con Evgeny Kuznestov doesn’t consider his 2018 series-winning goal against Pittsburgh the biggest of his life By sports.yahoo.com Published On :: Thu, 07 May 2020 21:13:28 GMT Capitals forward Evgeny Kuznetsov doesn't consider his series-winning goal against the Penguins in 2018 is the biggest goal of his life. Full Article article News
con 'Slap Shot' still iconic in hockey despite sport's changes By sports.yahoo.com Published On :: Fri, 08 May 2020 18:32:06 GMT A few nights after one of their players was injured by a dirty hit, the Johnstown Jets plotted to exact some revenge on Buffalo's Greg Neeld. An all-out brawl broke out during warmups and the North American Hockey League game was postponed, much to the dismay of ownership and presumably the fans at a sold-out War Memorial Arena. It just so happened that director George Roy Hill was in the arena that night, cameras rolling. Full Article article Sports
con Brendan Leipsic's Capitals contract terminated after offensive remarks revealed By sports.yahoo.com Published On :: Fri, 08 May 2020 20:16:34 GMT The Washington Capitals have placed former Winterhawks wing Brendan Leipsic on unconditional waivers with the intention of his contract being terminated after private messages revealed misogynistic comments. > The Washington Capitals have placed Brendan Leipsic on unconditional waivers for purposes of terminating his contract.https://t.co/UnADibu2yQ Full Article article Sports
con Mémoire sur l'empoisonnement par la strychnine : contenant la relation médico-légale complète de l'affaire Palmer / Ambroise Tardieu. By search.wellcomelibrary.org Published On :: Paris, [France] : J.B. Baillière, Libraire de l'Académie Impériale de Médicine, 1857. Full Article
con Administrative control of the purity of food in England : / A. W. J. MacFadden. By search.wellcomelibrary.org Published On :: England : Society of Medical Officers of Health in England, [192-?] Full Article
con Annual conference 1961 / National Association for Maternal and Child Welfare. By search.wellcomelibrary.org Published On :: England : National Association for Maternal and Child Welfare, 1961. Full Article
con Contemporary research in pain and analgesia, 1983 / editors, Roger M. Brown, Theodore M. Pinkert, Jacqueline P. Ludford. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1983. Full Article
con Neurobiology of behavioral control in drug abuse / editor, Stephen I. Szara. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1986. Full Article
con A constant buzz. By search.wellcomelibrary.org Published On :: [London] : [publisher not identified], [2019] Full Article
con [Our times : contagious cities] By search.wellcomelibrary.org Published On :: [Hong Kong] : [Art In Hospitals], [2019] Full Article
con Making the connection : health care needs of drug using prostitutes : information pack / by Jean Faugier and Steve Cranfield. By search.wellcomelibrary.org Published On :: [Manchester] : School of Nursing Studies, University of Manchester, [1995?] Full Article
con Series 04: Contact prints of suburbs of Sydney NSW, ca 1960s-1980s By feedproxy.google.com Published On :: 8/10/2015 12:18:12 PM Full Article
con Top three Ruthy Hebard moments: NCAA record for consecutive FGs etched her place in history By sports.yahoo.com Published On :: Fri, 03 Apr 2020 23:08:48 GMT Over four years in Eugene, Ruthy Hebard has made a name for herself with reliability and dynamic play. She's had many memorable moments in a Duck uniform. But her career day against Washington State (34 points), her moment reaching 2,000 career points and her NCAA record for consecutive made FGs (2018) tops the list. Against the Trojans, she set the record (30) and later extended it to 33. Full Article video Sports
con Sydney Wiese, recovering from coronavirus, continually talking with friends and family: 'Our world is uniting' By sports.yahoo.com Published On :: Mon, 06 Apr 2020 16:11:35 GMT Hear how former Oregon State guard and current member of the WNBA's LA Sparks Sydney Wiese is recovering from a COVID-19 diagnosis, seeing friends and family show support and love during a trying time. Full Article video Sports
con Sabrina Ionescu, Ruthy Hebard, Satou Sabally on staying connected, WNBA Draft, Oregon's historic season By sports.yahoo.com Published On :: Thu, 09 Apr 2020 16:27:12 GMT Pac-12 Networks' Ashley Adamson catches up with Oregon's "Big 3" of Sabrina Ionescu, Ruthy Hebard and Satou Sabally to hear how they're adjusting to the new world without sports while still preparing for the WNBA Draft on April 17. They also share how they're staying hungry for basketball during the hiatus. Full Article video Sports
con The limiting behavior of isotonic and convex regression estimators when the model is misspecified By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Eunji Lim. Source: Electronic Journal of Statistics, Volume 14, Number 1, 2053--2097.Abstract: We study the asymptotic behavior of the least squares estimators when the model is possibly misspecified. We consider the setting where we wish to estimate an unknown function $f_{*}:(0,1)^{d} ightarrow mathbb{R}$ from observations $(X,Y),(X_{1},Y_{1}),cdots ,(X_{n},Y_{n})$; our estimator $hat{g}_{n}$ is the minimizer of $sum _{i=1}^{n}(Y_{i}-g(X_{i}))^{2}/n$ over $gin mathcal{G}$ for some set of functions $mathcal{G}$. We provide sufficient conditions on the metric entropy of $mathcal{G}$, under which $hat{g}_{n}$ converges to $g_{*}$ as $n ightarrow infty $, where $g_{*}$ is the minimizer of $|g-f_{*}| riangleq mathbb{E}(g(X)-f_{*}(X))^{2}$ over $gin mathcal{G}$. As corollaries of our theorem, we establish $|hat{g}_{n}-g_{*}| ightarrow 0$ as $n ightarrow infty $ when $mathcal{G}$ is the set of monotone functions or the set of convex functions. We also make a connection between the convergence rate of $|hat{g}_{n}-g_{*}|$ and the metric entropy of $mathcal{G}$. As special cases of our finding, we compute the convergence rate of $|hat{g}_{n}-g_{*}|^{2}$ when $mathcal{G}$ is the set of bounded monotone functions or the set of bounded convex functions. Full Article
