con The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding By www.jneurosci.org Published On :: 1998-05-15 Michael N. ShadlenMay 15, 1998; 18:3870-3896Articles Full Article
con Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control By www.jneurosci.org Published On :: 2007-02-28 William W. SeeleyFeb 28, 2007; 27:2349-2356BehavioralSystemsCognitive Full Article
con Rassegna trimestrale BRI settembre 2017: Le prospettive positive in un contesto di bassa inflazione alimentano l'assunzione di rischio By www.bis.org Published On :: 2017-09-17T16:00:00Z Italian translation of the BIS press release about the BIS Quarterly Review, September 2017 Full Article
con Relazione economica annuale 2018 By www.bis.org Published On :: 2018-06-24T10:30:00Z Italian translation of Annual Economic Report 2018 of the BIS, June 2018 - Le autorità possono fare in modo che l'attuale ripresa economica si mantenga oltre il breve termine avviando riforme strutturali, ridando margine di manovra alle politiche monetarie e di bilancio per affrontare eventuali future minacce, e incoraggiando la pronta attuazione delle riforme regolamentari, scrive la Banca dei Regolamenti Internazionali (BRI) nella sua Relazione economica annuale. Full Article
con È ora di accendere tutti i motori, afferma la BRI nella sua Relazione economica annuale By www.bis.org Published On :: 2019-06-30T10:30:00Z Italian translation of the BIS press release on the presentation of the Annual Economic Report 2019, 30 June 2019. Full Article
con Implications des évolutions de la technologie financière pour les banques et les autorités de contrôle bancaire By www.bis.org Published On :: 2018-02-19T12:15:00Z French translation of the Basel Committee is publishing "Sound Practices: implications of fintech developments for banks and bank supervisors", February 2018. Full Article
con La confiance est le chaînon manquant des cryptomonnaies actuelles, selon la BRI By www.bis.org Published On :: 2018-06-17T16:00:00Z French translation of the Press Release on the pre-release of two special chapters of the Annual Economic Report of the BIS, 17 June 2018. Trust is the missing link in today's cryptocurrencies - Cryptocurrencies' model of generating trust limits their potential to replace conventional money, the Bank for International Settlements (BIS) writes in its Annual Economic Report (AER), a new title launched this year. Full Article
con Rapport économique annuel 2018 By www.bis.org Published On :: 2018-06-24T10:30:00Z French translation of the Annual Economic Report 2018 of the BIS, June 2018 - Les responsables des politiques publiques peuvent prolonger la phase de croissance actuelle en engageant des réformes structurelles, en restaurant les marges de manœuvre monétaires et budgétaires pour faire face aux menaces futures et en encourageant une mise en œuvre rapide des réformes réglementaires, indique la Banque des Règlements Internationaux (BRI) dans son Rapport économique annuel. Full Article
con Pablo Hernández de Cos nommé Président du Comité de Bâle sur le contrôle bancaire By www.bis.org Published On :: 2019-03-07T12:55:00Z French version of Press release about Pablo Hernández de Cos appointed as Chairman of Basel Committee on Banking Supervision Full Article
con Rapport économique annuel de la BRI : Il est temps d'allumer tous les moteurs By www.bis.org Published On :: 2019-06-30T10:30:00Z French translation of the BIS press release on the presentation of the Annual Economic Report 2019, 30 June 2019. La politique monétaire ne peut plus être le principal moteur de la croissance économique, et d'autres leviers de politique publique doivent être actionnés pour faire en sorte que l'économie mondiale connaisse une dynamique durable ... Full Article
con La confianza es el eslabón perdido en las criptomonedas actuales, según el BPI By www.bis.org Published On :: 2018-06-17T16:00:00Z Spanish translation of the Press Release on the pre-release of two special chapters of the Annual Economic Report of the BIS, 17 June 2018. Trust is the missing link in today's cryptocurrencies - Cryptocurrencies' model of generating trust limits their potential to replace conventional money, the Bank for International Settlements (BIS) writes in its Annual Economic Report (AER), a new title launched this year. Full Article
con Informe Económico Anual 2018 By www.bis.org Published On :: 2018-06-24T10:30:00Z Spanish translation of the Annual Economic Report 2018 of the BIS, June 2018 - Las autoridades pueden prolongar el actual repunte económico más allá del corto plazo aplicando reformas estructurales, reconstruyendo el espacio de las políticas monetaria y fiscal para afrontar futuras amenazas y fomentando una pronta implementación de las reformas reguladoras, sostiene el Banco de Pagos Internacionales (BPI) en su Informe Económico Anual. Full Article
con El Comité de Basilea finaliza sus principios sobre pruebas de tensión, analiza fórmulas para acabar con prácticas de arbitraje regulatorio, aprueba la lista anual de G-SIB y debate sobre el coeficiente de apalancamiento, los criptoacti By www.bis.org Published On :: 2018-09-20T14:00:00Z Spanish translation of press release - the Basel Committee on Banking Supervision is finalising stress-testing principles, reviews ways to stop regulatory arbitrage behaviour, agrees on annual G-SIB list, discusses leverage ratio, crypto-assets, market risk framework and implementation, 20 September 2018. Full Article
