mo

A homotopy BV algebra for Yang-Mills and color-kinematics. (arXiv:1912.03110v2 [math-ph] UPDATED)

Yang-Mills gauge theory on Minkowski space supports a Batalin-Vilkovisky-infinity algebra structure, all whose operations are local. To make this work, the axioms for a BV-infinity algebra are deformed by a quadratic element, here the Minkowski wave operator. This homotopy structure implies BCJ/color-kinematics duality; a cobar construction yields a strict algebraic structure whose Feynman expansion for Yang-Mills tree amplitudes complies with the duality. It comes with a `syntactic kinematic algebra'.




mo

A one-loop exact quantization of Chern-Simons theory. (arXiv:1910.05230v2 [math-ph] UPDATED)

We examine Chern-Simons theory as a deformation of a 3-dimensional BF theory that is partially holomorphic and partially topological. In particular, we introduce a novel gauge that leads naturally to a one-loop exact quantization of this BF theory and Chern-Simons theory. This approach illuminates several important features of Chern-Simons theory, notably the bulk-boundary correspondence of Chern-Simons theory with chiral WZW theory. In addition to rigorously constructing the theory, we also explain how it applies to a large class of closely related 3-dimensional theories and some of the consequences for factorization algebras of observables.




mo

Khintchine-type theorems for values of subhomogeneous functions at integer points. (arXiv:1910.02067v2 [math.NT] UPDATED)

This work has been motivated by recent papers that quantify the density of values of generic quadratic forms and other polynomials at integer points, in particular ones that use Rogers' second moment estimates. In this paper we establish such results in a very general framework. Namely, given any subhomogeneous function (a notion to be defined) $f: mathbb{R}^n o mathbb{R}$, we derive a necessary and sufficient condition on the approximating function $psi$ for guaranteeing that a generic element $fcirc g$ in the $G$-orbit of $f$ is $psi$-approximable; that is, $|fcirc g(mathbf{v})| le psi(|mathbf{v}|)$ for infinitely many $mathbf{v} in mathbb{Z}^n$. We also deduce a sufficient condition in the case of uniform approximation. Here, $G$ can be any closed subgroup of $operatorname{ASL}_n(mathbb{R})$ satisfying certain axioms that allow for the use of Rogers-type estimates.




mo

Monochromatic Equilateral Triangles in the Unit Distance Graph. (arXiv:1909.09856v2 [math.CO] UPDATED)

Let $chi_{Delta}(mathbb{R}^{n})$ denote the minimum number of colors needed to color $mathbb{R}^{n}$ so that there will not be a monochromatic equilateral triangle with side length $1$. Using the slice rank method, we reprove a result of Frankl and Rodl, and show that $chi_{Delta}left(mathbb{R}^{n} ight)$ grows exponentially with $n$. This technique substantially improves upon the best known quantitative lower bounds for $chi_{Delta}left(mathbb{R}^{n} ight)$, and we obtain [ chi_{Delta}left(mathbb{R}^{n} ight)>(1.01446+o(1))^{n}. ]




mo

On boundedness, gradient estimate, blow-up and convergence in a two-species and two-stimuli chemotaxis system with/without loop. (arXiv:1909.04587v4 [math.AP] UPDATED)

In this work, we study dynamic properties of classical solutions to a homogenous Neumann initial-boundary value problem (IBVP) for a two-species and two-stimuli chemotaxis model with/without chemical signalling loop in a 2D bounded and smooth domain. We successfully detect the product of two species masses as a feature to determine boundedness, gradient estimates, blow-up and $W^{j,infty}(1leq jleq 3)$-exponential convergence of classical solutions for the corresponding IBVP. More specifically, we first show generally a smallness on the product of both species masses, thus allowing one species mass to be suitably large, is sufficient to guarantee global boundedness, higher order gradient estimates and $W^{j,infty}$-convergence with rates of convergence to constant equilibria; and then, in a special case, we detect a straight line of masses on which blow-up occurs for large product of masses. Our findings provide new understandings about the underlying model, and thus, improve and extend greatly the existing knowledge relevant to this model.




mo

Multitype branching process with nonhomogeneous Poisson and generalized Polya immigration. (arXiv:1909.03684v2 [math.PR] UPDATED)

In a multitype branching process, it is assumed that immigrants arrive according to a nonhomogeneous Poisson or a generalized Polya process (both processes are formulated as a nonhomogeneous birth process with an appropriate choice of transition intensities). We show that the renormalized numbers of objects of the various types alive at time $t$ for supercritical, critical, and subcritical cases jointly converge in distribution under those two different arrival processes. Furthermore, some transient moment analysis when there are only two types of particles is provided. AMS 2000 subject classifications: Primary 60J80, 60J85; secondary 60K10, 60K25, 90B15.




mo

Integrability of moduli and regularity of Denjoy counterexamples. (arXiv:1908.06568v4 [math.DS] UPDATED)

