con Ecology, conservation, and restoration of Chilika Lagoon, India By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030334246 (electronic bk.) Full Article
con DICTIONARY OF CONSTRUCTION, SURVEYING, AND CIVIL ENGINEERING By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780192568632 (electronic bk.) Full Article
con Conversion Coatings. By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Bibber, John W.Callnumber: OnlineISBN: 9781527539655 (electronic bk.) Full Article
con Controlled and modified atmosphere for fresh and fresh-cut produce By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128046210 Full Article
con Conservation genetics in mammals : integrative research using novel approaches By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030333348 (electronic bk.) Full Article
con Consequences of microbial interactions with hydrocarbons, oils, and lipids : biodegradation and bioremediation By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319445359 (electronic bk.) Full Article
con Computational processing of the Portuguese language : 14th International Conference, PROPOR 2020, Evora, Portugal, March 2-4, 2020, Proceedings By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: PROPOR (Conference) (14th : 2020 : Evora, Portugal)Callnumber: OnlineISBN: 9783030415051 (electronic bk.) Full Article
con Communications and networking : 14th EAI International Conference, ChinaCom 2019, Shanghai, China, November 29 - December 1, 2019, proceedings. By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: ChinaCom (Conference) (14th : 2019 : Shanghai, China)Callnumber: OnlineISBN: 9783030411176 Full Article
con Bioeconomy for beginners By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Bioökonomie für Einsteiger. EnglishCallnumber: OnlineISBN: 9783662603901 (electronic bk.) Full Article
con Notice of Construction - Kennedy Rd. and Ravenshoe Rd. By www.eastgwillimbury.ca Published On :: Sun, 03 May 2020 16:28:03 GMT Full Article
con Notice of Construction - Woodbine Ave. By www.eastgwillimbury.ca Published On :: Fri, 24 Apr 2020 18:41:27 GMT Full Article
con Domestic Gag Rule Reduces Contraceptive Access For Nearly 370,000... By www.prweb.com Published On :: According to data released by Power to Decide, an estimated 369,960 New Jersey women of reproductive age (13-44) in need of publicly funded contraception live in counties impacted by the...(PRWeb April 09, 2020)Read the full story at https://www.prweb.com/releases/domestic_gag_rule_reduces_contraceptive_access_for_nearly_370_000_women_living_in_new_jersey/prweb17040987.htm Full Article
con STRmix Now Being Used by Suffolk County Crime Lab, Contra Costa... By www.prweb.com Published On :: New organizations bring total number of U.S. forensic labs using STRmix to 55.(PRWeb April 23, 2020)Read the full story at https://www.prweb.com/releases/strmix_now_being_used_by_suffolk_county_crime_lab_contra_costa_sheriffs_office/prweb17057336.htm Full Article
con Jamboree Begins Construction on Capstone Development to Change... By www.prweb.com Published On :: In a public-private partnership to develop housing, resident services and hope for 102 working families in Haster Orangewood community, Jamboree Housing Corporation and the City of Anaheim announce...(PRWeb April 27, 2020)Read the full story at https://www.prweb.com/releases/jamboree_begins_construction_on_capstone_development_to_change_trajectory_of_neighborhood_in_anaheim_ca/prweb17073166.htm Full Article
con Almost sure uniqueness of a global minimum without convexity By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Gregory Cox. Source: The Annals of Statistics, Volume 48, Number 1, 584--606.Abstract: This paper establishes the argmin of a random objective function to be unique almost surely. This paper first formulates a general result that proves almost sure uniqueness without convexity of the objective function. The general result is then applied to a variety of applications in statistics. Four applications are discussed, including uniqueness of M-estimators, both classical likelihood and penalized likelihood estimators, and two applications of the argmin theorem, threshold regression and weak identification. Full Article
con Uniformly valid confidence intervals post-model-selection By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST François Bachoc, David Preinerstorfer, Lukas Steinberger. Source: The Annals of Statistics, Volume 48, Number 1, 440--463.Abstract: We suggest general methods to construct asymptotically uniformly valid confidence intervals post-model-selection. The constructions are based on principles recently proposed by Berk et al. ( Ann. Statist. 41 (2013) 802–837). In particular, the candidate models used can be misspecified, the target of inference is model-specific, and coverage is guaranteed for any data-driven model selection procedure. After developing a general theory, we apply our methods to practically important situations where the candidate set of models, from which a working model is selected, consists of fixed design homoskedastic or heteroskedastic linear models, or of binary regression models with general link functions. In an extensive simulation study, we find that the proposed confidence intervals perform remarkably well, even when compared to existing methods that are tailored only for specific model selection procedures. Full Article
con Consistent selection of the number of change-points via sample-splitting By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Changliang Zou, Guanghui Wang, Runze Li. Source: The Annals of Statistics, Volume 48, Number 1, 413--439.Abstract: In multiple change-point analysis, one of the major challenges is to estimate the number of change-points. Most existing approaches attempt to minimize a Schwarz information criterion which balances a term quantifying model fit with a penalization term accounting for model complexity that increases with the number of change-points and limits overfitting. However, different penalization terms are required to adapt to different contexts of multiple change-point problems and the optimal penalization magnitude usually varies from the model and error distribution. We propose a data-driven selection criterion that is applicable to most kinds of popular change-point detection methods, including binary segmentation and optimal partitioning algorithms. The key idea is to select the number of change-points that minimizes the squared prediction error, which measures the fit of a specified model for a new sample. We develop a cross-validation estimation scheme based on an order-preserved sample-splitting strategy, and establish its asymptotic selection consistency under some mild conditions. Effectiveness of the proposed selection criterion is demonstrated on a variety of numerical experiments and real-data examples. Full Article