con Ha llegado la hora de poner en marcha todos los motores, afirma el BPI en su Informe Económico Anual By www.bis.org Published On :: 2019-06-30T10:30:00Z Spanish translation of the BIS press release on the presentation of the Annual Economic Report 2019, 30 June 2019. Full Article
con Wintrust Financial Corporation to Present at Raymond James 41st Annual Institutional Investors Conference By www.snl.com Published On :: Mon, 24 Feb 2020 23:03:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
con Wintrust Financial Corporation to Present at RBC Capital Markets Global Financial Institutions Conference on March 10, 2020 By www.snl.com Published On :: Thu, 27 Feb 2020 23:49:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
con Ad Makers Use Deepfakes to 'Refresh' Old Content By www.technewsworld.com Published On :: 2020-04-28T11:05:35-07:00 With measures to stem the spread of COVID-19 putting a chokehold on their filming capabilities, advertising agencies are enhancing old content with new tech, including deepfakes. Deepfakes typically blend one person's likeness, or parts thereof, with the image of another person. Ad agencies are so restricted in how they can generate content, they'll explore anything that can be computer-generated. Full Article
con UK Rejects Apple-Google Contact Tracing Approach By www.technewsworld.com Published On :: 2020-04-29T04:00:00-07:00 The UK's plans to launch a smartphone application to track potential COVID-19 infections won't include Apple and Google. The country's National Health Service has designed its own mobile software to do contact tracing of people exposed to the coronavirus. The NHS reportedly found that its own tech works "sufficiently well." The NHS chose a centralized model for its data collection and storage. Full Article
con Red Hat's Virtual Summit Crowds Hint at Future Conference Models By www.technewsworld.com Published On :: 2020-05-07T04:00:00-07:00 In what could be a trial run for more of the same, Red Hat last week held a first-ever virtual technical summit to spread the word about its latest cloud tech offerings. CEO Paul Cormier welcomed online viewers to the conference, which attracted more than 80,000 virtual attendees. The company made several key announcements during the online gathering and highlighted customer innovations. Full Article
con Contact Tracing With Salesforce By www.crmbuyer.com Published On :: 2020-04-22T04:00:00-07:00 Contact tracing is a big job, like trying to drain an ocean with a teaspoon. It involves finding people who have been exposed to the coronavirus and testing them to determine if they are infected or are carriers. Public health officials then can take necessary steps to prevent the virus' spread. It's a perfect fit for CRM, and Salesforce's core technology is coming to the forefront. Full Article
con The lawyer who laundered political contributions By www.mcclatchydc.com Published On :: Full Article
con The inflation conundrum in advanced economies and a way out By www.bis.org Published On :: 2019-09-05T08:00:00Z Paper by Mr Luiz Awazu Pereira da Silva, Deputy General Manager of the BIS, Enisse Kharroubi, Emanuel Kohlscheen and Benoît Mojon based on remarks at the University of Basel, 5 May 2019. Full Article
con Exiting low inflation traps by "consensus": nominal wages and price stability By www.bis.org Published On :: 2019-12-20T09:00:00Z Exiting low inflation traps by "consensus": nominal wages and price stability - Speech by Luiz A Pereira da Silva and Benoît Mojon, based on the keynote speech at the Eighth High-level Policy Dialogue between the Eurosystem and Latin American Central Banks, Cartagena de Indias, Colombia, 28-29 November 2019. Full Article
con Interneuron NMDA Receptor Ablation Induces Hippocampus-Prefrontal Cortex Functional Hypoconnectivity after Adolescence in a Mouse Model of Schizophrenia By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Although the etiology of schizophrenia is still unknown, it is accepted to be a neurodevelopmental disorder that results from the interaction of genetic vulnerabilities and environmental insults. Although schizophrenia's pathophysiology is still unclear, postmortem studies point toward a dysfunction of cortical interneurons as a central element. It has been suggested that alterations in parvalbumin-positive interneurons in schizophrenia are the consequence of a deficient signaling through NMDARs. Animal studies demonstrated that early postnatal ablation of the NMDAR in corticolimbic interneurons induces neurobiochemical, physiological, behavioral, and epidemiological phenotypes related to schizophrenia. Notably, the behavioral abnormalities emerge only after animals complete their maturation during adolescence and are absent if the NMDAR is deleted during adulthood. This suggests that interneuron dysfunction must interact with development to impact on behavior. Here, we assess in vivo how an early NMDAR ablation in corticolimbic interneurons impacts on mPFC and ventral hippocampus functional connectivity before and after adolescence. In juvenile male mice, NMDAR ablation results in several pathophysiological traits, including increased cortical activity and decreased entrainment to local gamma and distal hippocampal theta rhythms. In addition, adult male KO mice showed reduced ventral hippocampus-mPFC-evoked potentials and an augmented low-frequency stimulation LTD of the pathway, suggesting that there is a functional disconnection between both structures in adult KO mice. Our results demonstrate that early genetic abnormalities in