We study the regularity of exceptional actions of groups by $C^{1,alpha}$ diffeomorphisms on the circle, i.e. ones which admit exceptional minimal sets, and whose elements have first derivatives that are continuous with concave modulus of continuity $alpha$. Let $G$ be a finitely generated group admitting a $C^{1,alpha}$ action $ ho$ with a free orbit on the circle, and such that the logarithms of derivatives of group elements are uniformly bounded at some point of the circle. We prove that if $G$ has spherical growth bounded by $c n^{d-1}$ and if the function $1/alpha^d$ is integrable near zero, then under some mild technical assumptions on $alpha$, there is a sequence of exceptional $C^{1,alpha}$ actions of $G$ which converge to $ ho$ in the $C^1$ topology. As a consequence for a single diffeomorphism, we obtain that if the function $1/alpha$ is integrable near zero, then there exists a $C^{1,alpha}$ exceptional diffeomorphism of the circle. This corollary accounts for all previously known moduli of continuity for derivatives of exceptional diffeomorphisms. We also obtain a partial converse to our main result. For finitely generated free abelian groups, the existence of an exceptional action, together with some natural hypotheses on the derivatives of group elements, puts integrability restrictions on the modulus $alpha$. These results are related to a long-standing question of D. McDuff concerning the length spectrum of exceptional $C^1$ diffeomorphisms of the circle.




mo

Poisson Dixmier-Moeglin equivalence from a topological point of view. (arXiv:1908.06542v2 [math.RA] UPDATED)

In this paper, we provide some topological criteria for the Poisson Dixmier-Moeglin equivalence for $A$ in terms of the poset $({ m P. spec A}, subseteq)$ and the symplectic leaf or core stratification on its maximal spectrum. In particular, we prove that the Zariski topology of the Poisson prime spectrum and of each symplectic leaf or core can detect the Poisson Dixmier-Moeglin equivalence for any complex affine Poisson algebra. Moreover, we generalize the weaker version of the Poisson Dixmier-Moeglin equivalence for a complex affine Poisson algebra proved in [J. Bell, S. Launois, O.L. S'anchez, and B. Moosa, Poisson algebras via model theory and differential algebraic geometry, J. Eur. Math. Soc. (JEMS), 19(2017), no. 7, 2019-2049] to the general context of a commutative differential algebra.




mo

On the automorphic sheaves for GSp_4. (arXiv:1901.04447v6 [math.RT] UPDATED)

In this paper we first review the setting for the geometric Langlands functoriality and establish a result for the `backward' functoriality functor. We illustrate this by known examples of the geometric theta-lifting. We then apply the above result to obtain new Hecke eigen-sheaves. The most important application is a construction of the automorphic sheaf for G=GSp_4 attached to a G^L-local system on a curve X such that its standard representation is an irreducible local system of rank 4 on X.




mo

Mirror Symmetry for Non-Abelian Landau-Ginzburg Models. (arXiv:1812.06200v3 [math.AG] UPDATED)

We consider Landau-Ginzburg models stemming from groups comprised of non-diagonal symmetries, and we describe a rule for the mirror LG model. In particular, we present the non-abelian dual group, which serves as the appropriate choice of group for the mirror LG model. We also describe an explicit mirror map between the A-model and the B-model state spaces for two examples. Further, we prove that this mirror map is an isomorphism between the untwisted broad sectors and the narrow diagonal sectors for Fermat type polynomials.




mo

On $p$-groups with automorphism groups related to the exceptional Chevalley groups. (arXiv:1810.08365v3 [math.GR] UPDATED)

Let $hat G$ be the finite simply connected version of an exceptional Chevalley group, and let $V$ be a nontrivial irreducible module, of minimal dimension, for $hat G$ over its field of definition. We explore the overgroup structure of $hat G$ in $mathrm{GL}(V)$, and the submodule structure of the exterior square (and sometimes the third Lie power) of $V$. When $hat G$ is defined over a field of odd prime order $p$, this allows us to construct the smallest (with respect to certain properties) $p$-groups $P$ such that the group induced by $mathrm{Aut}(P)$ on $P/Phi(P)$ is either $hat G$ or its normaliser in $mathrm{GL}(V)$.




mo

On the rationality of cycle integrals of meromorphic modular forms. (arXiv:1810.00612v3 [math.NT] UPDATED)

We derive finite rational formulas for the traces of cycle integrals of certain meromorphic modular forms. Moreover, we prove the modularity of a completion of the generating function of such traces. The theoretical framework for these results is an extension of the Shintani theta lift to meromorphic modular forms of positive even weight.




mo

A Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity. (arXiv:1808.04162v4 [math.OC] UPDATED)

In this work, we propose a simple modification of the forward-backward splitting method for finding a zero in the sum of two monotone operators. Our method converges under the same assumptions as Tseng's forward-backward-forward method, namely, it does not require cocoercivity of the single-valued operator. Moreover, each iteration only requires one forward evaluation rather than two as is the case for Tseng's method. Variants of the method incorporating a linesearch, relaxation and inertia, or a structured three operator inclusion are also discussed.