con Concentration and consistency results for canonical and curved exponential-family models of random graphs By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Michael Schweinberger, Jonathan Stewart. Source: The Annals of Statistics, Volume 48, Number 1, 374--396.Abstract: Statistical inference for exponential-family models of random graphs with dependent edges is challenging. We stress the importance of additional structure and show that additional structure facilitates statistical inference. A simple example of a random graph with additional structure is a random graph with neighborhoods and local dependence within neighborhoods. We develop the first concentration and consistency results for maximum likelihood and $M$-estimators of a wide range of canonical and curved exponential-family models of random graphs with local dependence. All results are nonasymptotic and applicable to random graphs with finite populations of nodes, although asymptotic consistency results can be obtained as well. In addition, we show that additional structure can facilitate subgraph-to-graph estimation, and present concentration results for subgraph-to-graph estimators. As an application, we consider popular curved exponential-family models of random graphs, with local dependence induced by transitivity and parameter vectors whose dimensions depend on the number of nodes. Full Article
con Bootstrap confidence regions based on M-estimators under nonstandard conditions By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Stephen M. S. Lee, Puyudi Yang. Source: The Annals of Statistics, Volume 48, Number 1, 274--299.Abstract: Suppose that a confidence region is desired for a subvector $ heta $ of a multidimensional parameter $xi =( heta ,psi )$, based on an M-estimator $hat{xi }_{n}=(hat{ heta }_{n},hat{psi }_{n})$ calculated from a random sample of size $n$. Under nonstandard conditions $hat{xi }_{n}$ often converges at a nonregular rate $r_{n}$, in which case consistent estimation of the distribution of $r_{n}(hat{ heta }_{n}- heta )$, a pivot commonly chosen for confidence region construction, is most conveniently effected by the $m$ out of $n$ bootstrap. The above choice of pivot has three drawbacks: (i) the shape of the region is either subjectively prescribed or controlled by a computationally intensive depth function; (ii) the region is not transformation equivariant; (iii) $hat{xi }_{n}$ may not be uniquely defined. To resolve the above difficulties, we propose a one-dimensional pivot derived from the criterion function, and prove that its distribution can be consistently estimated by the $m$ out of $n$ bootstrap, or by a modified version of the perturbation bootstrap. This leads to a new method for constructing confidence regions which are transformation equivariant and have shapes driven solely by the criterion function. A subsampling procedure is proposed for selecting $m$ in practice. Empirical performance of the new method is illustrated with examples drawn from different nonstandard M-estimation settings. Extension of our theory to row-wise independent triangular arrays is also explored. Full Article
con Spectral and matrix factorization methods for consistent community detection in multi-layer networks By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Subhadeep Paul, Yuguo Chen. Source: The Annals of Statistics, Volume 48, Number 1, 230--250.Abstract: We consider the problem of estimating a consensus community structure by combining information from multiple layers of a multi-layer network using methods based on the spectral clustering or a low-rank matrix factorization. As a general theme, these “intermediate fusion” methods involve obtaining a low column rank matrix by optimizing an objective function and then using the columns of the matrix for clustering. However, the theoretical properties of these methods remain largely unexplored. In the absence of statistical guarantees on the objective functions, it is difficult to determine if the algorithms optimizing the objectives will return good community structures. We investigate the consistency properties of the global optimizer of some of these objective functions under the multi-layer stochastic blockmodel. For this purpose, we derive several new asymptotic results showing consistency of the intermediate fusion techniques along with the spectral clustering of mean adjacency matrix under a high dimensional setup, where the number of nodes, the number of layers and the number of communities of the multi-layer graph grow. Our numerical study shows that the intermediate fusion techniques outperform late fusion methods, namely spectral clustering on aggregate spectral kernel and module allegiance matrix in sparse networks, while they outperform the spectral clustering of mean adjacency matrix in multi-layer networks that contain layers with both homophilic and heterophilic communities. Full Article
con Joint convergence of sample autocovariance matrices when $p/n o 0$ with application By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Monika Bhattacharjee, Arup Bose. Source: The Annals of Statistics, Volume 47, Number 6, 3470--3503.Abstract: Consider a high-dimensional linear time series model where the dimension $p$ and the sample size $n$ grow in such a way that $p/n o 0$. Let $hat{Gamma }_{u}$ be the $u$th order sample autocovariance matrix. We first show that the LSD of any symmetric polynomial in ${hat{Gamma }_{u},hat{Gamma }_{u}^{*},ugeq 0}$ exists under independence and moment assumptions on the driving sequence together with weak assumptions on the coefficient matrices. This LSD result, with some additional effort, implies the asymptotic normality of the trace of any polynomial in ${hat{Gamma }_{u},hat{Gamma }_{u}^{*},ugeq 0}$. We also study similar results for several independent MA processes. We show applications of the above results to statistical inference problems such as in estimation of the unknown order of a high-dimensional MA process and in graphical and significance tests for hypotheses on coefficient matrices of one or several such independent processes. Full Article
