a three-dimensional virtual environment. Finally, through the comparison of traditional image processing effects with smart building images based on digital twins and BIM technology, the results show that the optimised image processing results have higher clarity, sharper contrast, and a sensitivity increased by 5.84%, presenting better visual effects and solving the risk of misjudgement caused by inaccurate image recognition.




ppl

Applying a multiplex network perspective to understand performance in software development

A number of studies have applied social network analysis (SNA) to show that the patterns of social interaction between software developers explain important organisational outcomes. However, these insights are based on a single network relation (i.e., uniplex social ties) between software developers and do not consider the multiple network relations (i.e., multiplex social ties) that truly exist among project members. This study reassesses the understanding of software developer networks and what it means for performance in software development settings. A systematic review of SNA studies between 1990 and 2020 across six digital libraries within the IS and management science domain was conducted. The central contributions of this paper are an in-depth overview of SNA studies to date and the establishment of a research agenda to advance our knowledge of the concept of multiplexity on how a multiplex perspective can contribute to a software developer's coordination of tasks and performance advantages.




ppl

Teaching High School Students Applied Logical Reasoning




ppl

Didactics of Information Technology (IT) in a Science Degree: Conceptual Issues and Practical Application




ppl

Open-Source ERP: Is It Ripe for Use in Teaching Supply Chain Management?




ppl

A Template-Based Short Course Concept on Android Application Development




ppl

Evaluating the Acceptability and Usability of EASEL: A Mobile Application that Supports Guided Reflection for Experiential Learning Activities

Aim/Purpose: To examine the early perceptions (acceptability) and usability of EASEL (Education through Application-Supported Experiential Learning), a mobile platform that delivers reflection prompts and content before, during, and after an experiential learning activity. Background: Experiential learning is an active learning approach in which students learn by doing and by reflecting on the experience. This approach to teaching is often used in disciplines such as humanities, business, and medicine. Reflection before, during, and after an experience allows the student to analyze what they learn and why it is important, which is vital in helping them to understand the relevance of the experience. A just-in-time tool (EASEL) was needed to facilitate this. Methodology: To inform the development of a mobile application that facilitates real-time guided reflection and to determine the relevant feature set, we conducted a needs analysis with both students and faculty members. Data collected during this stage of the evaluation helped guide the creation of a prototype. The user experience of the prototype and interface interactions were evaluated during the usability phase of the evaluation study. Contribution: Both the needs analysis and usability assessment provided justification for continued development of EASEL as well as insight that guides current development. Findings: The interaction design of EASEL is understandable and usable. Both students and teachers value an application that facilitates real-time guided reflection. Recommendations for Practitioners: The use of a system such as EASEL can leverage time and location-based services to support students in field experiences. This technology aligns with evidence that guided reflection provides opportunities for metacognition. Recommendation for Researchers: Iterative prototyping, testing, and refinement can lead to a deliberate and effective app development process. Impact on Society: The EASEL platform leverages inherent functionality of mobile devices, such as GPS and persistent network connectivity, to adapt reflection tasks based on lo-cation or time. Students using EASEL will engage in guided reflection, which leads to metacognition and can help instructors scaffold learning Future Research: We will continue to advance the application through iterative testing and development. When ready, the application will be vetted in larger studies across varied disciplines and contexts.




ppl

Using Educational Data Mining to Predict Students’ Academic Performance for Applying Early Interventions