interneurons can interact with postnatal development during adolescence, triggering pathophysiological mechanisms related to schizophrenia that exceed those caused by NMDAR interneuron hypofunction alone. SIGNIFICANCE STATEMENT NMDAR hypofunction in cortical interneurons has been linked to schizophrenia pathophysiology. How a dysfunction of GABAergic cortical interneurons interacts with maturation during adolescence has not been clarified yet. Here, we demonstrate in vivo that early postnatal ablation of the NMDAR in corticolimbic interneurons results in an overactive but desynchronized PFC before adolescence. Final postnatal maturation during this stage outspreads the impact of the genetic manipulation toward a functional disconnection of the ventral hippocampal-prefrontal pathway, probably as a consequence of an exacerbated propensity toward hippocampal-evoked depotentiation plasticity. Our results demonstrate a complex interaction between genetic and developmental factors affecting cortical interneurons and PFC function. Full Article
con Contribution of NPY Y5 Receptors to the Reversible Structural Remodeling of Basolateral Amygdala Dendrites in Male Rats Associated with NPY-Mediated Stress Resilience By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Endogenous neuropeptide Y (NPY) and corticotrophin-releasing factor (CRF) modulate the responses of the basolateral amygdala (BLA) to stress and are associated with the development of stress resilience and vulnerability, respectively. We characterized persistent effects of repeated NPY and CRF treatment on the structure and function of BLA principal neurons in a novel organotypic slice culture (OTC) model of male rat BLA, and examined the contributions of specific NPY receptor subtypes to these neural and behavioral effects. In BLA principal neurons within the OTCs, repeated NPY treatment caused persistent attenuation of excitatory input and induced dendritic hypotrophy via Y5 receptor activation; conversely, CRF increased excitatory input and induced hypertrophy of BLA principal neurons. Repeated treatment of OTCs with NPY followed by an identical treatment with CRF, or vice versa, inhibited or reversed all structural changes in OTCs. These structural responses to NPY or CRF required calcineurin or CaMKII, respectively. Finally, repeated intra-BLA injections of NPY or a Y5 receptor agonist increased social interaction, a validated behavior for anxiety, and recapitulated structural changes in BLA neurons seen in OTCs, while a Y5 receptor antagonist prevented NPY's effects both on behavior and on structure. These results implicate the Y5 receptor in the long-term, anxiolytic-like effects of NPY in the BLA, consistent with an intrinsic role in stress buffering, and highlight a remarkable mechanism by which BLA neurons may adapt to different levels of stress. Moreover, BLA OTCs offer a robust model to study mechanisms associated with resilience and vulnerability to stress in BLA. SIGNIFICANCE STATEMENT Within the basolateral amygdala (BLA), neuropeptide Y (NPY) is associated with buffering the neural stress response induced by corticotropin releasing factor, and promoting stress resilience. We used a novel organotypic slice culture model of BLA, complemented with in vivo studies, to examine the cellular mechanisms associated with the actions of NPY. In organotypic slice cultures, repeated NPY treatment reduces the complexity of the dendritic extent of anxiogenic BLA principal neurons, making them less excitable. NPY, via activation of Y5 receptors, additionally inhibits and reverses the increases in dendritic extent and excitability induced by the stress hormone, corticotropin releasing factor. This NPY-mediated neuroplasticity indicates that resilience or vulnerability to stress may thus involve neuropeptide-mediated dendritic remodeling in BLA principal neurons. Full Article
con Ventral Hippocampal Input to the Prelimbic Cortex Dissociates the Context from the Cue Association in Trace Fear Memory By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 The PFC, through its high degree of interconnectivity with cortical and subcortical brain areas, mediates cognitive and emotional processes in support of adaptive behaviors. This includes the formation of fear memories when the anticipation of threat demands learning about temporal or contextual cues, as in trace fear conditioning. In this variant of fear learning, the association of a cue and shock across an empty trace interval of several seconds requires sustained cue-elicited firing in the prelimbic cortex (PL). However, it is unknown how and when distinct PL afferents contribute to different associative components of memory. Among the prominent inputs to PL, the hippocampus shares with PL a role in both working memory and contextual processing. Here we tested the necessity of direct hippocampal input to the PL for the acquisition of trace-cued fear memory and the simultaneously acquired contextual fear association. Optogenetic silencing of ventral hippocampal (VH) terminals in the PL of adult male Long-Evans rats selectively during paired trials revealed that direct communication between the VH and PL during training is necessary for contextual fear memory, but not for trace-cued fear acquisition. The pattern of the contextual memory deficit and the disruption of local PL firing during optogenetic silencing of VH-PL suggest that the VH continuously updates the PL with the current contextual state of the animal, which, when