con Minimax posterior convergence rates and model selection consistency in high-dimensional DAG models based on sparse Cholesky factors By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Kyoungjae Lee, Jaeyong Lee, Lizhen Lin. Source: The Annals of Statistics, Volume 47, Number 6, 3413--3437.Abstract: In this paper we study the high-dimensional sparse directed acyclic graph (DAG) models under the empirical sparse Cholesky prior. Among our results, strong model selection consistency or graph selection consistency is obtained under more general conditions than those in the existing literature. Compared to Cao, Khare and Ghosh [ Ann. Statist. (2019) 47 319–348], the required conditions are weakened in terms of the dimensionality, sparsity and lower bound of the nonzero elements in the Cholesky factor. Furthermore, our result does not require the irrepresentable condition, which is necessary for Lasso-type methods. We also derive the posterior convergence rates for precision matrices and Cholesky factors with respect to various matrix norms. The obtained posterior convergence rates are the fastest among those of the existing Bayesian approaches. In particular, we prove that our posterior convergence rates for Cholesky factors are the minimax or at least nearly minimax depending on the relative size of true sparseness for the entire dimension. The simulation study confirms that the proposed method outperforms the competing methods. Full Article
con Quantile regression under memory constraint By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Xi Chen, Weidong Liu, Yichen Zhang. Source: The Annals of Statistics, Volume 47, Number 6, 3244--3273.Abstract: This paper studies the inference problem in quantile regression (QR) for a large sample size $n$ but under a limited memory constraint, where the memory can only store a small batch of data of size $m$. A natural method is the naive divide-and-conquer approach, which splits data into batches of size $m$, computes the local QR estimator for each batch and then aggregates the estimators via averaging. However, this method only works when $n=o(m^{2})$ and is computationally expensive. This paper proposes a computationally efficient method, which only requires an initial QR estimator on a small batch of data and then successively refines the estimator via multiple rounds of aggregations. Theoretically, as long as $n$ grows polynomially in $m$, we establish the asymptotic normality for the obtained estimator and show that our estimator with only a few rounds of aggregations achieves the same efficiency as the QR estimator computed on all the data. Moreover, our result allows the case that the dimensionality $p$ goes to infinity. The proposed method can also be applied to address the QR problem under distributed computing environment (e.g., in a large-scale sensor network) or for real-time streaming data. Full Article
con Sorted concave penalized regression By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Long Feng, Cun-Hui Zhang. Source: The Annals of Statistics, Volume 47, Number 6, 3069--3098.Abstract: The Lasso is biased. Concave penalized least squares estimation (PLSE) takes advantage of signal strength to reduce this bias, leading to sharper error bounds in prediction, coefficient estimation and variable selection. For prediction and estimation, the bias of the Lasso can be also reduced by taking a smaller penalty level than what selection consistency requires, but such smaller penalty level depends on the sparsity of the true coefficient vector. The sorted $ell_{1}$ penalized estimation (Slope) was proposed for adaptation to such smaller penalty levels. However, the advantages of concave PLSE and Slope do not subsume each other. We propose sorted concave penalized estimation to combine the advantages of concave and sorted penalizations. We prove that sorted concave penalties adaptively choose the smaller penalty level and at the same time benefits from signal strength, especially when a significant proportion of signals are stronger than the corresponding adaptively selected penalty levels. A local convex approximation for sorted concave penalties, which extends the local linear and quadratic approximations for separable concave penalties, is developed to facilitate the computation of sorted concave PLSE and proven to possess desired prediction and estimation error bounds. Our analysis of prediction and estimation errors requires the restricted eigenvalue condition on the design, not beyond, and provides selection consistency under a required minimum signal strength condition in addition. Thus, our results also sharpens existing results on concave PLSE by removing the upper sparse eigenvalue component of the sparse Riesz condition. Full Article
con Inference for the mode of a log-concave density By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Charles R. Doss, Jon A. Wellner. Source: The Annals of Statistics, Volume 47, Number 5, 2950--2976.Abstract: We study a likelihood ratio test for the location of the mode of a log-concave density. Our test is based on comparison of the log-likelihoods corresponding to the unconstrained maximum likelihood estimator of a log-concave density and the constrained maximum likelihood estimator where the constraint is that the mode of the density is fixed, say at $m$. The constrained estimation problem is studied in detail in Doss and Wellner (2018). Here, the results of that paper are used to show that, under the null hypothesis (and strict curvature of $-log f$ at the mode), the likelihood ratio statistic is asymptotically pivotal: that is, it converges in distribution to a limiting distribution which is free of nuisance parameters, thus playing the role of the $chi_{1}^{2}$ distribution in classical parametric statistical problems. By inverting this family of tests, we obtain new (likelihood ratio based) confidence intervals for the mode of a log-concave density $f$. These new intervals do not depend on any smoothing parameters. We study the new confidence intervals via Monte Carlo methods and illustrate them with two real data sets. The new intervals seem to have several advantages over existing procedures. Software implementing the test and confidence intervals is available in the R package verb+logcondens.mode+. Full Article
con On testing conditional qualitative treatment effects By projecteuclid.org Published On :: Tue, 21 May 2019 04:00 EDT Chengchun Shi, Rui Song, Wenbin Lu. Source: The Annals of Statistics, Volume 47, Number 4, 2348--2377.Abstract: Precision medicine is an emerging medical paradigm that focuses on finding the most effective treatment strategy tailored for individual patients. In the literature, most of the existing works focused on estimating the optimal treatment regime. However, there has been less attention devoted to hypothesis testing regarding the optimal treatment regime. In this paper, we first introduce the notion of conditional qualitative treatment effects (CQTE) of a set of variables given another set of variables and provide a class of equivalent representations for the null hypothesis of no CQTE. The proposed definition of CQTE does not assume any parametric form for the optimal treatment rule and plays an important role for assessing the incremental value of a set of new variables in optimal treatment decision making conditional on an existing set of prescriptive variables. We then propose novel testing procedures for no CQTE based on kernel estimation of the conditional contrast functions. We show that our test statistics have asymptotically correct size and nonnegligible power against some nonstandard local alternatives. The empirical performance of the proposed tests are evaluated by simulations and an application to an AIDS data set. Full Article