Aim/Purpose: One of the main objectives of higher education institutions is to provide a high-quality education to their students and reduce dropout rates. This can be achieved by predicting students’ academic achievement early using Educational Data Mining (EDM). This study aims to predict students’ final grades and identify honorary students at an early stage. Background: EDM research has emerged as an exciting research area, which can unfold valuable knowledge from educational databases for many purposes, such as identifying the dropouts and students who need special attention and discovering honorary students for allocating scholarships. Methodology: In this work, we have collected 300 undergraduate students’ records from three departments of a Computer and Information Science College at a university located in Saudi Arabia. We compared the performance of six data mining methods in predicting academic achievement. Those methods are C4.5, Simple CART, LADTree, Naïve Bayes, Bayes Net with ADTree, and Random Forest. Contribution: We tested the significance of correlation attribute predictors using four different methods. We found 9 out of 18 proposed features with a significant correlation for predicting students’ academic achievement after their 4th semester. Those features are student GPA during the first four semesters, the number of failed courses during the first four semesters, and the grades of three core courses, i.e., database fundamentals, programming language (1), and computer network fundamentals. Findings: The empirical results show the following: (i) the main features that can predict students’ academic achievement are the student GPA during the first four semesters, the number of failed courses during the first four semesters, and the grades of three core courses; (ii) Naïve Bayes classifier performed better than Tree-based Models in predicting students’ academic achievement in general, however, Random Forest outperformed Naïve Bayes in predicting honorary students; (iii) English language skills do not play an essential role in students’ success at the college of Computer and Information Sciences; and (iv) studying an orientation year does not contribute to students’ success. Recommendations for Practitioners: We would recommend instructors to consider using EDM in predicting students’ academic achievement and benefit from that in customizing students’ learning experience based on their different needs. Recommendation for Researchers: We would highly endorse that researchers apply more EDM studies across various universities and compare between them. For example, future research could investigate the effects of offering tutoring sessions for students who fail core courses in their first semesters, examine the role of language skills in social science programs, and examine the role of the orientation year in other programs. Impact on Society: The prediction of academic performance can help both teachers and students in many ways. It also enables the early discovery of honorary students. Thus, well-deserved opportunities can be offered; for example, scholarships, internships, and workshops. It can also help identify students who require special attention to take an appropriate intervention at the earliest stage possible. Moreover, instructors can be aware of each student’s capability and customize the teaching tasks based on students’ needs. Future Research: For future work, the experiment can be repeated with a larger dataset. It could also be extended with more distinctive attributes to reach more accurate results that are useful for improving the students’ learning outcomes. Moreover, experiments could be done using other data mining algorithms to get a broader approach and more valuable and accurate outputs.




ppl

Knowledge Management Applied to Learning English as a Second Language Through Asynchronous Online Instructional Videos

Aim/Purpose: The purpose of this research is to determine whether ESL teaching videos as a form of asynchronous online knowledge sharing can act as an aid to ESL learners internalizing knowledge in language acquisition. In this context, internalizing knowledge carries the meaning of being able to remember language, and purposefully and accurately use it context, including appropriacy of language, and aspects of correct pronunciation, intonation, stress patterns and connected speech, these being the elements of teaching and practice that are very often lacking in asynchronous, online, instructional video. Background: Knowledge Management is the field of study, and the practice, of discovering, capturing, sharing, and applying knowledge, typically with a view to translating individuals’ knowledge into organizational knowledge. In the field of education, it is the sharing of instructors’ knowledge for students to be able to learn and usefully apply that knowledge. In recent pandemic times, however, the mode of instruction has, of necessity, transitioned from face-to-face learning to an online environment, transforming the face of education as we know it. While this mode of instruction and knowledge sharing has many advantages for the online learner, in both synchronous and asynchronous learning environments, it presents certain challenges for language learners due to the absence of interaction and corrective feedback that needs to take place for learners of English as a Second Language (ESL) to master language acquisition. Unlike other subjects where the learner has recourse to online resources to reinforce learning through referencing external information, such as facts, figures, or theories, to be successful in learning a second language, the ESL learner needs to be able to learn to process thought and speech in that language; essentially, they need to learn to think in another language, which takes time and practice. Methodology: The research employs a systematic literature review (SLR) to determine the scope and extent to which the subject is covered by existing research in this field, and the findings thereof. Contribution: Whilst inconclusive in relation to internalizing language through online, asynchronous instructional video, through its exploratory nature, the research contributes towards the body of knowledge in online learning through the drawing together of various studies in the field of learning through asynchronous video through improving video and instructional quality. Findings: The findings of the systematic literature review revealed that there is negligible research in this area, and while information exists on blended and flipped modes of online learning, and ways to improve the quality and delivery of instructional video generally, no prior research on the exclusive use of asynchronous videos as an aid to internalizing English as a second language were found. Recommendations for Practitioners: From this research, it is apparent that there is considerably more that practitioners can do to improve the quality of instructional videos that can help students engage with the learning, from which students stand a much better chance of internalizing the learning. Recommendation for Researchers: For researchers, the absence of existing research is an exciting opportunity to further explore this field. Impact on Society: Online learning is now globally endemic, but it poses specific challenges in the field of second language learning, so the development of instructional videos that can facilitate this represents a clear benefit to all ESL learners in society as a whole. Future Research: Clearly the absence of existing research into whether online asynchronous instructional videos can act as an aid to internalizing the acquisition of English as a second language would indicate that this very specific field is one that merits future research. Indeed, it is one that the author intends to exploit through primary data collection from the production of a series of asynchronous, online, instructional videos.