disrupted during memory acquisition, is detrimental to the subsequent rapid retrieval of aversive contextual associations. SIGNIFICANCE STATEMENT Learning to anticipate threat from available contextual and discrete cues is crucial for survival. The prelimbic cortex is required for forming fear memories when temporal or contextual complexity is involved, as in trace fear conditioning. However, the respective contribution of distinct prelimbic afferents to the temporal and contextual components of memory is not known. We report that direct input from the ventral hippocampus enables the formation of the contextual, but not trace-cued, fear memory necessary for the subsequent rapid expression of a fear response. This finding dissociates the contextual and working-memory contributions of prelimbic cortex to the formation of a fear memory and demonstrates the crucial role for hippocampal input in contextual fear learning. Full Article
con Circuit Stability to Perturbations Reveals Hidden Variability in the Balance of Intrinsic and Synaptic Conductances By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Neurons and circuits each with a distinct balance of intrinsic and synaptic conductances can generate similar behavior but sometimes respond very differently to perturbation. Examining a large family of circuit models with non-identical neurons and synapses underlying rhythmic behavior, we analyzed the circuits' response to modifications in single and multiple intrinsic conductances in the individual neurons. To summarize these changes over the entire range of perturbed parameters, we quantified circuit output by defining a global stability measure. Using this measure, we identified specific subsets of conductances that when perturbed generate similar behavior in diverse individuals of the population. Our unbiased clustering analysis enabled us to quantify circuit stability when simultaneously perturbing multiple conductances as a nonlinear combination of single conductance perturbations. This revealed surprising conductance combinations that can predict the response to specific perturbations, even when the remaining intrinsic and synaptic conductances are unknown. Therefore, our approach can expose hidden variability in the balance of intrinsic and synaptic conductances of the same neurons across different versions of the same circuit solely from the circuit response to perturbations. Developed for a specific family of model circuits, our quantitative approach to characterizing high-dimensional degenerate systems provides a conceptual and analytic framework to guide future theoretical and experimental studies on degeneracy and robustness. SIGNIFICANCE STATEMENT Neural circuits can generate nearly identical behavior despite neuronal and synaptic parameters varying several-fold between individual instantiations. Yet, when these parameters are perturbed through channel deletions and mutations or environmental disturbances, seemingly identical circuits can respond very differently. What distinguishes inconsequential perturbations that barely alter circuit behavior from disruptive perturbations that drastically disturb circuit output remains unclear. Focusing on a family of rhythmic circuits, we propose a computational approach to reveal hidden variability in the intrinsic and synaptic conductances in seemingly identical circuits based solely on circuit output to different perturbations. We uncover specific conductance combinations that work similarly to maintain stability and predict the effect of changing multiple conductances simultaneously, which often results from neuromodulation or injury. Full Article
con The VGF-derived Peptide TLQP21 Impairs Purinergic Control of Chemotaxis and Phagocytosis in Mouse Microglia By www.jneurosci.org Published On :: 2020-04-22T09:29:41-07:00 Microglial cells are considered as sensors of brain pathology by detecting any sign of brain lesions, infections, or dysfunction and can influence the onset and progression of neurological diseases. They are capable of sensing their neuronal environment via many different signaling molecules, such as neurotransmitters, neurohormones and neuropeptides. The neuropeptide VGF has been associated with many metabolic and neurological disorders. TLQP21 is a VGF-derived peptide and has been shown to signal via C3aR1 and C1qBP receptors. The effect of TLQP21 on microglial functions in health or disease is not known. Studying microglial cells in acute brain slices, we found that TLQP21 impaired metabotropic purinergic signaling. Specifically, it attenuated the ATP-induced activation of a K+ conductance, the UDP-stimulated phagocytic activity, and the ATP-dependent laser lesion-induced process outgrowth. These impairments were reversed by blocking C1qBP, but not C3aR1 receptors. While microglia in brain slices from male mice lack C3aR1 receptors, both receptors are expressed in primary cultured microglia. In addition to the negative impact on purinergic signaling, we found stimulating effects of TLQP21 in cultured microglia, which were mediated by C3aR1 receptors: it directly evoked membrane currents, stimulated basal phagocytic activity, evoked intracellular Ca2+ transient elevations, and served as a chemotactic signal. We conclude that TLQP21 has differential effects on microglia depending on C3aR1 activation or C1qBP-dependent attenuation of purinergic signaling. Thus, TLQP21 can modulate the functional phenotype of microglia, which may have an impact on their function