con Convergence complexity analysis of Albert and Chib’s algorithm for Bayesian probit regression By projecteuclid.org Published On :: Tue, 21 May 2019 04:00 EDT Qian Qin, James P. Hobert. Source: The Annals of Statistics, Volume 47, Number 4, 2320--2347.Abstract: The use of MCMC algorithms in high dimensional Bayesian problems has become routine. This has spurred so-called convergence complexity analysis, the goal of which is to ascertain how the convergence rate of a Monte Carlo Markov chain scales with sample size, $n$, and/or number of covariates, $p$. This article provides a thorough convergence complexity analysis of Albert and Chib’s [ J. Amer. Statist. Assoc. 88 (1993) 669–679] data augmentation algorithm for the Bayesian probit regression model. The main tools used in this analysis are drift and minorization conditions. The usual pitfalls associated with this type of analysis are avoided by utilizing centered drift functions, which are minimized in high posterior probability regions, and by using a new technique to suppress high-dimensionality in the construction of minorization conditions. The main result is that the geometric convergence rate of the underlying Markov chain is bounded below 1 both as $n ightarrowinfty$ (with $p$ fixed), and as $p ightarrowinfty$ (with $n$ fixed). Furthermore, the first computable bounds on the total variation distance to stationarity are byproducts of the asymptotic analysis. Full Article
con Convergence rates of least squares regression estimators with heavy-tailed errors By projecteuclid.org Published On :: Tue, 21 May 2019 04:00 EDT Qiyang Han, Jon A. Wellner. Source: The Annals of Statistics, Volume 47, Number 4, 2286--2319.Abstract: We study the performance of the least squares estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$th moment ($pgeq1$). In such a heavy-tailed regression setting, we show that if the model satisfies a standard “entropy condition” with exponent $alphain(0,2)$, then the $L_{2}$ loss of the LSE converges at a rate [mathcal{O}_{mathbf{P}}igl(n^{-frac{1}{2+alpha}}vee n^{-frac{1}{2}+frac{1}{2p}}igr).] Such a rate cannot be improved under the entropy condition alone. This rate quantifies both some positive and negative aspects of the LSE in a heavy-tailed regression setting. On the positive side, as long as the errors have $pgeq1+2/alpha$ moments, the $L_{2}$ loss of the LSE converges at the same rate as if the errors are Gaussian. On the negative side, if $p<1+2/alpha$, there are (many) hard models at any entropy level $alpha$ for which the $L_{2}$ loss of the LSE converges at a strictly slower rate than other robust estimators. The validity of the above rate relies crucially on the independence of the covariates and the errors. In fact, the $L_{2}$ loss of the LSE can converge arbitrarily slowly when the independence fails. The key technical ingredient is a new multiplier inequality that gives sharp bounds for the “multiplier empirical process” associated with the LSE. We further give an application to the sparse linear regression model with heavy-tailed covariates and errors to demonstrate the scope of this new inequality. Full Article
con Negative association, ordering and convergence of resampling methods By projecteuclid.org Published On :: Tue, 21 May 2019 04:00 EDT Mathieu Gerber, Nicolas Chopin, Nick Whiteley. Source: The Annals of Statistics, Volume 47, Number 4, 2236--2260.Abstract: We study convergence and convergence rates for resampling schemes. Our first main result is a general consistency theorem based on the notion of negative association, which is applied to establish the almost sure weak convergence of measures output from Kitagawa’s [ J. Comput. Graph. Statist. 5 (1996) 1–25] stratified resampling method. Carpenter, Ckiffird and Fearnhead’s [ IEE Proc. Radar Sonar Navig. 146 (1999) 2–7] systematic resampling method is similar in structure but can fail to converge depending on the order of the input samples. We introduce a new resampling algorithm based on a stochastic rounding technique of [In 42nd IEEE Symposium on Foundations of Computer Science ( Las Vegas , NV , 2001) (2001) 588–597 IEEE Computer Soc.], which shares some attractive properties of systematic resampling, but which exhibits negative association and, therefore, converges irrespective of the order of the input samples. We confirm a conjecture made by [ J. Comput. Graph. Statist. 5 (1996) 1–25] that ordering input samples by their states in $mathbb{R}$ yields a faster rate of convergence; we establish that when particles are ordered using the Hilbert curve in $mathbb{R}^{d}$, the variance of the resampling error is ${scriptstylemathcal{O}}(N^{-(1+1/d)})$ under mild conditions, where $N$ is the number of particles. We use these results to establish asymptotic properties of particle algorithms based on resampling schemes that differ from multinomial resampling. Full Article
con SHOPPER: A probabilistic model of consumer choice with substitutes and complements By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Francisco J. R. Ruiz, Susan Athey, David M. Blei. Source: The Annals of Applied Statistics, Volume 14, Number 1, 1--27.Abstract: We develop SHOPPER, a sequential probabilistic model of shopping data. SHOPPER uses interpretable components to model the forces that drive how a customer chooses products; in particular, we designed SHOPPER to capture how items interact with other items. We develop an efficient posterior inference algorithm to estimate these forces from large-scale data, and we analyze a large dataset from a major chain grocery store. We are interested in answering counterfactual queries about changes in prices. We found that SHOPPER provides accurate predictions even under price interventions, and that it helps identify complementary and substitutable pairs of products. Full Article