mo

Local Moduli of Semisimple Frobenius Coalescent Structures. (arXiv:1712.08575v3 [math.DG] UPDATED)

We extend the analytic theory of Frobenius manifolds to semisimple points with coalescing eigenvalues of the operator of multiplication by the Euler vector field. We clarify which freedoms, ambiguities and mutual constraints are allowed in the definition of monodromy data, in view of their importance for conjectural relationships between Frobenius manifolds and derived categories. Detailed examples and applications are taken from singularity and quantum cohomology theories. We explicitly compute the monodromy data at points of the Maxwell Stratum of the A3-Frobenius manifold, as well as at the small quantum cohomology of the Grassmannian G(2,4). In the latter case, we analyse in details the action of the braid group on the monodromy data. This proves that these data can be expressed in terms of characteristic classes of mutations of Kapranov's exceptional 5-block collection, as conjectured by one of the authors.




mo

Simulation of Integro-Differential Equation and Application in Estimation of Ruin Probability with Mixed Fractional Brownian Motion. (arXiv:1709.03418v6 [math.PR] UPDATED)

In this paper, we are concerned with the numerical solution of one type integro-differential equation by a probability method based on the fundamental martingale of mixed Gaussian processes. As an application, we will try to simulate the estimation of ruin probability with an unknown parameter driven not by the classical L'evy process but by the mixed fractional Brownian motion.




mo

Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces. (arXiv:1706.09490v2 [math.DG] UPDATED)

We use Ricci flow to obtain a local bi-Holder correspondence between Ricci limit spaces in three dimensions and smooth manifolds. This is more than a complete resolution of the three-dimensional case of the conjecture of Anderson-Cheeger-Colding-Tian, describing how Ricci limit spaces in three dimensions must be homeomorphic to manifolds, and we obtain this in the most general, locally non-collapsed case. The proofs build on results and ideas from recent papers of Hochard and the current authors.




mo

Categorification via blocks of modular representations for sl(n). (arXiv:1612.06941v3 [math.RT] UPDATED)

Bernstein, Frenkel, and Khovanov have constructed a categorification of tensor products of the standard representation of $mathfrak{sl}_2$, where they use singular blocks of category $mathcal{O}$ for $mathfrak{sl}_n$ and translation functors. Here we construct a positive characteristic analogue using blocks of representations of $mathfrak{sl}_n$ over a field $ extbf{k}$ of characteristic $p$ with zero Frobenius character, and singular Harish-Chandra character. We show that the aforementioned categorification admits a Koszul graded lift, which is equivalent to a geometric categorification constructed by Cautis, Kamnitzer, and Licata using coherent sheaves on cotangent bundles to Grassmanians. In particular, the latter admits an abelian refinement. With respect to this abelian refinement, the stratified Mukai flop induces a perverse equivalence on the derived categories for complementary Grassmanians. This is part of a larger project to give a combinatorial approach to Lusztig's conjectures for representations of Lie algebras in positive characteristic.




mo

Surjective endomorphisms of projective surfaces -- the existence of infinitely many dense orbits. (arXiv:2005.03628v1 [math.AG])

Let $f colon X o X$ be a surjective endomorphism of a normal projective surface. When $operatorname{deg} f geq 2$, applying an (iteration of) $f$-equivariant minimal model program (EMMP), we determine the geometric structure of $X$. Using this, we extend the second author's result to singular surfaces to the extent that either $X$ has an $f$-invariant non-constant rational function, or $f$ has infinitely many Zariski-dense forward orbits; this result is also extended to Adelic topology (which is finer than Zariski topology).




mo

On Harmonic and Asymptotically harmonic Finsler manifolds. (arXiv:2005.03616v1 [math.DG])

In this paper we introduce various types of harmonic Finsler manifolds and study the relation between them. We give several characterizations of such spaces in terms of the mean curvature and Laplacian. In addition, we prove that some harmonic Finsler manifolds are of Einstein type and a technique to construct harmonic Finsler manifolds of Rander type is given. Moreover, we provide many examples of non-Riemmanian Finsler harmonic manifolds of constant flag curvature and constant $S$-curvature. Finally, we analyze Busemann functions in a general Finsler setting and in certain kind of Finsler harmonic manifolds, namely asymptotically harmonic Finsler manifolds along with studying some applications. In particular, we show the Busemann function is smooth in asymptotically harmonic Finsler manifolds and the total Busemann function is continuous in $C^{infty}$ topology.




mo

A Model for Optimal Human Navigation with Stochastic Effects. (arXiv:2005.03615v1 [math.OC])