in health and disease. SIGNIFICANCE STATEMENT The neuropeptide VGF and its peptides have been associated with many metabolic and neurological disorders. TLQP21 is a VGF-derived peptide that activates C1qBP receptors, which are expressed by microglia. We show here, for the first time, that TLQP21 impairs P2Y-mediated purinergic signaling and related functions. These include modulation of phagocytic activity and responses to injury. As purinergic signaling is central for microglial actions in the brain, this TLQP21-mediated mechanism might regulate microglial activity in health and disease. We furthermore show that, in addition to C1qBP, functional C3aR1 responses contribute to TLQP21 action on microglia. However, C3aR1 responses were only present in primary cultures but not in situ, suggesting that the expression of these receptors might vary between different microglial activation states. Full Article
con Coding of Navigational Distance and Functional Constraint of Boundaries in the Human Scene-Selective Cortex By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 For visually guided navigation, the use of environmental cues is essential. Particularly, detecting local boundaries that impose limits to locomotion and estimating their location is crucial. In a series of three fMRI experiments, we investigated whether there is a neural coding of navigational distance in the human visual cortex (both female and male). We used virtual reality software to systematically manipulate the distance from a viewer perspective to different types of a boundary. Using a multivoxel pattern classification employing a linear support vector machine, we found that the occipital place area (OPA) is sensitive to the navigational distance restricted by the transparent glass wall. Further, the OPA was sensitive to a non-crossable boundary only, suggesting an importance of the functional constraint of a boundary. Together, we propose the OPA as a perceptual source of external environmental features relevant for navigation. SIGNIFICANCE STATEMENT One of major goals in cognitive neuroscience has been to understand the nature of visual scene representation in human ventral visual cortex. An aspect of scene perception that has been overlooked despite its ecological importance is the analysis of space for navigation. One of critical computation necessary for navigation is coding of distance to environmental boundaries that impose limit on navigator's movements. This paper reports the first empirical evidence for coding of navigational distance in the human visual cortex and its striking sensitivity to functional constraint of environmental boundaries. Such finding links the paper to previous neurological and behavioral works that emphasized the distance to boundaries as a crucial geometric property for reorientation behavior of children and other animal species. Full Article
con Reward-Based Improvements in Motor Control Are Driven by Multiple Error-Reducing Mechanisms By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 Reward has a remarkable ability to invigorate motor behavior, enabling individuals to select and execute actions with greater precision and speed. However, if reward is to be exploited in applied settings, such as rehabilitation, a thorough understanding of its underlying mechanisms is required. In a series of experiments, we first demonstrate that reward simultaneously improves the selection and execution components of a reaching movement. Specifically, reward promoted the selection of the correct action in the presence of distractors, while also improving execution through increased speed and maintenance of accuracy. These results led to a shift in the speed-accuracy functions for both selection and execution. In addition, punishment had a similar impact on action selection and execution, although it enhanced execution performance across all trials within a block, that is, its impact was noncontingent to trial value. Although the reward-driven enhancement of movement execution has been proposed to occur through enhanced feedback control, an untested possibility is that it is also driven by increased arm stiffness, an energy-consuming process that enhances limb stability. Computational analysis revealed that reward led to both an increase in feedback correction in the middle of the movement and a reduction in motor noise near the target. In line with our hypothesis, we provide novel evidence that this noise reduction is driven by a reward-dependent increase in arm stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate motor performance without compromising accuracy. SIGNIFICANCE STATEMENT While reward is well-known for enhancing motor performance, how the nervous system generates these improvements is unclear. Despite recent work indicating that reward leads to enhanced feedback control, an untested possibility is that it also increases arm stiffness. We demonstrate that reward simultaneously improves the selection and execution components of a reaching movement. Furthermore, we show that punishment has a similar positive impact on performance. Importantly, by combining computational and biomechanical approaches, we show that reward leads to both improved feedback correction and an increase in stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate performance without compromising accuracy. This work suggests that stiffness control plays a vital, and underappreciated, role in the reward-based imporvemenets in motor control. Full Article