con A simple, consistent estimator of SNP heritability from genome-wide association studies By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Armin Schwartzman, Andrew J. Schork, Rong Zablocki, Wesley K. Thompson. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2509--2538.Abstract: Analysis of genome-wide association studies (GWAS) is characterized by a large number of univariate regressions where a quantitative trait is regressed on hundreds of thousands to millions of single-nucleotide polymorphism (SNP) allele counts, one at a time. This article proposes an estimator of the SNP heritability of the trait, defined here as the fraction of the variance of the trait explained by the SNPs in the study. The proposed GWAS heritability (GWASH) estimator is easy to compute, highly interpretable and is consistent as the number of SNPs and the sample size increase. More importantly, it can be computed from summary statistics typically reported in GWAS, not requiring access to the original data. The estimator takes full account of the linkage disequilibrium (LD) or correlation between the SNPs in the study through moments of the LD matrix, estimable from auxiliary datasets. Unlike other proposed estimators in the literature, we establish the theoretical properties of the GWASH estimator and obtain analytical estimates of the precision, allowing for power and sample size calculations for SNP heritability estimates and forming a firm foundation for future methodological development. Full Article
con Prediction of small area quantiles for the conservation effects assessment project using a mixed effects quantile regression model By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Emily Berg, Danhyang Lee. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2158--2188.Abstract: Quantiles of the distributions of several measures of erosion are important parameters in the Conservation Effects Assessment Project, a survey intended to quantify soil and nutrient loss on crop fields. Because sample sizes for domains of interest are too small to support reliable direct estimators, model based methods are needed. Quantile regression is appealing for CEAP because finding a single family of parametric models that adequately describes the distributions of all variables is difficult and small area quantiles are parameters of interest. We construct empirical Bayes predictors and bootstrap mean squared error estimators based on the linearly interpolated generalized Pareto distribution (LIGPD). We apply the procedures to predict county-level quantiles for four types of erosion in Wisconsin and validate the procedures through simulation. Full Article
con Estimating the rate constant from biosensor data via an adaptive variational Bayesian approach By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Ye Zhang, Zhigang Yao, Patrik Forssén, Torgny Fornstedt. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2011--2042.Abstract: The means to obtain the rate constants of a chemical reaction is a fundamental open problem in both science and the industry. Traditional techniques for finding rate constants require either chemical modifications of the reactants or indirect measurements. The rate constant map method is a modern technique to study binding equilibrium and kinetics in chemical reactions. Finding a rate constant map from biosensor data is an ill-posed inverse problem that is usually solved by regularization. In this work, rather than finding a deterministic regularized rate constant map that does not provide uncertainty quantification of the solution, we develop an adaptive variational Bayesian approach to estimate the distribution of the rate constant map, from which some intrinsic properties of a chemical reaction can be explored, including information about rate constants. Our new approach is more realistic than the existing approaches used for biosensors and allows us to estimate the dynamics of the interactions, which are usually hidden in a deterministic approximate solution. We verify the performance of the new proposed method by numerical simulations, and compare it with the Markov chain Monte Carlo algorithm. The results illustrate that the variational method can reliably capture the posterior distribution in a computationally efficient way. Finally, the developed method is also tested on the real biosensor data (parathyroid hormone), where we provide two novel analysis tools—the thresholding contour map and the high order moment map—to estimate the number of interactions as well as their rate constants. Full Article
con Bayesian methods for multiple mediators: Relating principal stratification and causal mediation in the analysis of power plant emission controls By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Chanmin Kim, Michael J. Daniels, Joseph W. Hogan, Christine Choirat, Corwin M. Zigler. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1927--1956.Abstract: Emission control technologies installed on power plants are a key feature of many air pollution regulations in the US. While such regulations are predicated on the presumed relationships between emissions, ambient air pollution and human health, many of these relationships have never been empirically verified. The goal of this paper is to develop new statistical methods to quantify these relationships. We frame this problem as one of mediation analysis to evaluate the extent to which the effect of a particular control technology on ambient pollution is mediated through causal effects on power plant emissions. Since power plants emit various compounds that contribute to ambient pollution, we develop new methods for multiple intermediate variables that are measured contemporaneously, may interact with one another, and may exhibit joint mediating effects. Specifically, we propose new methods leveraging two related frameworks for causal inference in the presence of mediating variables: principal stratification and causal mediation analysis. We define principal effects based on multiple mediators, and also introduce a new decomposition of the total effect of an intervention on ambient pollution into the natural direct effect and natural indirect effects for all combinations of mediators. Both approaches are anchored to the same observed-data models, which we specify with Bayesian nonparametric techniques. We provide assumptions for estimating principal causal effects, then augment these with an additional assumption required for causal mediation analysis. The two analyses, interpreted in tandem, provide the first empirical investigation of the presumed causal pathways that motivate important air quality regulatory policies. Full Article