con Nonparametric confidence intervals for conditional quantiles with large-dimensional covariates By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Laurent Gardes. Source: Electronic Journal of Statistics, Volume 14, Number 1, 661--701.Abstract: The first part of the paper is dedicated to the construction of a $gamma$ - nonparametric confidence interval for a conditional quantile with a level depending on the sample size. When this level tends to 0 or 1 as the sample size increases, the conditional quantile is said to be extreme and is located in the tail of the conditional distribution. The proposed confidence interval is constructed by approximating the distribution of the order statistics selected with a nearest neighbor approach by a Beta distribution. We show that its coverage probability converges to the preselected probability $gamma $ and its accuracy is illustrated on a simulation study. When the dimension of the covariate increases, the coverage probability of the confidence interval can be very different from $gamma $. This is a well known consequence of the data sparsity especially in the tail of the distribution. In a second part, a dimension reduction procedure is proposed in order to select more appropriate nearest neighbors in the right tail of the distribution and in turn to obtain a better coverage probability for extreme conditional quantiles. This procedure is based on the Tail Conditional Independence assumption introduced in (Gardes, Extremes , pp. 57–95, 18(3) , 2018). Full Article
con Statistical convergence of the EM algorithm on Gaussian mixture models By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Ruofei Zhao, Yuanzhi Li, Yuekai Sun. Source: Electronic Journal of Statistics, Volume 14, Number 1, 632--660.Abstract: We study the convergence behavior of the Expectation Maximization (EM) algorithm on Gaussian mixture models with an arbitrary number of mixture components and mixing weights. We show that as long as the means of the components are separated by at least $Omega (sqrt{min {M,d}})$, where $M$ is the number of components and $d$ is the dimension, the EM algorithm converges locally to the global optimum of the log-likelihood. Further, we show that the convergence rate is linear and characterize the size of the basin of attraction to the global optimum. Full Article
con On the Letac-Massam conjecture and existence of high dimensional Bayes estimators for graphical models By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Emanuel Ben-David, Bala Rajaratnam. Source: Electronic Journal of Statistics, Volume 14, Number 1, 580--604.Abstract: The Wishart distribution defined on the open cone of positive-definite matrices plays a central role in multivariate analysis and multivariate distribution theory. Its domain of parameters is often referred to as the Gindikin set. In recent years, varieties of useful extensions of the Wishart distribution have been proposed in the literature for the purposes of studying Markov random fields and graphical models. In particular, generalizations of the Wishart distribution, referred to as Type I and Type II (graphical) Wishart distributions introduced by Letac and Massam in Annals of Statistics (2007) play important roles in both frequentist and Bayesian inference for Gaussian graphical models. These distributions have been especially useful in high-dimensional settings due to the flexibility offered by their multiple-shape parameters. Concerning Type I and Type II Wishart distributions, a conjecture of Letac and Massam concerns the domain of multiple-shape parameters of these distributions. The conjecture also has implications for the existence of Bayes estimators corresponding to these high dimensional priors. The conjecture, which was first posed in the Annals of Statistics, has now been an open problem for about 10 years. In this paper, we give a necessary condition for the Letac and Massam conjecture to hold. More precisely, we prove that if the Letac and Massam conjecture holds on a decomposable graph, then no two separators of the graph can be nested within each other. For this, we analyze Type I and Type II Wishart distributions on appropriate Markov equivalent perfect DAG models and succeed in deriving the aforementioned necessary condition. This condition in particular identifies a class of counterexamples to the conjecture. Full Article
con Recovery of simultaneous low rank and two-way sparse coefficient matrices, a nonconvex approach By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Ming Yu, Varun Gupta, Mladen Kolar. Source: Electronic Journal of Statistics, Volume 14, Number 1, 413--457.Abstract: We study the problem of recovery of matrices that are simultaneously low rank and row and/or column sparse. Such matrices appear in recent applications in cognitive neuroscience, imaging, computer vision, macroeconomics, and genetics. We propose a GDT (Gradient Descent with hard Thresholding) algorithm to efficiently recover matrices with such structure, by minimizing a bi-convex function over a nonconvex set of constraints. We show linear convergence of the iterates obtained by GDT to a region within statistical error of an optimal solution. As an application of our method, we consider multi-task learning problems and show that the statistical error rate obtained by GDT is near optimal compared to minimax rate. Experiments demonstrate competitive performance and much faster running speed compared to existing methods, on both simulations and real data sets. Full Article