con The Frog Motor Nerve Terminal Has Very Brief Action Potentials and Three Electrical Regions Predicted to Differentially Control Transmitter Release By www.jneurosci.org Published On :: 2020-04-29T09:30:19-07:00 The action potential (AP) waveform controls the opening of voltage-gated calcium channels and contributes to the driving force for calcium ion flux that triggers neurotransmission at presynaptic nerve terminals. Although the frog neuromuscular junction (NMJ) has long been a model synapse for the study of neurotransmission, its presynaptic AP waveform has never been directly studied, and thus the AP waveform shape and propagation through this long presynaptic nerve terminal are unknown. Using a fast voltage-sensitive dye, we have imaged the AP waveform from the presynaptic terminal of male and female frog NMJs and shown that the AP is very brief in duration and actively propagated along the entire length of the terminal. Furthermore, based on measured AP waveforms at different regions along the length of the nerve terminal, we show that the terminal is divided into three distinct electrical regions: A beginning region immediately after the last node of Ranvier where the AP is broadest, a middle region with a relatively consistent AP duration, and an end region near the tip of nerve terminal branches where the AP is briefer. We hypothesize that these measured changes in the AP waveform along the length of the motor nerve terminal may explain the proximal-distal gradient in transmitter release previously reported at the frog NMJ. SIGNIFICANCE STATEMENT The AP waveform plays an essential role in determining the behavior of neurotransmission at the presynaptic terminal. Although the frog NMJ is a model synapse for the study of synaptic transmission, there are many unknowns centered around the shape and propagation of its presynaptic AP waveform. Here, we demonstrate that the presynaptic terminal of the frog NMJ has a very brief AP waveform and that the motor nerve terminal contains three distinct electrical regions. We propose that the changes in the AP waveform as it propagates along the terminal can explain the proximal-distal gradient in transmitter release seen in electrophysiological studies. Full Article
con Neonatal Stroke and TLR1/2 Ligand Recruit Myeloid Cells through the Choroid Plexus in a CX3CR1-CCR2- and Context-Specific Manner By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Neonatal stroke is as frequent as stroke in the elderly, but many pathophysiological injury aspects are distinct in neonates, including immune signaling. While myeloid cells can traffic into the brain via multiple routes, the choroid plexus (CP) has been identified as a uniquely educated gate for immune cell traffic during health and disease. To understand the mechanisms of myeloid cell trafficking via the CP and their influence on neonatal stroke, we characterized the phenotypes of CP-infiltrating myeloid cells after transient middle cerebral artery occlusion (tMCAO) in neonatal mice of both sexes in relation to blood-brain barrier permeability, injury, microglial activation, and CX3CR1-CCR2 signaling, focusing on the dynamics early after reperfusion. We demonstrate rapid recruitment of multiple myeloid phenotypes in the CP ipsilateral to the injury, including inflammatory CD45+CD11b+Ly6chighCD86+, beneficial CD45+CD11b+Ly6clowCD206+, and CD45+CD11b+Ly6clowLy6ghigh cells, but only minor leukocyte infiltration into acutely ischemic-reperfused cortex and negligible vascular albumin leakage. We report that CX3CR1-CCR2-mediated myeloid cell recruitment contributes to stroke injury. Considering the complexity of inflammatory cascades triggered by stroke and a role for TLR2 in injury, we also used direct TLR2 stimulation as an independent injury model. TLR2 agonist rapidly recruited myeloid cells to the CP, increased leukocytosis in the CSF and blood, but infiltration into the cortex remained low over time. While the magnitude and the phenotypes of myeloid cells diverged between tMCAO and TLR2 stimulation, in both models, disruption of CX3CR1-CCR2 signaling attenuated both monocyte and neutrophil trafficking to the CP and cortex. SIGNIFICANCE STATEMENT Stroke during the neonatal period leads to long-term disabilities. The mechanisms of ischemic injury and inflammatory response differ greatly between the immature and adult brain. We examined leukocyte trafficking via the choroid plexus (CP) following neonatal stroke in relation to blood-brain barrier integrity, injury, microglial activation, and signaling via CX3CR1 and CCR2 receptors, or following direct TLR2 stimulation. Ischemia-reperfusion triggered marked unilateral CX3CR1-CCR2 dependent accumulation of diverse leukocyte subpopulations in the CP without inducing extravascular albumin leakage or major leukocyte infiltration into the brain. Disrupted CX3CR1-CCR2 signaling was neuroprotective in part by attenuating monocyte and neutrophil trafficking. Understanding the migratory patterns of CP-infiltrating myeloid cells with intact and disrupted CX3CR1-CCR2 signaling could identify novel therapeutic targets to protect the neonatal brain. Full Article