ppl

Emerging Research on Virtual Reality Applications in Vocational Education: A Bibliometric Analysis

Aim/Purpose: This study explores the subject structure, social networks, research trends, and issues in the domain that have the potential to derive an overview of the development of virtual reality-based learning media in vocational education. Background: Notwithstanding the increasingly growing interest in the application of virtual reality in vocational learning, the existing research literature may still leave out some issues necessary for a comprehensive understanding. This study will point out such areas that need more exploration and a more comprehensive synthesis of the literature by conducting a bibliometric analysis. It will be interesting to keep track of the changing concepts and methodologies applied in the development of VR-based learning media in vocational education research. Methodology: This review was carried out using bibliometric methodology, which can highlight patterns of publication and research activity in this hitherto little studied area. The results of the study have the potential to lead to evidence-based priority in VR development, which will tailor work for vocational contexts and set the compass against the growing worldwide interest in this area. The study provides a descriptive analysis of publications, citations, and keyword data for 100 documents published between the years 2013 and 2022 from the Scopus database, which is conducted to illustrate the trends in the field. Contribution: This study also counts as a contribution to understanding the research hotspots of VR-based learning media in vocational education. Through bibliometric analysis, this study thoroughly summarized the relevant research and literature laying a knowledge foundation for researchers and policy makers. Additionally, this analysis identified knowledge gaps, recent trends, and directions for future research. Findings: The bibliometric analysis revealed the following key findings: 1. A growing publication trajectory, with output increasing from 7 articles in 2013 to 25 articles in 2022. 2. The United States led the contributions, followed by China, and Germany. 3. The most prominent authors are affiliated with American medical institutions. 4. Lecture proceedings include familiar sources that reflect this nascent domain. 5. Citation analysis identified highly influential work and researchers. 6. Keyword analysis exposed technology-oriented topics rather than learning-oriented terms. These findings present an emerging landscape with opportunities to address geographic and pedagogical research gaps. Recommendations for Practitioners: This study will be beneficial for designers and developers of VR-based learning programs because it aligns with the most discussed and influential VR technologies within the literature. Such an alignment of an approach with relevant research trends and focus can indeed be very useful for the effective application and use of VR-based learning media for quality improvements in vocational students' learning. Recommendation for Researchers: In fact, in this bibliometric review of VR integration within vocational classrooms, a future call for focused research is presented, especially on teaching methods, course design, and learning impact. This is a framework that seeks to establish its full potential with effective and integrated use of VR in the various vocational curricula and settings of learners. Impact on Society: From the findings of the bibliometric analysis, it is evident that virtual reality technologies (VR) have significantly led to transformation within educational media. There is no denying that the growing interest and investment in the integration of virtual reality into vocational education has been well manifested in the substantive increase in publications in the last decade. This shows what the innovation driving factor is in the United States. At the same time the rapid contributions from China signal worldwide recognition of the potential of VR to improve technical skills training. This study points the way for more research to bridge critical gaps, specifically how VR tools can be used in vocational high school classrooms. Furthermore, research should be aligned to meet specific needs of vocational learners and even promote international cross-border partnerships, pointing out the potential of virtual reality to be a universally beneficial tool in vocational education. The examination of highly cited articles provides evidence of the potential of VR to be an impactful pedagogical tool in vocational education. The findings suggest that researchers need to move forward looking at the trajectory of VR in vocational education and how promising it is in defining the future for innovative and effective learning methodologies. Future Research: This study is an exceptionally valuable contribution, a true landmark in the field of dynamic development, and one that denotes very meaningful implications for the future course of research in the dynamically developing field of bibliometric analysis of VR-based learning media for vocational education. The increase in the number of publications emanates from growing interests in the application of virtual reality (VR) technologies in vocational education. The high concentration of authorship from the USA, along with the ever increasing contributions from China, spotlights the increasing worldwide recognition of the impact of immersive technologies in the enhancement of training in technical skills. These are emerging trends that call for research to exemplify the diverse views and global teamwork opportunities presented by VR technologies. The study also highlights critical areas that need focused attention in future research endeavors. The fact that the embedding of VR tools into classrooms in vocational high schools has been poorly researched points to the major gap in pedagogical research within authentic educational settings. Therefore, further investigations should evaluate teaching methods in VR, lesson designs, and the impacts of VR in specific vocational trades. This supports the need for learner-centered frameworks that are tailor-made to the needs of vocational learners. This calls for more direct and focused investigations into identified research gaps noting a growing dominance in the field of health-related research with the most cited articles in this field, to integrate virtual reality into additional vocational education contexts. In this way, the gaps present an opportunity for researchers to make significant contributions to the development of interventions responsive to the unique needs of vocational learners; this will contribute to strengthening the evidence base for the worldwide implementation of VR within vocational education systems. This was recommended as the intention of such a bibliometric analysis: supporting the potential of VR as a pedagogical tool in vocational contexts and providing grounding for a strong and focused future research agenda within this burgeoning area of educational technology.