con Consistent model selection criteria and goodness-of-fit test for common time series models By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT Jean-Marc Bardet, Kare Kamila, William Kengne. Source: Electronic Journal of Statistics, Volume 14, Number 1, 2009--2052.Abstract: This paper studies the model selection problem in a large class of causal time series models, which includes both the ARMA or AR($infty $) processes, as well as the GARCH or ARCH($infty $), APARCH, ARMA-GARCH and many others processes. To tackle this issue, we consider a penalized contrast based on the quasi-likelihood of the model. We provide sufficient conditions for the penalty term to ensure the consistency of the proposed procedure as well as the consistency and the asymptotic normality of the quasi-maximum likelihood estimator of the chosen model. We also propose a tool for diagnosing the goodness-of-fit of the chosen model based on a Portmanteau test. Monte-Carlo experiments and numerical applications on illustrative examples are performed to highlight the obtained asymptotic results. Moreover, using a data-driven choice of the penalty, they show the practical efficiency of this new model selection procedure and Portemanteau test. Full Article
con Nonparametric false discovery rate control for identifying simultaneous signals By projecteuclid.org Published On :: Thu, 23 Apr 2020 22:01 EDT Sihai Dave Zhao, Yet Tien Nguyen. Source: Electronic Journal of Statistics, Volume 14, Number 1, 110--142.Abstract: It is frequently of interest to identify simultaneous signals, defined as features that exhibit statistical significance across each of several independent experiments. For example, genes that are consistently differentially expressed across experiments in different animal species can reveal evolutionarily conserved biological mechanisms. However, in some problems the test statistics corresponding to these features can have complicated or unknown null distributions. This paper proposes a novel nonparametric false discovery rate control procedure that can identify simultaneous signals even without knowing these null distributions. The method is shown, theoretically and in simulations, to asymptotically control the false discovery rate. It was also used to identify genes that were both differentially expressed and proximal to differentially accessible chromatin in the brains of mice exposed to a conspecific intruder. The proposed method is available in the R package github.com/sdzhao/ssa. Full Article
con Bias correction in conditional multivariate extremes By projecteuclid.org Published On :: Wed, 22 Apr 2020 04:02 EDT Mikael Escobar-Bach, Yuri Goegebeur, Armelle Guillou. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1773--1795.Abstract: We consider bias-corrected estimation of the stable tail dependence function in the regression context. To this aim, we first estimate the bias of a smoothed estimator of the stable tail dependence function, and then we subtract it from the estimator. The weak convergence, as a stochastic process, of the resulting asymptotically unbiased estimator of the conditional stable tail dependence function, correctly normalized, is established under mild assumptions, the covariate argument being fixed. The finite sample behaviour of our asymptotically unbiased estimator is then illustrated on a simulation study and compared to two alternatives, which are not bias corrected. Finally, our methodology is applied to a dataset of air pollution measurements. Full Article
con Posterior contraction and credible sets for filaments of regression functions By projecteuclid.org Published On :: Tue, 14 Apr 2020 22:01 EDT Wei Li, Subhashis Ghosal. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1707--1743.Abstract: A filament consists of local maximizers of a smooth function $f$ when moving in a certain direction. A filamentary structure is an important feature of the shape of an object and is also considered as an important lower dimensional characterization of multivariate data. There have been some recent theoretical studies of filaments in the nonparametric kernel density estimation context. This paper supplements the current literature in two ways. First, we provide a Bayesian approach to the filament estimation in regression context and study the posterior contraction rates using a finite random series of B-splines basis. Compared with the kernel-estimation method, this has a theoretical advantage as the bias can be better controlled when the function is smoother, which allows obtaining better rates. Assuming that $f:mathbb{R}^{2}mapsto mathbb{R}$ belongs to an isotropic Hölder class of order $alpha geq 4$, with the optimal choice of smoothing parameters, the posterior contraction rates for the filament points on some appropriately defined integral curves and for the Hausdorff distance of the filament are both $(n/log n)^{(2-alpha )/(2(1+alpha ))}$. Secondly, we provide a way to construct a credible set with sufficient frequentist coverage for the filaments. We demonstrate the success of our proposed method in simulations and one application to earthquake data. Full Article
con Nonconcave penalized estimation in sparse vector autoregression model By projecteuclid.org Published On :: Wed, 01 Apr 2020 04:00 EDT Xuening Zhu. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1413--1448.Abstract: High dimensional time series receive considerable attention recently, whose temporal and cross-sectional dependency could be captured by the vector autoregression (VAR) model. To tackle with the high dimensionality, penalization methods are widely employed. However, theoretically, the existing studies of the penalization methods mainly focus on $i.i.d$ data, therefore cannot quantify the effect of the dependence level on the convergence rate. In this work, we use the spectral properties of the time series to quantify the dependence and derive a nonasymptotic upper bound for the estimation errors. By focusing on the nonconcave penalization methods, we manage to establish the oracle properties of the penalized VAR model estimation by considering the effects of temporal and cross-sectional dependence. Extensive numerical studies are conducted to compare the finite sample performance using different penalization functions. Lastly, an air pollution data of mainland China is analyzed for illustration purpose. Full Article