con Cognitive Effort Modulates Connectivity between Dorsal Anterior Cingulate Cortex and Task-Relevant Cortical Areas By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Investment of cognitive effort is required in everyday life and has received ample attention in recent neurocognitive frameworks. The neural mechanism of effort investment is thought to be structured hierarchically, with dorsal anterior cingulate cortex (dACC) at the highest level, recruiting task-specific upstream areas. In the current fMRI study, we tested whether dACC is generally active when effort demand is high across tasks with different stimuli, and whether connectivity between dACC and task-specific areas is increased depending on the task requirements and effort level at hand. For that purpose, a perceptual detection task was administered that required male and female human participants to detect either a face or a house in a noisy image. Effort demand was manipulated by adding little (low effort) or much (high effort) noise to the images. Results showed a network of dACC, anterior insula (AI), and intraparietal sulcus (IPS) to be more active when effort demand was high, independent of the performed task (face or house detection). Importantly, effort demand modulated functional connectivity between dACC and face-responsive or house-responsive perceptual areas, depending on the task at hand. This shows that dACC, AI, and IPS constitute a general effort-responsive network and suggests that the neural implementation of cognitive effort involves dACC-initiated sensitization of task-relevant areas. SIGNIFICANCE STATEMENT Although cognitive effort is generally perceived as aversive, its investment is inevitable when navigating an increasingly complex society. In this study, we demonstrate how the human brain tailors the implementation of effort to the requirements of the task at hand. We show increased effort-related activity in a network of brain areas consisting of dorsal anterior cingulate cortex (dACC), anterior insula, and intraparietal sulcus, independent of task specifics. Crucially, we also show that effort-induced functional connectivity between dACC and task-relevant areas tracks specific task demands. These results demonstrate how brain regions specialized to solve a task may be energized by dACC when effort demand is high. Full Article
con Streaming of Repeated Noise in Primary and Secondary Fields of Auditory Cortex By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Statistical regularities in natural sounds facilitate the perceptual segregation of auditory sources, or streams. Repetition is one cue that drives stream segregation in humans, but the neural basis of this perceptual phenomenon remains unknown. We demonstrated a similar perceptual ability in animals by training ferrets of both sexes to detect a stream of repeating noise samples (foreground) embedded in a stream of random samples (background). During passive listening, we recorded neural activity in primary auditory cortex (A1) and secondary auditory cortex (posterior ectosylvian gyrus, PEG). We used two context-dependent encoding models to test for evidence of streaming of the repeating stimulus. The first was based on average evoked activity per noise sample and the second on the spectro-temporal receptive field. Both approaches tested whether differences in neural responses to repeating versus random stimuli were better modeled by scaling the response to both streams equally (global gain) or by separately scaling the response to the foreground versus background stream (stream-specific gain). Consistent with previous observations of adaptation, we found an overall reduction in global gain when the stimulus began to repeat. However, when we measured stream-specific changes in gain, responses to the foreground were enhanced relative to the background. This enhancement was stronger in PEG than A1. In A1, enhancement was strongest in units with low sparseness (i.e., broad sensory tuning) and with tuning selective for the repeated sample. Enhancement of responses to the foreground relative to the background provides evidence for stream segregation that emerges in A1 and is refined in PEG. SIGNIFICANCE STATEMENT To interact with the world successfully, the brain must parse behaviorally important information from a complex sensory environment. Complex mixtures of sounds often arrive at the ears simultaneously or in close succession, yet they are effortlessly segregated into distinct perceptual sources. This process breaks down in hearing-impaired individuals and speech recognition devices. By identifying the underlying neural mechanisms that facilitate perceptual segregation, we can develop strategies for ameliorating hearing loss and improving speech recognition technology in the presence of background noise. Here, we present evidence to support a hierarchical process, present in primary auditory cortex and refined in secondary auditory cortex, in which sound repetition facilitates segregation. Full Article