We present a method for optimal path planning of human walking paths in mountainous terrain, using a control theoretic formulation and a Hamilton-Jacobi-Bellman equation. Previous models for human navigation were entirely deterministic, assuming perfect knowledge of the ambient elevation data and human walking velocity as a function of local slope of the terrain. Our model includes a stochastic component which can account for uncertainty in the problem, and thus includes a Hamilton-Jacobi-Bellman equation with viscosity. We discuss the model in the presence and absence of stochastic effects, and suggest numerical methods for simulating the model. We discuss two different notions of an optimal path when there is uncertainty in the problem. Finally, we compare the optimal paths suggested by the model at different levels of uncertainty, and observe that as the size of the uncertainty tends to zero (and thus the viscosity in the equation tends to zero), the optimal path tends toward the deterministic optimal path.




mo

A survey of Hardy type inequalities on homogeneous groups. (arXiv:2005.03614v1 [math.FA])

In this review paper, we survey Hardy type inequalities from the point of view of Folland and Stein's homogeneous groups. Particular attention is paid to Hardy type inequalities on stratified groups which give a special class of homogeneous groups. In this environment, the theory of Hardy type inequalities becomes intricately intertwined with the properties of sub-Laplacians and more general subelliptic partial differential equations. Particularly, we discuss the Badiale-Tarantello conjecture and a conjecture on the geometric Hardy inequality in a half-space of the Heisenberg group with a sharp constant.




mo

Groups up to congruence relation and from categorical groups to c-crossed modules. (arXiv:2005.03601v1 [math.CT])

We introduce a notion of c-group, which is a group up to congruence relation and consider the corresponding category. Extensions, actions and crossed modules (c-crossed modules) are defined in this category and the semi-direct product is constructed. We prove that each categorical group gives rise to c-groups and to a c-crossed module, which is a connected, special and strict c-crossed module in the sense defined by us. The results obtained here will be applied in the proof of an equivalence of the categories of categorical groups and connected, special and strict c-crossed modules.




mo

A reaction-diffusion system to better comprehend the unlockdown: Application of SEIR-type model with diffusion to the spatial spread of COVID-19 in France. (arXiv:2005.03499v1 [q-bio.PE])

A reaction-diffusion model was developed describing the spread of the COVID-19 virus considering the mean daily movement of susceptible, exposed and asymptomatic individuals. The model was calibrated using data on the confirmed infection and death from France as well as their initial spatial distribution. First, the system of partial differential equations is studied, then the basic reproduction number, R0 is derived. Second, numerical simulations, based on a combination of level-set and finite differences, shown the spatial spread of COVID-19 from March 16 to June 16. Finally, scenarios of unlockdown are compared according to variation of distancing, or partially spatial lockdown.




mo

On completion of unimodular rows over polynomial extension of finitely generated rings over $mathbb{Z}$. (arXiv:2005.03485v1 [math.AC])

In this article, we prove that if $R$ is a finitely generated ring over $mathbb{Z}$ of dimension $d, dgeq2, frac{1}{d!}in R$, then any unimodular row over $R[X]$ of length $d+1$ can be mapped to a factorial row by elementary transformations.




mo

The formation of trapped surfaces in the gravitational collapse of spherically symmetric scalar fields with a positive cosmological constant. (arXiv:2005.03434v1 [gr-qc])

Given spherically symmetric characteristic initial data for the Einstein-scalar field system with a positive cosmological constant, we provide a criterion, in terms of the dimensionless size and dimensionless renormalized mass content of an annular region of the data, for the formation of a future trapped surface. This corresponds to an extension of Christodoulou's classical criterion by the inclusion of the cosmological term.




mo

Aspiration can promote cooperation in well-mixed populations as in regular graphs. (arXiv:2005.03421v1 [q-bio.PE])

Classical studies on aspiration-based dynamics suggest that a dissatisfied individual changes strategy without taking into account the success of others. This promotes defection spreading. The imitation-based dynamics allow individuals to imitate successful strategies without taking into account their own-satisfactions. In this article, we propose to study a dynamic based on aspiration which takes into account imitation of successful strategies for dissatisfied individuals. This helps cooperative members to resist. Individuals compare their success to their desired satisfaction level before making a decision to update their strategies. This mechanism helps individuals with a minimum of self-satisfaction to maintain their strategies. If an individual is dissatisfied, it will learn from others by choosing successful strategies. We derive an exact expression of the fixation probability in well-mixed populations as in structured populations in networks. As a result, we show that selection may favor cooperation more than defection in well-mixed populations as in populations ranged over a regular graph. We show that the best scenario is a graph with small connectivity.




mo

Sums of powers of integers and hyperharmonic numbers. (arXiv:2005.03407v1 [math.NT])

In this paper, we derive a formula for the sums of powers of the first $n$ positive integers that involves the hyperharmonic numbers and the Stirling numbers of the second kind. Then, using an explicit representation for the hyperharmonic numbers, we generalize this formula to the sums of powers of an arbitrary arithmetic progression. Moreover, as a by-product, we express the Bernoulli polynomials in terms of the hyperharmonic polynomials and the Stirling numbers of the second kind.




mo

Removable singularities for Lipschitz caloric functions in time varying domains. (arXiv:2005.03397v1 [math.CA])