con Approximate inference for constructing astronomical catalogs from images By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Jeffrey Regier, Andrew C. Miller, David Schlegel, Ryan P. Adams, Jon D. McAuliffe, Prabhat. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1884--1926.Abstract: We present a new, fully generative model for constructing astronomical catalogs from optical telescope image sets. Each pixel intensity is treated as a random variable with parameters that depend on the latent properties of stars and galaxies. These latent properties are themselves modeled as random. We compare two procedures for posterior inference. One procedure is based on Markov chain Monte Carlo (MCMC) while the other is based on variational inference (VI). The MCMC procedure excels at quantifying uncertainty, while the VI procedure is 1000 times faster. On a supercomputer, the VI procedure efficiently uses 665,000 CPU cores to construct an astronomical catalog from 50 terabytes of images in 14.6 minutes, demonstrating the scaling characteristics necessary to construct catalogs for upcoming astronomical surveys. Full Article
con Bayesian modeling of the structural connectome for studying Alzheimer’s disease By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Arkaprava Roy, Subhashis Ghosal, Jeffrey Prescott, Kingshuk Roy Choudhury. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1791--1816.Abstract: We study possible relations between Alzheimer’s disease progression and the structure of the connectome which is white matter connecting different regions of the brain. Regression models in covariates including age, gender and disease status for the extent of white matter connecting each pair of regions of the brain are proposed. Subject inhomogeneity is also incorporated in the model through random effects with an unknown distribution. As there is a large number of pairs of regions, we also adopt a dimension reduction technique through graphon ( J. Combin. Theory Ser. B 96 (2006) 933–957) functions which reduces the functions of pairs of regions to functions of regions. The connecting graphon functions are considered unknown but the assumed smoothness allows putting priors of low complexity on these functions. We pursue a nonparametric Bayesian approach by assigning a Dirichlet process scale mixture of zero to mean normal prior on the distributions of the random effects and finite random series of tensor products of B-splines priors on the underlying graphon functions. We develop efficient Markov chain Monte Carlo techniques for drawing samples for the posterior distributions using Hamiltonian Monte Carlo (HMC). The proposed Bayesian method overwhelmingly outperforms a competing method based on ANCOVA models in the simulation setup. The proposed Bayesian approach is applied on a dataset of 100 subjects and 83 brain regions and key regions implicated in the changing connectome are identified. Full Article
con Incorporating conditional dependence in latent class models for probabilistic record linkage: Does it matter? By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Huiping Xu, Xiaochun Li, Changyu Shen, Siu L. Hui, Shaun Grannis. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1753--1790.Abstract: The conditional independence assumption of the Felligi and Sunter (FS) model in probabilistic record linkage is often violated when matching real-world data. Ignoring conditional dependence has been shown to seriously bias parameter estimates. However, in record linkage, the ultimate goal is to inform the match status of record pairs and therefore, record linkage algorithms should be evaluated in terms of matching accuracy. In the literature, more flexible models have been proposed to relax the conditional independence assumption, but few studies have assessed whether such accommodations improve matching accuracy. In this paper, we show that incorporating the conditional dependence appropriately yields comparable or improved matching accuracy than the FS model using three real-world data linkage examples. Through a simulation study, we further investigate when conditional dependence models provide improved matching accuracy. Our study shows that the FS model is generally robust to the conditional independence assumption and provides comparable matching accuracy as the more complex conditional dependence models. However, when the match prevalence approaches 0% or 100% and conditional dependence exists in the dominating class, it is necessary to address conditional dependence as the FS model produces suboptimal matching accuracy. The need to address conditional dependence becomes less important when highly discriminating fields are used. Our simulation study also shows that conditional dependence models with misspecified dependence structure could produce less accurate record matching than the FS model and therefore we caution against the blind use of conditional dependence models. Full Article
con Network classification with applications to brain connectomics By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Jesús D. Arroyo Relión, Daniel Kessler, Elizaveta Levina, Stephan F. Taylor. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1648--1677.Abstract: While statistical analysis of a single network has received a lot of attention in recent years, with a focus on social networks, analysis of a sample of networks presents its own challenges which require a different set of analytic tools. Here we study the problem of classification of networks with labeled nodes, motivated by applications in neuroimaging. Brain networks are constructed from imaging data to represent functional connectivity between regions of the brain, and previous work has shown the potential of such networks to distinguish between various brain disorders, giving rise to a network classification problem. Existing approaches tend to either treat all edge weights as a long vector, ignoring the network structure, or focus on graph topology as represented by summary measures while ignoring the edge weights. Our goal is to design a classification method that uses both the individual edge information and the network structure of the data in a computationally efficient way, and that can produce a parsimonious and interpretable representation of differences in brain connectivity patterns between classes. We propose a graph classification method that uses edge weights as predictors but incorporates the network nature of the data via penalties that promote sparsity in the number of nodes, in addition to the usual sparsity penalties that encourage selection of edges. We implement the method via efficient convex optimization and provide a detailed analysis of data from two fMRI studies of schizophrenia. Full Article