con Nestin Selectively Facilitates the Phosphorylation of the Lissencephaly-Linked Protein Doublecortin (DCX) by cdk5/p35 to Regulate Growth Cone Morphology and Sema3a Sensitivity in Developing Neurons By www.jneurosci.org Published On :: 2020-05-06T09:30:22-07:00 Nestin, an intermediate filament protein widely used as a marker of neural progenitors, was recently found to be expressed transiently in developing cortical neurons in culture and in developing mouse cortex. In young cortical cultures, nestin regulates axonal growth cone morphology. In addition, nestin, which is known to bind the neuronal cdk5/p35 kinase, affects responses to axon guidance cues upstream of cdk5, specifically, to Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, and changes in microtubules and actin filaments are well studied. In contrast, the roles of intermediate filament proteins in this process are poorly understood, even in cultured neurons. Here, we investigate the molecular mechanism by which nestin affects growth cone morphology and Sema3a sensitivity. We find that nestin selectively facilitates the phosphorylation of the lissencephaly-linked protein doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected by nestin. We uncover that this substrate selectivity is based on the ability of nestin to interact with DCX, but not with other cdk5 substrates. Nestin thus creates a selective scaffold for DCX with activated cdk5/p35. Last, we use cortical cultures derived from Dcx KO mice to show that the effects of nestin on growth cone morphology and on Sema3a sensitivity are DCX-dependent, thus suggesting a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating the intracellular kinase signaling environment in developing neurons. The sex of animal subjects is unknown. SIGNIFICANCE STATEMENT Nestin, an intermediate filament protein highly expressed in neural progenitors, was recently identified in developing neurons where it regulates growth cone morphology and responsiveness to the guidance cue Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, but the roles of intermediate filaments in this process are poorly understood. We now report that nestin selectively facilitates phosphorylation of the lissencephaly-linked doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected. This substrate selectivity is based on preferential scaffolding of DCX, cdk5, and p35 by nestin. Additionally, we demonstrate a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating intracellular kinase signaling in developing neurons. Full Article
con Top 5 need-to-knows about Conservation Agriculture By www.fao.org Published On :: Wed, 30 Jul 2014 00:00:00 GMT In the face of changing weather driven by climate change and the increasing demand for food, Conservation Agriculture (CA) aims to achieve sustainable and profitable agriculture and improve farmers’ livelihoods. Here are five things you need to know. 1. CA observes three main principles that you should remember Direct seeding involves growing crops without mechanical seedbed preparation and with minimal soil disturbance [...] Full Article
con Capture the Zero Hunger Challenge in 30 to 60 seconds By www.fao.org Published On :: Wed, 15 Oct 2014 00:00:00 GMT Have you ever thought about producing a video on food, nutrition, sustainability or hunger? Whether you’re a food buff, a student, an activist, movie geek or professional filmmaker, we have just the thing for you.Short Food Movie is a global open call for videos inspired by the theme for Expo Milano 2015, “Feeding the Planet. Energy for Life.” It includes [...] Full Article
con Spotlight: How do pulses contribute to a sustainable world? By www.fao.org Published On :: Wed, 27 Apr 2016 00:00:00 GMT Pulses are being celebrated in 2016 all over the world since they are nutritious, suited for use in a variety of dishes, easy on the budget and good for the health of the soil. From food security and nutrition to ensuring biodiversity and mitigating the effects of climate change, pulses contribute to sustainable development. Here is how. 1. Nutritional benefits of pulses Pulses [...] Full Article
con Solutions from connections By www.fao.org Published On :: Mon, 02 Apr 2018 00:00:00 GMT More with less. This is the challenge and the mantra for our future. There will be many more of us in the years to come. We will go from a population of 7.6 billion today to 9.8 billion in 2050; yet, with our current rate of usage, there will be less fresh water, less arable soil, less available land for [...] Full Article
con Nature's invisible connections and contributions to us By www.fao.org Published On :: Tue, 22 May 2018 00:00:00 GMT One person has curly hair; one person has straight hair. One person tans, another burns. One person can curl her lip, another can’t. This is all because of our genes and the differences in them. Diversity. It is the spice of life. Full Article
con Joy Harjo, First Native American Writer to Be Named U.S. Poet Laureate, Reappointed for Second Term By www.smithsonianmag.com Published On :: Wed, 19 Jun 2019 21:18:24 +0000 Harjo, a member of the Muskogee Creek Nation, says the appointment "honors the place of Native people in this country, the place of Native people’s poetry" Full Article
con http://digg.com/submit?url=http://www.edge.org/conversation/this-will-make-you-smarter By digg.com Published On :: Full Article
con http://digg.com/submit?url=http://www.edge.org/conversation/science-is-the-only-news By digg.com Published On :: Full Article
con http://digg.com/submit?url=http://www.edge.org/conversation/a-universe-of-self-replicating-code By digg.com Published On :: Full Article
con http://digg.com/submit?url=http://www.edge.org/conversation/a-cultural-history-of-physics By digg.com Published On :: Full Article
con http://digg.com/submit?url=http://www.edge.org/conversation/-quotthe-man-who-runs-the-world-39s-smartest-website-quot-in-the-observer By digg.com Published On :: Full Article
con http://digg.com/submit?url=http://www.edge.org/conversation/ By digg.com Published On :: Full Article
con Your Butterfly Photos Could Help Monarch Conservation By www.smithsonianmag.com Published On :: Tue, 24 Mar 2020 15:15:24 +0000 As monarchs leave their winter hideaways, conservationists are seeking assistance in studying their migration routes Full Article