con A fast and consistent variable selection method for high-dimensional multivariate linear regression with a large number of explanatory variables By projecteuclid.org Published On :: Fri, 27 Mar 2020 22:00 EDT Ryoya Oda, Hirokazu Yanagihara. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1386--1412.Abstract: We put forward a variable selection method for selecting explanatory variables in a normality-assumed multivariate linear regression. It is cumbersome to calculate variable selection criteria for all subsets of explanatory variables when the number of explanatory variables is large. Therefore, we propose a fast and consistent variable selection method based on a generalized $C_{p}$ criterion. The consistency of the method is provided by a high-dimensional asymptotic framework such that the sample size and the sum of the dimensions of response vectors and explanatory vectors divided by the sample size tend to infinity and some positive constant which are less than one, respectively. Through numerical simulations, it is shown that the proposed method has a high probability of selecting the true subset of explanatory variables and is fast under a moderate sample size even when the number of dimensions is large. Full Article
con Consistency and asymptotic normality of Latent Block Model estimators By projecteuclid.org Published On :: Mon, 23 Mar 2020 22:02 EDT Vincent Brault, Christine Keribin, Mahendra Mariadassou. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1234--1268.Abstract: The Latent Block Model (LBM) is a model-based method to cluster simultaneously the $d$ columns and $n$ rows of a data matrix. Parameter estimation in LBM is a difficult and multifaceted problem. Although various estimation strategies have been proposed and are now well understood empirically, theoretical guarantees about their asymptotic behavior is rather sparse and most results are limited to the binary setting. We prove here theoretical guarantees in the valued settings. We show that under some mild conditions on the parameter space, and in an asymptotic regime where $log (d)/n$ and $log (n)/d$ tend to $0$ when $n$ and $d$ tend to infinity, (1) the maximum-likelihood estimate of the complete model (with known labels) is consistent and (2) the log-likelihood ratios are equivalent under the complete and observed (with unknown labels) models. This equivalence allows us to transfer the asymptotic consistency, and under mild conditions, asymptotic normality, to the maximum likelihood estimate under the observed model. Moreover, the variational estimator is also consistent and, under the same conditions, asymptotically normal. Full Article
con Conditional density estimation with covariate measurement error By projecteuclid.org Published On :: Wed, 19 Feb 2020 22:06 EST Xianzheng Huang, Haiming Zhou. Source: Electronic Journal of Statistics, Volume 14, Number 1, 970--1023.Abstract: We consider estimating the density of a response conditioning on an error-prone covariate. Motivated by two existing kernel density estimators in the absence of covariate measurement error, we propose a method to correct the existing estimators for measurement error. Asymptotic properties of the resultant estimators under different types of measurement error distributions are derived. Moreover, we adjust bandwidths readily available from existing bandwidth selection methods developed for error-free data to obtain bandwidths for the new estimators. Extensive simulation studies are carried out to compare the proposed estimators with naive estimators that ignore measurement error, which also provide empirical evidence for the effectiveness of the proposed bandwidth selection methods. A real-life data example is used to illustrate implementation of these methods under practical scenarios. An R package, lpme, is developed for implementing all considered methods, which we demonstrate via an R code example in Appendix B.2. Full Article
con A Low Complexity Algorithm with O(√T) Regret and O(1) Constraint Violations for Online Convex Optimization with Long Term Constraints By Published On :: 2020 This paper considers online convex optimization over a complicated constraint set, which typically consists of multiple functional constraints and a set constraint. The conventional online projection algorithm (Zinkevich, 2003) can be difficult to implement due to the potentially high computation complexity of the projection operation. In this paper, we relax the functional constraints by allowing them to be violated at each round but still requiring them to be satisfied in the long term. This type of relaxed online convex optimization (with long term constraints) was first considered in Mahdavi et al. (2012). That prior work proposes an algorithm to achieve $O(sqrt{T})$ regret and $O(T^{3/4})$ constraint violations for general problems and another algorithm to achieve an $O(T^{2/3})$ bound for both regret and constraint violations when the constraint set can be described by a finite number of linear constraints. A recent extension in Jenatton et al. (2016) can achieve $O(T^{max{ heta,1- heta}})$ regret and $O(T^{1- heta/2})$ constraint violations where $ hetain (0,1)$. The current paper proposes a new simple algorithm that yields improved performance in comparison to prior works. The new algorithm achieves an $O(sqrt{T})$ regret bound with $O(1)$ constraint violations. Full Article