In this paper we study removable singularities for regular $(1,1/2)$-Lipschitz solutions of the heat equation in time varying domains. We introduce an associated Lipschitz caloric capacity and we study its metric and geometric properties and the connection with the $L^2$ boundedness of the singular integral whose kernel is given by the gradient of the fundamental solution of the heat equation.




mo

A theory of stacks with twisted fields and resolution of moduli of genus two stable maps. (arXiv:2005.03384v1 [math.AG])

We construct a smooth moduli stack of tuples consisting of genus two nodal curves, line bundles, and twisted fields. It leads to a desingularization of the moduli of genus two stable maps to projective spaces. The construction of this new moduli is based on systematical application of the theory of stacks with twisted fields (STF), which has its prototype appeared in arXiv:1906.10527 and arXiv:1201.2427 and is fully developed in this article. The results of this article are the second step of a series of works toward the resolutions of the moduli of stable maps of higher genera.




mo

A Schur-Nevanlinna type algorithm for the truncated matricial Hausdorff moment problem. (arXiv:2005.03365v1 [math.CA])

The main goal of this paper is to achieve a parametrization of the solution set of the truncated matricial Hausdorff moment problem in the non-degenerate and degenerate situation. We treat the even and the odd cases simultaneously. Our approach is based on Schur analysis methods. More precisely, we use two interrelated versions of Schur-type algorithms, namely an algebraic one and a function-theoretic one. The algebraic version, worked out in our former paper arXiv:1908.05115, is an algorithm which is applied to finite or infinite sequences of complex matrices. The construction and discussion of the function-theoretic version is a central theme of this paper. This leads us to a complete description via Stieltjes transform of the solution set of the moment problem under consideration. Furthermore, we discuss special solutions in detail.




mo

Strong maximum principle and boundary estimates for nonhomogeneous elliptic equations. (arXiv:2005.03338v1 [math.AP])

We give a simple proof of the strong maximum principle for viscosity subsolutions of fully nonlinear elliptic PDEs on the form $$ F(x,u,Du,D^2u) = 0 $$ under suitable structure conditions on the equation allowing for non-Lipschitz growth in the gradient terms. In case of smooth boundaries, we also prove the Hopf lemma, the boundary Harnack inequality and that positive viscosity solutions vanishing on a portion of the boundary are comparable with the distance function near the boundary. Our results apply to weak solutions of an eigenvalue problem for the variable exponent $p$-Laplacian.




mo

A remark on the Laplacian flow and the modified Laplacian co-flow in G2-Geometry. (arXiv:2005.03332v1 [math.DG])

We observe that the DeTurck Laplacian flow of G2-structures introduced by Bryant and Xu as a gauge fixing of the Laplacian flow can be regarded as a flow of G2-structures (not necessarily closed) which fits in the general framework introduced by Hamilton in [4].




mo

Revised dynamics of the Belousov-Zhabotinsky reaction model. (arXiv:2005.03325v1 [nlin.CD])

The main aim of this paper is to detect dynamical properties of the Gy"orgyi-Field model of the Belousov-Zhabotinsky chemical reaction. The corresponding three-variable model given as a set of nonlinear ordinary differential equations depends on one parameter, the flow rate. As certain values of this parameter can give rise to chaos, the analysis was performed in order to identify different dynamics regimes. Dynamical properties were qualified and quantified using classical and also new techniques. Namely, phase portraits, bifurcation diagrams, the Fourier spectra analysis, the 0-1 test for chaos, and approximate entropy. The correlation between approximate entropy and the 0-1 test for chaos was observed and described in detail. Moreover, the three-stage system of nested subintervals of flow rates, for which in every level the 0-1 test for chaos and approximate entropy was computed, is showing the same pattern. The study leads to an open problem whether the set of flow rate parameters has Cantor like structure.




mo

Smooth non-projective equivariant completions of affine spaces. (arXiv:2005.03277v1 [math.AG])

In this paper we construct an equivariant embedding of the affine space $mathbb{A}^n$ with the translation group action into a complete non-projective algebraic variety $X$ for all $n geq 3$. The theory of toric varieties is used as the main tool for this construction. In the case of $n = 3$ we describe the orbit structure on the variety $X$.




mo

The conjecture of Erd"{o}s--Straus is true for every $nequiv 13 extrm{ mod }24$. (arXiv:2005.03273v1 [math.NT])

In this short note we give a proof of the famous conjecture of Erd"{o}s-Straus for the case $nequiv13 extrm{ mod } 24.$ The Erd"{o}s--Straus conjecture states that the equation $frac{4}{n}=frac{1}{x}+frac{1}{y}+frac{1}{z}$ has positive integer solutions $x,y,z$ for every $ngeq 2$. It is open for $nequiv 1 extrm{ mod } 12$. Indeed, in all of the other cases the solutions are always easy to find. We prove that the conjecture is true for every $nequiv 13 extrm{ mod } 24$. Therefore, to solve it completely, it remains to find solutions for every $nequiv 1 extrm{ mod } 24$.




mo

Pointwise densities of homogeneous Cantor measure and critical values. (arXiv:2005.03269v1 [math.DS])

Let $Nge 2$ and $ hoin(0,1/N^2]$. The homogenous Cantor set $E$ is the self-similar set generated by the iterated function system

[

left{f_i(x)= ho x+frac{i(1- ho)}{N-1}: i=0,1,ldots, N-1 ight}.