ppl

Combination of Lv-3DCNN algorithm in random noise environment and its application in aerobic gymnastics action recognition

Action recognition plays a vital role in analysing human body behaviour and has significant implications for research and education. However, traditional recognition methods often suffer from issues such as inaccurate time and spatial feature vectors. Therefore, this study addresses the problem of inaccurate recognition of aerobic gymnastics action image data and proposes a visualised three-dimensional convolutional neural network algorithm-based action recognition model. This model incorporates unsupervised visualisation methods into the traditional network and enhances data recognition capabilities through the introduction of a random noise perturbation enhancement algorithm. The research results indicate that the data augmented with noise perturbation achieves the lowest mean square error, reducing the error value from 0.3352 to 0.3095. The use of unsupervised visualisation analysis enables clearer recognition of human actions, and the algorithm model is capable of accurately recognising aerobic movements. Compared to traditional algorithms, the new algorithm exhibits higher recognition accuracy and superior performance.




ppl

International Journal of Applied Systemic Studies




ppl

Assessing supply chain risk management capabilities and its impact on supply chain performance: moderation of AI-embedded technologies

This research investigates the correlation between risk management and supply chain performance (SCP) along with moderation of AI-embedded technologies such as big data analytics, Internet of Things (IoT), virtual reality, and blockchain technologies. To calculate the results, this study utilised 644 questionnaires through the structural equation modelling (SEM) method. It is revealed using SmartPls that financial risk management (FRM) is positively linked with SCP. Second, it was observed that AI significantly moderates the connection between FRM and SCP. In addition, the study presents certain insights into supply chain and AI-enabled technologies and how these capabilities can beneficially advance SCP. Besides, certain implications, both managerial and theoretical are described for the supply chain managers along with limitations for future scholars of the world.




ppl

Application of artificial intelligence in enterprise human resource management and employee performance evaluation

With the rapid development of Artificial Intelligence (AI) technology, significant breakthroughs have been made in its application in many fields. Especially, in the field of enterprise human resource management and employee performance evaluation, AI has demonstrated its powerful ability to optimise and improve performance. This study explores the application of AI in enterprise human resource management and how to use AI to evaluate employee performance. The research includes analysing and comparing existing AI-driven human resource management models, evaluating how AI can help improve employee performance and leadership styles, and designing and developing human resource management computer systems for enterprise employees. Through empirical research and case analysis, this study proposes a new AI-optimised employee performance evaluation model and explores its application and effect in practice. In general, the application of AI can improve the efficiency and accuracy of enterprise human resource management, and provide new possibilities for employee performance evaluation. At present, artificial intelligence technology has been widely used in various fields of daily life, especially in corporate human resource management, providing better support for the development of enterprises.




ppl

International Journal of Computer Applications in Technology




ppl

A data classification method for innovation and entrepreneurship in applied universities based on nearest neighbour criterion