con Convergence of persistence diagrams for topological crackle By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Takashi Owada, Omer Bobrowski. Source: Bernoulli, Volume 26, Number 3, 2275--2310.Abstract: In this paper, we study the persistent homology associated with topological crackle generated by distributions with an unbounded support. Persistent homology is a topological and algebraic structure that tracks the creation and destruction of topological cycles (generalizations of loops or holes) in different dimensions. Topological crackle is a term that refers to topological cycles generated by random points far away from the bulk of other points, when the support is unbounded. We establish weak convergence results for persistence diagrams – a point process representation for persistent homology, where each topological cycle is represented by its $({mathit{birth},mathit{death}})$ coordinates. In this work, we treat persistence diagrams as random closed sets, so that the resulting weak convergence is defined in terms of the Fell topology. Using this framework, we show that the limiting persistence diagrams can be divided into two parts. The first part is a deterministic limit containing a densely-growing number of persistence pairs with a shorter lifespan. The second part is a two-dimensional Poisson process, representing persistence pairs with a longer lifespan. Full Article
con Concentration of the spectral norm of Erdős–Rényi random graphs By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Gábor Lugosi, Shahar Mendelson, Nikita Zhivotovskiy. Source: Bernoulli, Volume 26, Number 3, 2253--2274.Abstract: We present results on the concentration properties of the spectral norm $|A_{p}|$ of the adjacency matrix $A_{p}$ of an Erdős–Rényi random graph $G(n,p)$. First, we consider the Erdős–Rényi random graph process and prove that $|A_{p}|$ is uniformly concentrated over the range $pin[Clog n/n,1]$. The analysis is based on delocalization arguments, uniform laws of large numbers, together with the entropy method to prove concentration inequalities. As an application of our techniques, we prove sharp sub-Gaussian moment inequalities for $|A_{p}|$ for all $pin[clog^{3}n/n,1]$ that improve the general bounds of Alon, Krivelevich, and Vu ( Israel J. Math. 131 (2002) 259–267) and some of the more recent results of Erdős et al. ( Ann. Probab. 41 (2013) 2279–2375). Both results are consistent with the asymptotic result of Füredi and Komlós ( Combinatorica 1 (1981) 233–241) that holds for fixed $p$ as $n oinfty$. Full Article
con Noncommutative Lebesgue decomposition and contiguity with applications in quantum statistics By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Akio Fujiwara, Koichi Yamagata. Source: Bernoulli, Volume 26, Number 3, 2105--2142.Abstract: We herein develop a theory of contiguity in the quantum domain based upon a novel quantum analogue of the Lebesgue decomposition. The theory thus formulated is pertinent to the weak quantum local asymptotic normality introduced in the previous paper [Yamagata, Fujiwara, and Gill, Ann. Statist. 41 (2013) 2197–2217], yielding substantial enlargement of the scope of quantum statistics. Full Article
con On sampling from a log-concave density using kinetic Langevin diffusions By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Arnak S. Dalalyan, Lionel Riou-Durand. Source: Bernoulli, Volume 26, Number 3, 1956--1988.Abstract: Langevin diffusion processes and their discretizations are often used for sampling from a target density. The most convenient framework for assessing the quality of such a sampling scheme corresponds to smooth and strongly log-concave densities defined on $mathbb{R}^{p}$. The present work focuses on this framework and studies the behavior of the Monte Carlo algorithm based on discretizations of the kinetic Langevin diffusion. We first prove the geometric mixing property of the kinetic Langevin diffusion with a mixing rate that is optimal in terms of its dependence on the condition number. We then use this result for obtaining improved guarantees of sampling using the kinetic Langevin Monte Carlo method, when the quality of sampling is measured by the Wasserstein distance. We also consider the situation where the Hessian of the log-density of the target distribution is Lipschitz-continuous. In this case, we introduce a new discretization of the kinetic Langevin diffusion and prove that this leads to a substantial improvement of the upper bound on the sampling error measured in Wasserstein distance. Full Article
con Busemann functions and semi-infinite O’Connell–Yor polymers By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Tom Alberts, Firas Rassoul-Agha, Mackenzie Simper. Source: Bernoulli, Volume 26, Number 3, 1927--1955.Abstract: We prove that given any fixed asymptotic velocity, the finite length O’Connell–Yor polymer has an infinite length limit satisfying the law of large numbers with this velocity. By a Markovian property of the quenched polymer this reduces to showing the existence of Busemann functions : almost sure limits of ratios of random point-to-point partition functions. The key ingredients are the Burke property of the O’Connell–Yor polymer and a comparison lemma for the ratios of partition functions. We also show the existence of infinite length limits in the Brownian last passage percolation model. Full Article
con On the best constant in the martingale version of Fefferman’s inequality By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Adam Osękowski. Source: Bernoulli, Volume 26, Number 3, 1912--1926.Abstract: Let $X=(X_{t})_{tgeq 0}in H^{1}$ and $Y=(Y_{t})_{tgeq 0}in{mathrm{BMO}} $ be arbitrary continuous-path martingales. The paper contains the proof of the inequality egin{equation*}mathbb{E}int _{0}^{infty }iglvert dlangle X,Y angle_{t}igrvert leq sqrt{2}Vert XVert _{H^{1}}Vert YVert _{mathrm{BMO}_{2}},end{equation*} and the constant $sqrt{2}$ is shown to be the best possible. The proof rests on the construction of a certain special function, enjoying appropriate size and concavity conditions. Full Article
con Optimal functional supervised classification with separation condition By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Sébastien Gadat, Sébastien Gerchinovitz, Clément Marteau. Source: Bernoulli, Volume 26, Number 3, 1797--1831.Abstract: We consider the binary supervised classification problem with the Gaussian functional model introduced in ( Math. Methods Statist. 22 (2013) 213–225). Taking advantage of the Gaussian structure, we design a natural plug-in classifier and derive a family of upper bounds on its worst-case excess risk over Sobolev spaces. These bounds are parametrized by a separation distance quantifying the difficulty of the problem, and are proved to be optimal (up to logarithmic factors) through matching minimax lower bounds. Using the recent works of (In Advances in Neural Information Processing Systems (2014) 3437–3445 Curran Associates) and ( Ann. Statist. 44 (2016) 982–1009), we also derive a logarithmic lower bound showing that the popular $k$-nearest neighbors classifier is far from optimality in this specific functional setting. Full Article