con Lower Bounds for Parallel and Randomized Convex Optimization By Published On :: 2020 We study the question of whether parallelization in the exploration of the feasible set can be used to speed up convex optimization, in the local oracle model of computation and in the high-dimensional regime. We show that the answer is negative for both deterministic and randomized algorithms applied to essentially any of the interesting geometries and nonsmooth, weakly-smooth, or smooth objective functions. In particular, we show that it is not possible to obtain a polylogarithmic (in the sequential complexity of the problem) number of parallel rounds with a polynomial (in the dimension) number of queries per round. In the majority of these settings and when the dimension of the space is polynomial in the inverse target accuracy, our lower bounds match the oracle complexity of sequential convex optimization, up to at most a logarithmic factor in the dimension, which makes them (nearly) tight. Another conceptual contribution of our work is in providing a general and streamlined framework for proving lower bounds in the setting of parallel convex optimization. Prior to our work, lower bounds for parallel convex optimization algorithms were only known in a small fraction of the settings considered in this paper, mainly applying to Euclidean ($ell_2$) and $ell_infty$ spaces. Full Article
con Connecting Spectral Clustering to Maximum Margins and Level Sets By Published On :: 2020 We study the connections between spectral clustering and the problems of maximum margin clustering, and estimation of the components of level sets of a density function. Specifically, we obtain bounds on the eigenvectors of graph Laplacian matrices in terms of the between cluster separation, and within cluster connectivity. These bounds ensure that the spectral clustering solution converges to the maximum margin clustering solution as the scaling parameter is reduced towards zero. The sensitivity of maximum margin clustering solutions to outlying points is well known, but can be mitigated by first removing such outliers, and applying maximum margin clustering to the remaining points. If outliers are identified using an estimate of the underlying probability density, then the remaining points may be seen as an estimate of a level set of this density function. We show that such an approach can be used to consistently estimate the components of the level sets of a density function under very mild assumptions. Full Article
con Convergences of Regularized Algorithms and Stochastic Gradient Methods with Random Projections By Published On :: 2020 We study the least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space as a special case. We first investigate regularized algorithms adapted to a projection operator on a closed subspace of the Hilbert space. We prove convergence results with respect to variants of norms, under a capacity assumption on the hypothesis space and a regularity condition on the target function. As a result, we obtain optimal rates for regularized algorithms with randomized sketches, provided that the sketch dimension is proportional to the effective dimension up to a logarithmic factor. As a byproduct, we obtain similar results for Nystr"{o}m regularized algorithms. Our results provide optimal, distribution-dependent rates that do not have any saturation effect for sketched/Nystr"{o}m regularized algorithms, considering both the attainable and non-attainable cases, in the well-conditioned regimes. We then study stochastic gradient methods with projection over the subspace, allowing multi-pass over the data and minibatches, and we derive similar optimal statistical convergence results. Full Article
con A Unified Framework for Structured Graph Learning via Spectral Constraints By Published On :: 2020 Graph learning from data is a canonical problem that has received substantial attention in the literature. Learning a structured graph is essential for interpretability and identification of the relationships among data. In general, learning a graph with a specific structure is an NP-hard combinatorial problem and thus designing a general tractable algorithm is challenging. Some useful structured graphs include connected, sparse, multi-component, bipartite, and regular graphs. In this paper, we introduce a unified framework for structured graph learning that combines Gaussian graphical model and spectral graph theory. We propose to convert combinatorial structural constraints into spectral constraints on graph matrices and develop an optimization framework based on block majorization-minimization to solve structured graph learning problem. The proposed algorithms are provably convergent and practically amenable for a number of graph based applications such as data clustering. Extensive numerical experiments with both synthetic and real data sets illustrate the effectiveness of the proposed algorithms. An open source R package containing the code for all the experiments is available at https://CRAN.R-project.org/package=spectralGraphTopology. Full Article
con On the consistency of graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms By Published On :: 2020 This paper considers a Bayesian approach to graph-based semi-supervised learning. We show that if the graph parameters are suitably scaled, the graph-posteriors converge to a continuum limit as the size of the unlabeled data set grows. This consistency result has profound algorithmic implications: we prove that when consistency holds, carefully designed Markov chain Monte Carlo algorithms have a uniform spectral gap, independent of the number of unlabeled inputs. Numerical experiments illustrate and complement the theory. Full Article