Aiming to improve the accuracy, recall, and F1 value of data classification, this paper proposes an applied university innovation and entrepreneurship data classification method based on the nearest neighbour criterion. Firstly, the decision tree algorithm is used to mine innovation and entrepreneurship data from applied universities. Then, dynamic weight is introduced to improve the similarity calculation method based on edit distance, and the improved method is used to realise data de-duplication to avoid data over fitting. Finally, the nearest neighbour criterion method is used to classify applied university innovation and entrepreneurship data, and cosine similarity is used to calculate the similarity between the samples to be classified and each sample in the training data, achieving data classification. The experimental results demonstrate that the proposed method achieves a maximum accuracy of 96.5% and an average F1 score of 0.91. These findings indicate a high level of accuracy, recall, and F1 value for data classification using the proposed method.




ppl

Evaluation method of cross-border e-commerce supply chain innovation mode based on blockchain technology

In view of the low evaluation accuracy of the effectiveness of cross-border e-commerce supply chain innovation model and the low correlation coefficient of innovation model influencing factors, the evaluation method of cross-border e-commerce supply chain innovation model based on blockchain technology is studied. First, analyse the operation mode of cross-border e-commerce supply chain, and determine the key factors affecting the innovation mode; Then, the comprehensive integration weighting method is used to analyse the factors affecting innovation and calculate the weight value; Finally, the blockchain technology is introduced to build an evaluation model for the supply chain innovation model and realise the evaluation of the cross-border e-commerce supply chain innovation model. The experimental results show that the evaluation accuracy of the proposed method is high, and the highest correlation coefficient of the influencing factors of innovation mode is about 0.99, which is feasible.




ppl

Towards Egocentric Way-Finding Appliances Supporting Navigation in Unfamiliar Terrain




ppl

Action-Guidance: An Action Research Project for the Application of Informing Science in Educational and Vocational Guidance




ppl

Enterprise Applications Portfolio Management Utilizing COTS




ppl

A Framework for Student Assessment using Applied Simulation




ppl

How Much Can We Spare with E-business: Examining the Effects in Supply Chain Management




ppl

Using a Blackboard Architecture in a Web Application




ppl

Redesign of Stand-Alone Applications into Thin-Client/Server




ppl

Information Transfer in Supply Chain Management




ppl

Design, Development and Deployment Considerations when Applying Native XML Database Technology to the Programme Management Function of an SME




ppl

Towards an Information System Making Transparent Teaching Processes and Applying Informing Science to Education




ppl

The Application of Semantic Enablers in the Context of Content Management Systems 




ppl

Video Learning Object Application System: Beyond the Static Reusability




ppl

Honeypot through Web (Honeyd@WEB): The Emerging of Security Application Integration 




ppl

PersistF: A Transparent Persistence Framework with Architecture Applying Design Patterns




ppl

Applying and Evaluating Understanding-Oriented ICT User Training in Upper Secondary Education




ppl

Exploring the Influence of Cultural Values on the Acceptance of Information Technology:  An Application of the Technology Acceptance Model




ppl

Strategic Knowledge of Computer Applications: The Key to Efficient Computer Use




ppl

Object-Oriented Hypermedia Design and J2EE Technology for Web-based Applications




ppl

Lean Supply Chains, JIT and Cellular Manufacturing – The Human Side




ppl

SMS Based Wireless Home Appliance Control System (HACS) for Automating Appliances and Security




ppl

The Adoption of Automatic Teller Machines in Nigeria: An Application of the Theory of Diffusion of Innovation




ppl

Data Modeling for Better Performance in a Bulletin Board Application




ppl

Double-Buffer Traffic Shaper Modelling for Multimedia Applications in Slow Speed Network




ppl

A Packet Sniffer (PSniffer) Application for Network Security in Java




ppl

Applying a Modified Technology Acceptance Model to Qualitatively Analyse the Factors Affecting E-Portfolio Implementation for Student Teachers’ in Field Experience Placements




ppl

Practicing M-Application Services Opportunities with Special Reference to Oman




ppl

Project Management Principles Applied in Academic Research Projects




ppl

Securing the Information and Communications Technology Global Supply Chain from Exploitation: Developing a Strategy for Education, Training, and Awareness




ppl

Navigating the Framework Jungle for Teaching Web Application Development




ppl

An Effective Development Environment Setup for System and Application Software