]

Let $s=dim_H E$ be the Hausdorff dimension of $E$, and let $mu=mathcal H^s|_E$ be the $s$-dimensional Hausdorff measure restricted to $E$. In this paper we describe, for each $xin E$, the pointwise lower $s$-density $Theta_*^s(mu,x)$ and upper $s$-density $Theta^{*s}(mu, x)$ of $mu$ at $x$. This extends some early results of Feng et al. (2000). Furthermore, we determine two critical values $a_c$ and $b_c$ for the sets

[

E_*(a)=left{xin E: Theta_*^s(mu, x)ge a ight}quad extrm{and}quad E^*(b)=left{xin E: Theta^{*s}(mu, x)le b ight}

] respectively, such that $dim_H E_*(a)>0$ if and only if $a<a_c$, and that $dim_H E^*(b)>0$ if and only if $b>b_c$. We emphasize that both values $a_c$ and $b_c$ are related to the Thue-Morse type sequences, and our strategy to find them relies on ideas from open dynamics and techniques from combinatorics on words.




mo

An Issue Raised in 1978 by a Then-Future Editor-in-Chief of the Journal "Order": Does the Endomorphism Poset of a Finite Connected Poset Tell Us That the Poset Is Connected?. (arXiv:2005.03255v1 [math.CO])

In 1978, Dwight Duffus---editor-in-chief of the journal "Order" from 2010 to 2018 and chair of the Mathematics Department at Emory University from 1991 to 2005---wrote that "it is not obvious that $P$ is connected and $P^P$ isomorphic to $Q^Q$ implies that $Q$ is connected," where $P$ and $Q$ are finite non-empty posets. We show that, indeed, under these hypotheses $Q$ is connected and $Pcong Q$.




mo

Cohomological dimension of ideals defining Veronese subrings. (arXiv:2005.03250v1 [math.AC])

Given a standard graded polynomial ring over a commutative Noetherian ring $A$, we prove that the cohomological dimension and the height of the ideals defining any of its Veronese subrings are equal. This result is due to Ogus when $A$ is a field of characteristic zero, and follows from a result of Peskine and Szpiro when $A$ is a field of positive characteristic; our result applies, for example, when $A$ is the ring of integers.




mo

On the Brown-Peterson cohomology of $BPU_n$ in lower dimensions and the Thom map. (arXiv:2005.03107v1 [math.AT])

For an odd prime $p$, we determined the Brown-Peterson cohomology of $BPU_n$ in dimensions $-(2p-2)leq ileq 2p+2$, where $BPU_n$ is the classifying space of the projective unitary group $PU_n$. We construct a family of $p$-torsion classes $eta_{p,k}in BP^{2p^{k+1}+2}(BPU_n)$ for $p|n$ and $kgeq 0$ and identify their images under the Thom map with well understood cohomology classes in $H^*(BPU_n;mathbb{Z}_{(p)})$.




mo

Homotopy invariance of the space of metrics with positive scalar curvature on manifolds with singularities. (arXiv:2005.03073v1 [math.AT])

In this paper we study manifolds $M_{Sigma}$ with fibered singularities, more specifically, a relevant space $Riem^{psc}(X_{Sigma})$ of Riemannian metrics with positive scalar curvature. Our main goal is to prove that the space $Riem^{psc}(X_{Sigma})$ is homotopy invariant under certain surgeries on $M_{Sigma}$.




mo

Modeling nanoconfinement effects using active learning. (arXiv:2005.02587v2 [physics.app-ph] UPDATED)

Predicting the spatial configuration of gas molecules in nanopores of shale formations is crucial for fluid flow forecasting and hydrocarbon reserves estimation. The key challenge in these tight formations is that the majority of the pore sizes are less than 50 nm. At this scale, the fluid properties are affected by nanoconfinement effects due to the increased fluid-solid interactions. For instance, gas adsorption to the pore walls could account for up to 85% of the total hydrocarbon volume in a tight reservoir. Although there are analytical solutions that describe this phenomenon for simple geometries, they are not suitable for describing realistic pores, where surface roughness and geometric anisotropy play important roles. To describe these, molecular dynamics (MD) simulations are used since they consider fluid-solid and fluid-fluid interactions at the molecular level. However, MD simulations are computationally expensive, and are not able to simulate scales larger than a few connected nanopores. We present a method for building and training physics-based deep learning surrogate models to carry out fast and accurate predictions of molecular configurations of gas inside nanopores. Since training deep learning models requires extensive databases that are computationally expensive to create, we employ active learning (AL). AL reduces the overhead of creating comprehensive sets of high-fidelity data by determining where the model uncertainty is greatest, and running simulations on the fly to minimize it. The proposed workflow enables nanoconfinement effects to be rigorously considered at the mesoscale where complex connected sets of nanopores control key applications such as hydrocarbon recovery and CO2 sequestration.