con A Convex Parametrization of a New Class of Universal Kernel Functions By Published On :: 2020 The accuracy and complexity of kernel learning algorithms is determined by the set of kernels over which it is able to optimize. An ideal set of kernels should: admit a linear parameterization (tractability); be dense in the set of all kernels (accuracy); and every member should be universal so that the hypothesis space is infinite-dimensional (scalability). Currently, there is no class of kernel that meets all three criteria - e.g. Gaussians are not tractable or accurate; polynomials are not scalable. We propose a new class that meet all three criteria - the Tessellated Kernel (TK) class. Specifically, the TK class: admits a linear parameterization using positive matrices; is dense in all kernels; and every element in the class is universal. This implies that the use of TK kernels for learning the kernel can obviate the need for selecting candidate kernels in algorithms such as SimpleMKL and parameters such as the bandwidth. Numerical testing on soft margin Support Vector Machine (SVM) problems show that algorithms using TK kernels outperform other kernel learning algorithms and neural networks. Furthermore, our results show that when the ratio of the number of training data to features is high, the improvement of TK over MKL increases significantly. Full Article
con Conjugate Gradients for Kernel Machines By Published On :: 2020 Regularized least-squares (kernel-ridge / Gaussian process) regression is a fundamental algorithm of statistics and machine learning. Because generic algorithms for the exact solution have cubic complexity in the number of datapoints, large datasets require to resort to approximations. In this work, the computation of the least-squares prediction is itself treated as a probabilistic inference problem. We propose a structured Gaussian regression model on the kernel function that uses projections of the kernel matrix to obtain a low-rank approximation of the kernel and the matrix. A central result is an enhanced way to use the method of conjugate gradients for the specific setting of least-squares regression as encountered in machine learning. Full Article
con Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions By Published On :: 2020 We consider the standard model of distributed optimization of a sum of functions $F(mathbf z) = sum_{i=1}^n f_i(mathbf z)$, where node $i$ in a network holds the function $f_i(mathbf z)$. We allow for a harsh network model characterized by asynchronous updates, message delays, unpredictable message losses, and directed communication among nodes. In this setting, we analyze a modification of the Gradient-Push method for distributed optimization, assuming that (i) node $i$ is capable of generating gradients of its function $f_i(mathbf z)$ corrupted by zero-mean bounded-support additive noise at each step, (ii) $F(mathbf z)$ is strongly convex, and (iii) each $f_i(mathbf z)$ has Lipschitz gradients. We show that our proposed method asymptotically performs as well as the best bounds on centralized gradient descent that takes steps in the direction of the sum of the noisy gradients of all the functions $f_1(mathbf z), ldots, f_n(mathbf z)$ at each step. Full Article
con Identifiability of Additive Noise Models Using Conditional Variances By Published On :: 2020 This paper considers a new identifiability condition for additive noise models (ANMs) in which each variable is determined by an arbitrary Borel measurable function of its parents plus an independent error. It has been shown that ANMs are fully recoverable under some identifiability conditions, such as when all error variances are equal. However, this identifiable condition could be restrictive, and hence, this paper focuses on a relaxed identifiability condition that involves not only error variances, but also the influence of parents. This new class of identifiable ANMs does not put any constraints on the form of dependencies, or distributions of errors, and allows different error variances. It further provides a statistically consistent and computationally feasible structure learning algorithm for the identifiable ANMs based on the new identifiability condition. The proposed algorithm assumes that all relevant variables are observed, while it does not assume faithfulness or a sparse graph. Demonstrated through extensive simulated and real multivariate data is that the proposed algorithm successfully recovers directed acyclic graphs. Full Article
con Mosquito Control Program By www.eastgwillimbury.ca Published On :: Thu, 16 Apr 2020 21:14:52 GMT Full Article
con Have your say on the Highway 404 Employment Corridor Secondary Plan By www.eastgwillimbury.ca Published On :: Mon, 27 Apr 2020 22:16:01 GMT Full Article
con Agnostic tests can control the type I and type II errors simultaneously By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Victor Coscrato, Rafael Izbicki, Rafael B. Stern. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 230--250.Abstract: Despite its common practice, statistical hypothesis testing presents challenges in interpretation. For instance, in the standard frequentist framework there is no control of the type II error. As a result, the non-rejection of the null hypothesis $(H_{0})$ cannot reasonably be interpreted as its acceptance. We propose that this dilemma can be overcome by using agnostic hypothesis tests, since they can control the type I and II errors simultaneously. In order to make this idea operational, we show how to obtain agnostic hypothesis in typical models. For instance, we show how to build (unbiased) uniformly most powerful agnostic tests and how to obtain agnostic tests from standard p-values. Also, we present conditions such that the above tests can be made logically coherent. Finally, we present examples of consistent agnostic hypothesis tests. Full Article