con Estimating the number of connected components in a graph via subgraph sampling By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Jason M. Klusowski, Yihong Wu. Source: Bernoulli, Volume 26, Number 3, 1635--1664.Abstract: Learning properties of large graphs from samples has been an important problem in statistical network analysis since the early work of Goodman ( Ann. Math. Stat. 20 (1949) 572–579) and Frank ( Scand. J. Stat. 5 (1978) 177–188). We revisit a problem formulated by Frank ( Scand. J. Stat. 5 (1978) 177–188) of estimating the number of connected components in a large graph based on the subgraph sampling model, in which we randomly sample a subset of the vertices and observe the induced subgraph. The key question is whether accurate estimation is achievable in the sublinear regime where only a vanishing fraction of the vertices are sampled. We show that it is impossible if the parent graph is allowed to contain high-degree vertices or long induced cycles. For the class of chordal graphs, where induced cycles of length four or above are forbidden, we characterize the optimal sample complexity within constant factors and construct linear-time estimators that provably achieve these bounds. This significantly expands the scope of previous results which have focused on unbiased estimators and special classes of graphs such as forests or cliques. Both the construction and the analysis of the proposed methodology rely on combinatorial properties of chordal graphs and identities of induced subgraph counts. They, in turn, also play a key role in proving minimax lower bounds based on construction of random instances of graphs with matching structures of small subgraphs. Full Article
con Rates of convergence in de Finetti’s representation theorem, and Hausdorff moment problem By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Emanuele Dolera, Stefano Favaro. Source: Bernoulli, Volume 26, Number 2, 1294--1322.Abstract: Given a sequence ${X_{n}}_{ngeq 1}$ of exchangeable Bernoulli random variables, the celebrated de Finetti representation theorem states that $frac{1}{n}sum_{i=1}^{n}X_{i}stackrel{a.s.}{longrightarrow }Y$ for a suitable random variable $Y:Omega ightarrow [0,1]$ satisfying $mathsf{P}[X_{1}=x_{1},dots ,X_{n}=x_{n}|Y]=Y^{sum_{i=1}^{n}x_{i}}(1-Y)^{n-sum_{i=1}^{n}x_{i}}$. In this paper, we study the rate of convergence in law of $frac{1}{n}sum_{i=1}^{n}X_{i}$ to $Y$ under the Kolmogorov distance. After showing that a rate of the type of $1/n^{alpha }$ can be obtained for any index $alpha in (0,1]$, we find a sufficient condition on the distribution of $Y$ for the achievement of the optimal rate of convergence, that is $1/n$. Besides extending and strengthening recent results under the weaker Wasserstein distance, our main result weakens the regularity hypotheses on $Y$ in the context of the Hausdorff moment problem. Full Article
con Strictly weak consensus in the uniform compass model on $mathbb{Z}$ By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Nina Gantert, Markus Heydenreich, Timo Hirscher. Source: Bernoulli, Volume 26, Number 2, 1269--1293.Abstract: We investigate a model for opinion dynamics, where individuals (modeled by vertices of a graph) hold certain abstract opinions. As time progresses, neighboring individuals interact with each other, and this interaction results in a realignment of opinions closer towards each other. This mechanism triggers formation of consensus among the individuals. Our main focus is on strong consensus (i.e., global agreement of all individuals) versus weak consensus (i.e., local agreement among neighbors). By extending a known model to a more general opinion space, which lacks a “central” opinion acting as a contraction point, we provide an example of an opinion formation process on the one-dimensional lattice $mathbb{Z}$ with weak consensus but no strong consensus. Full Article
con Consistent structure estimation of exponential-family random graph models with block structure By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Michael Schweinberger. Source: Bernoulli, Volume 26, Number 2, 1205--1233.Abstract: We consider the challenging problem of statistical inference for exponential-family random graph models based on a single observation of a random graph with complex dependence. To facilitate statistical inference, we consider random graphs with additional structure in the form of block structure. We have shown elsewhere that when the block structure is known, it facilitates consistency results for $M$-estimators of canonical and curved exponential-family random graph models with complex dependence, such as transitivity. In practice, the block structure is known in some applications (e.g., multilevel networks), but is unknown in others. When the block structure is unknown, the first and foremost question is whether it can be recovered with high probability based on a single observation of a random graph with complex dependence. The main consistency results of the paper show that it is possible to do so under weak dependence and smoothness conditions. These results confirm that exponential-family random graph models with block structure constitute a promising direction of statistical network analysis. Full Article
con Characterization of probability distribution convergence in Wasserstein distance by $L^{p}$-quantization error function By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Yating Liu, Gilles Pagès. Source: Bernoulli, Volume 26, Number 2, 1171--1204.Abstract: We establish conditions to characterize probability measures by their $L^{p}$-quantization error functions in both $mathbb{R}^{d}$ and Hilbert settings. This characterization is two-fold: static (identity of two distributions) and dynamic (convergence for the $L^{p}$-Wasserstein distance). We first propose a criterion on the quantization level $N$, valid for any norm on $mathbb{R}^{d}$ and any order $p$ based on a geometrical approach involving the Voronoï diagram. Then, we prove that in the $L^{2}$-case on a (separable) Hilbert space, the condition on the level $N$ can be reduced to $N=2$, which is optimal. More quantization based characterization cases in dimension 1 and a discussion of the completeness of a distance defined by the quantization error function can be found at the end of this paper. Full Article