mo

Temporal Event Segmentation using Attention-based Perceptual Prediction Model for Continual Learning. (arXiv:2005.02463v2 [cs.CV] UPDATED)

Temporal event segmentation of a long video into coherent events requires a high level understanding of activities' temporal features. The event segmentation problem has been tackled by researchers in an offline training scheme, either by providing full, or weak, supervision through manually annotated labels or by self-supervised epoch based training. In this work, we present a continual learning perceptual prediction framework (influenced by cognitive psychology) capable of temporal event segmentation through understanding of the underlying representation of objects within individual frames. Our framework also outputs attention maps which effectively localize and track events-causing objects in each frame. The model is tested on a wildlife monitoring dataset in a continual training manner resulting in $80\%$ recall rate at $20\%$ false positive rate for frame level segmentation. Activity level testing has yielded $80\%$ activity recall rate for one false activity detection every 50 minutes.




mo

The Sensitivity of Language Models and Humans to Winograd Schema Perturbations. (arXiv:2005.01348v2 [cs.CL] UPDATED)

Large-scale pretrained language models are the major driving force behind recent improvements in performance on the Winograd Schema Challenge, a widely employed test of common sense reasoning ability. We show, however, with a new diagnostic dataset, that these models are sensitive to linguistic perturbations of the Winograd examples that minimally affect human understanding. Our results highlight interesting differences between humans and language models: language models are more sensitive to number or gender alternations and synonym replacements than humans, and humans are more stable and consistent in their predictions, maintain a much higher absolute performance, and perform better on non-associative instances than associative ones. Overall, humans are correct more often than out-of-the-box models, and the models are sometimes right for the wrong reasons. Finally, we show that fine-tuning on a large, task-specific dataset can offer a solution to these issues.




mo

Recurrent Neural Network Language Models Always Learn English-Like Relative Clause Attachment. (arXiv:2005.00165v3 [cs.CL] UPDATED)

A standard approach to evaluating language models analyzes how models assign probabilities to valid versus invalid syntactic constructions (i.e. is a grammatical sentence more probable than an ungrammatical sentence). Our work uses ambiguous relative clause attachment to extend such evaluations to cases of multiple simultaneous valid interpretations, where stark grammaticality differences are absent. We compare model performance in English and Spanish to show that non-linguistic biases in RNN LMs advantageously overlap with syntactic structure in English but not Spanish. Thus, English models may appear to acquire human-like syntactic preferences, while models trained on Spanish fail to acquire comparable human-like preferences. We conclude by relating these results to broader concerns about the relationship between comprehension (i.e. typical language model use cases) and production (which generates the training data for language models), suggesting that necessary linguistic biases are not present in the training signal at all.




mo

Jealousy-freeness and other common properties in Fair Division of Mixed Manna. (arXiv:2004.11469v2 [cs.GT] UPDATED)

We consider a fair division setting where indivisible items are allocated to agents. Each agent in the setting has strictly negative, zero or strictly positive utility for each item. We, thus, make a distinction between items that are good for some agents and bad for other agents (i.e. mixed), good for everyone (i.e. goods) or bad for everyone (i.e. bads). For this model, we study axiomatic concepts of allocations such as jealousy-freeness up to one item, envy-freeness up to one item and Pareto-optimality. We obtain many new possibility and impossibility results in regard to combinations of these properties. We also investigate new computational tasks related to such combinations. Thus, we advance the state-of-the-art in fair division of mixed manna.




mo

The growth rate over trees of any family of set defined by a monadic second order formula is semi-computable. (arXiv:2004.06508v3 [cs.DM] UPDATED)

Monadic second order logic can be used to express many classical notions of sets of vertices of a graph as for instance: dominating sets, induced matchings, perfect codes, independent sets or irredundant sets. Bounds on the number of sets of any such family of sets are interesting from a combinatorial point of view and have algorithmic applications. Many such bounds on different families of sets over different classes of graphs are already provided in the literature. In particular, Rote recently showed that the number of minimal dominating sets in trees of order $n$ is at most $95^{frac{n}{13}}$ and that this bound is asymptotically sharp up to a multiplicative constant. We build on his work to show that what he did for minimal dominating sets can be done for any family of sets definable by a monadic second order formula.