con Effects of gene–environment and gene–gene interactions in case-control studies: A novel Bayesian semiparametric approach By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Durba Bhattacharya, Sourabh Bhattacharya. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 71--89.Abstract: Present day bio-medical research is pointing towards the fact that cognizance of gene–environment interactions along with genetic interactions may help prevent or detain the onset of many complex diseases like cardiovascular disease, cancer, type2 diabetes, autism or asthma by adjustments to lifestyle. In this regard, we propose a Bayesian semiparametric model to detect not only the roles of genes and their interactions, but also the possible influence of environmental variables on the genes in case-control studies. Our model also accounts for the unknown number of genetic sub-populations via finite mixtures composed of Dirichlet processes. An effective parallel computing methodology, developed by us harnesses the power of parallel processing technology to increase the efficiencies of our conditionally independent Gibbs sampling and Transformation based MCMC (TMCMC) methods. Applications of our model and methods to simulation studies with biologically realistic genotype datasets and a real, case-control based genotype dataset on early onset of myocardial infarction (MI) have yielded quite interesting results beside providing some insights into the differential effect of gender on MI. Full Article
con The limiting distribution of the Gibbs sampler for the intrinsic conditional autoregressive model By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Marco A. R. Ferreira. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 734--744.Abstract: We study the limiting behavior of the one-at-a-time Gibbs sampler for the intrinsic conditional autoregressive model with centering on the fly. The intrinsic conditional autoregressive model is widely used as a prior for random effects in hierarchical models for spatial modeling. This model is defined by full conditional distributions that imply an improper joint “density” with a multivariate Gaussian kernel and a singular precision matrix. To guarantee propriety of the posterior distribution, usually at the end of each iteration of the Gibbs sampler the random effects are centered to sum to zero in what is widely known as centering on the fly. While this works well in practice, this informal computational way to recenter the random effects obscures their implied prior distribution and prevents the development of formal Bayesian procedures. Here we show that the implied prior distribution, that is, the limiting distribution of the one-at-a-time Gibbs sampler for the intrinsic conditional autoregressive model with centering on the fly is a singular Gaussian distribution with a covariance matrix that is the Moore–Penrose inverse of the precision matrix. This result has important implications for the development of formal Bayesian procedures such as reference priors and Bayes-factor-based model selection for spatial models. Full Article
con Spatially adaptive Bayesian image reconstruction through locally-modulated Markov random field models By projecteuclid.org Published On :: Mon, 10 Jun 2019 04:04 EDT Salem M. Al-Gezeri, Robert G. Aykroyd. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 498--519.Abstract: The use of Markov random field (MRF) models has proven to be a fruitful approach in a wide range of image processing applications. It allows local texture information to be incorporated in a systematic and unified way and allows statistical inference theory to be applied giving rise to novel output summaries and enhanced image interpretation. A great advantage of such low-level approaches is that they lead to flexible models, which can be applied to a wide range of imaging problems without the need for significant modification. This paper proposes and explores the use of conditional MRF models for situations where multiple images are to be processed simultaneously, or where only a single image is to be reconstructed and a sequential approach is taken. Although the coupling of image intensity values is a special case of our approach, the main extension over previous proposals is to allow the direct coupling of other properties, such as smoothness or texture. This is achieved using a local modulating function which adjusts the influence of global smoothing without the need for a fully inhomogeneous prior model. Several modulating functions are considered and a detailed simulation study, motivated by remote sensing applications in archaeological geophysics, of conditional reconstruction is presented. The results demonstrate that a substantial improvement in the quality of the image reconstruction, in terms of errors and residuals, can be achieved using this approach, especially at locations with rapid changes in the underlying intensity. Full Article
con A temporal perspective on the rate of convergence in first-passage percolation under a moment condition By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Daniel Ahlberg. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 397--401.Abstract: We study the rate of convergence in the celebrated Shape Theorem in first-passage percolation, obtaining the precise asymptotic rate of decay for the probability of linear order deviations under a moment condition. Our results are presented from a temporal perspective and complement previous work by the same author, in which the rate of convergence was studied from the standard spatial perspective. Full Article
con Necessary and sufficient conditions for the convergence of the consistent maximal displacement of the branching random walk By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Bastien Mallein. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 356--373.Abstract: Consider a supercritical branching random walk on the real line. The consistent maximal displacement is the smallest of the distances between the trajectories followed by individuals at the $n$th generation and the boundary of the process. Fang and Zeitouni, and Faraud, Hu and Shi proved that under some integrability conditions, the consistent maximal displacement grows almost surely at rate $lambda^{*}n^{1/3}$ for some explicit constant $lambda^{*}$. We obtain here a necessary and sufficient condition for this asymptotic behaviour to hold. Full Article
con Fully grown : why a stagnant economy is a sign of success By dal.novanet.ca Published On :: Fri, 1 May 2020 19:34:09 -0300 Author: Vollrath, Dietrich, author.Callnumber: HC 110 E44 V65 2020ISBN: 9780226666006 hardcover Full Article
con Pitfalls of significance testing and $p$-value variability: An econometrics perspective By projecteuclid.org Published On :: Wed, 03 Oct 2018 22:00 EDT Norbert Hirschauer, Sven Grüner, Oliver Mußhoff, Claudia Becker. Source: Statistics Surveys, Volume 12, 136--172.Abstract: Data on how many scientific findings are reproducible are generally bleak and a wealth of papers have warned against misuses of the $p$-value and resulting false findings in recent years. This paper discusses the question of what we can(not) learn from the $p$-value, which is still widely considered as the gold standard of statistical validity. We aim to provide a non-technical and easily accessible resource for statistical practitioners who wish to spot and avoid misinterpretations and misuses of statistical significance tests. For this purpose, we first classify and describe the most widely discussed (“classical”) pitfalls of significance testing, and review published work on these misuses with a focus on regression-based “confirmatory” study. This includes a description of the single-study bias and a simulation-based illustration of how proper meta-analysis compares to misleading significance counts (“vote counting”). Going beyond the classical pitfalls, we also use simulation to provide intuition that relying on the statistical estimate “$p$-value” as a measure of evidence without considering its sample-to-sample variability falls short of the mark even within an otherwise appropriate interpretation. We conclude with a discussion of the exigencies of informed approaches to statistical inference and corresponding institutional reforms. Full Article
con Fundamentals of cone regression By projecteuclid.org Published On :: Thu, 19 May 2016 09:04 EDT Mariella Dimiccoli. Source: Statistics Surveys, Volume 10, 53--99.Abstract: Cone regression is a particular case of quadratic programming that minimizes a weighted sum of squared residuals under a set of linear inequality constraints. Several important statistical problems such as isotonic, concave regression or ANOVA under partial orderings, just to name a few, can be considered as particular instances of the cone regression problem. Given its relevance in Statistics, this paper aims to address the fundamentals of cone regression from a theoretical and practical point of view. Several formulations of the cone regression problem are considered and, focusing on the particular case of concave regression as an example, several algorithms are analyzed and compared both qualitatively and quantitatively through numerical simulations. Several improvements to enhance numerical stability and bound the computational cost are proposed. For each analyzed algorithm, the pseudo-code and its corresponding code in Matlab are provided. The results from this study demonstrate that the choice of the optimization approach strongly impacts the numerical performances. It is also shown that methods are not currently available to solve efficiently cone regression problems with large dimension (more than many thousands of points). We suggest further research to fill this gap by exploiting and adapting classical multi-scale strategy to compute an approximate solution. Full Article
con Semi-parametric estimation for conditional independence multivariate finite mixture models By projecteuclid.org Published On :: Fri, 06 Feb 2015 08:39 EST Didier Chauveau, David R. Hunter, Michael Levine. Source: Statistics Surveys, Volume 9, 1--31.Abstract: The conditional independence assumption for nonparametric multivariate finite mixture models, a weaker form of the well-known conditional independence assumption for random effects models for longitudinal data, is the subject of an increasing number of theoretical and algorithmic developments in the statistical literature. After presenting a survey of this literature, including an in-depth discussion of the all-important identifiability results, this article describes and extends an algorithm for estimation of the parameters in these models. The algorithm works for any number of components in three or more dimensions. It possesses a descent property and can be easily adapted to situations where the data are grouped in blocks of conditionally independent variables. We discuss how to adapt this algorithm to various location-scale models that link component densities, and we even adapt it to a particular class of univariate mixture problems in which the components are assumed symmetric. We give a bandwidth selection procedure for our algorithm. Finally, we demonstrate the effectiveness of our algorithm using a simulation study and two psychometric datasets. Full Article