We first show that, for any monadic second order formula over graphs that characterizes a given kind of subset of its vertices, the maximal number of such sets in a tree can be expressed as the extit{growth rate of a bilinear system}. This mostly relies on well known links between monadic second order logic over trees and tree automata and basic tree automata manipulations. Then we show that this "growth rate" of a bilinear system can be approximated from above.We then use our implementation of this result to provide bounds on the number of independent dominating sets, total perfect dominating sets, induced matchings, maximal induced matchings, minimal perfect dominating sets, perfect codes and maximal irredundant sets on trees. We also solve a question from D. Y. Kang et al. regarding $r$-matchings and improve a bound from G'orska and Skupie'n on the number of maximal matchings on trees. Remark that this approach is easily generalizable to graphs of bounded tree width or clique width (or any similar class of graphs where tree automata are meaningful).




mo

Decoding EEG Rhythms During Action Observation, Motor Imagery, and Execution for Standing and Sitting. (arXiv:2004.04107v2 [cs.HC] UPDATED)

Event-related desynchronization and synchronization (ERD/S) and movement-related cortical potential (MRCP) play an important role in brain-computer interfaces (BCI) for lower limb rehabilitation, particularly in standing and sitting. However, little is known about the differences in the cortical activation between standing and sitting, especially how the brain's intention modulates the pre-movement sensorimotor rhythm as they do for switching movements. In this study, we aim to investigate the decoding of continuous EEG rhythms during action observation (AO), motor imagery (MI), and motor execution (ME) for standing and sitting. We developed a behavioral task in which participants were instructed to perform both AO and MI/ME in regard to the actions of sit-to-stand and stand-to-sit. Our results demonstrated that the ERD was prominent during AO, whereas ERS was typical during MI at the alpha band across the sensorimotor area. A combination of the filter bank common spatial pattern (FBCSP) and support vector machine (SVM) for classification was used for both offline and pseudo-online analyses. The offline analysis indicated the classification of AO and MI providing the highest mean accuracy at 82.73$pm$2.38\% in stand-to-sit transition. By applying the pseudo-online analysis, we demonstrated the higher performance of decoding neural intentions from the MI paradigm in comparison to the ME paradigm. These observations led us to the promising aspect of using our developed tasks based on the integration of both AO and MI to build future exoskeleton-based rehabilitation systems.




mo

PACT: Privacy Sensitive Protocols and Mechanisms for Mobile Contact Tracing. (arXiv:2004.03544v4 [cs.CR] UPDATED)

The global health threat from COVID-19 has been controlled in a number of instances by large-scale testing and contact tracing efforts. We created this document to suggest three functionalities on how we might best harness computing technologies to supporting the goals of public health organizations in minimizing morbidity and mortality associated with the spread of COVID-19, while protecting the civil liberties of individuals. In particular, this work advocates for a third-party free approach to assisted mobile contact tracing, because such an approach mitigates the security and privacy risks of requiring a trusted third party. We also explicitly consider the inferential risks involved in any contract tracing system, where any alert to a user could itself give rise to de-anonymizing information.

More generally, we hope to participate in bringing together colleagues in industry, academia, and civil society to discuss and converge on ideas around a critical issue rising with attempts to mitigate the COVID-19 pandemic.




mo

Human Motion Transfer with 3D Constraints and Detail Enhancement. (arXiv:2003.13510v2 [cs.GR] UPDATED)

We propose a new method for realistic human motion transfer using a generative adversarial network (GAN), which generates a motion video of a target character imitating actions of a source character, while maintaining high authenticity of the generated results. We tackle the problem by decoupling and recombining the posture information and appearance information of both the source and target characters. The innovation of our approach lies in the use of the projection of a reconstructed 3D human model as the condition of GAN to better maintain the structural integrity of transfer results in different poses. We further introduce a detail enhancement net to enhance the details of transfer results by exploiting the details in real source frames. Extensive experiments show that our approach yields better results both qualitatively and quantitatively than the state-of-the-art methods.




mo

Toward Improving the Evaluation of Visual Attention Models: a Crowdsourcing Approach. (arXiv:2002.04407v2 [cs.CV] UPDATED)

Human visual attention is a complex phenomenon. A computational modeling of this phenomenon must take into account where people look in order to evaluate which are the salient locations (spatial distribution of the fixations), when they look in those locations to understand the temporal development of the exploration (temporal order of the fixations), and how they move from one location to another with respect to the dynamics of the scene and the mechanics of the eyes (dynamics). State-of-the-art models focus on learning saliency maps from human data, a process that only takes into account the spatial component of the phenomenon and ignore its temporal and dynamical counterparts. In this work we focus on the evaluation methodology of models of human visual attention. We underline the limits of the current metrics for saliency prediction and scanpath similarity, and we introduce a statistical measure for the evaluation of the dynamics of the simulated eye movements. While deep learning models achieve astonishing performance in saliency prediction, our analysis shows their limitations in capturing the dynamics of the process. We find that unsupervised gravitational models, despite of their simplicity, outperform all competitors. Finally, exploiting a crowd-sourcing platform, we present a study aimed at evaluating how strongly the scanpaths generated with the unsupervised gravitational models appear plausible to naive and expert human observers.