cr Cardiac biomarkers are prognostic in systemic light chain amyloidosis with no cardiac involvement by standard criteria By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Patients with systemic immunoglobulin light chain amyloidosis (AL) with no evidence of cardiac involvement by consensus criteria have excellent survival, but 20% will die within 5 years of diagnosis and prognostic factors remain poorly characterised. We report the outcomes of 378 prospectively followed Mayo stage I patients (N-terminal pro b-type natriuretic peptide <332 ng/L, high sensitivity cardiac troponin <55 ng/L). The median presenting N-terminal pro b-type natriuretic peptide was 161 ng/L, high sensitivity cardiac troponin 10 ng/L, creatinine 76 μmol/L and mean left ventricular septal wall thickness, 10 mm. Median follow up was 42 (1-117 months), with 71 deaths; median overall survival was not reached (78% survival at 5 years). Although no patients had cardiac involvement by echocardiogram, a proportion (n=25/90, 28%) had cardiac involvement by cardiac magnetic resonance imaging. Age, autonomic nervous system involvement, N-terminal pro b-type natriuretic peptide >152 ng/L, high sensitivity cardiac troponin >10 ng/L and cardiac involvement by magnetic resonance imaging were predictive for survival; on multivariate analysis only N-terminal pro b-type natriuretic peptide >152 ng/L (P<0.008, hazard ratio [HR] 3.180, confidence interval [CI]: 1.349-7.495) and cardiac involvement on magnetic resonance imaging (P=0.026, HR=5.360, CI: 1.219-23.574) were prognostic. At 5 years, 70% of patients with N-terminal pro b-type natriuretic peptide >152 ng/L were alive. In conclusion, N-terminal pro b-type natriuretic peptide is prognostic for survival in patients with no cardiac involvement by consensus criteria and cardiac involvement is detected by magnetic resonance imaging in such cases. This suggests that N-terminal pro b-type natriuretic peptide thresholds for cardiac involvement in AL may need to be redefined. Full Article
cr Genomic alterations in high-risk chronic lymphocytic leukemia frequently affect cell cycle key regulators and NOTCH1-regulated transcription By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 To identify genomic alterations contributing to the pathogenesis of high-risk chronic lymphocytic leukemia (CLL) beyond the well-established role of TP53 aberrations, we comprehensively analyzed 75 relapsed/refractory and 71 treatment-naïve high-risk cases from prospective clinical trials by single nucleotide polymorphism arrays and targeted next-generation sequencing. Increased genomic complexity was a hallmark of relapsed/refractory and treatment-naïve high-risk CLL. In relapsed/refractory cases previously exposed to the selective pressure of chemo(immuno)therapy, gain(8)(q24.21) and del(9)(p21.3) were particularly enriched. Both alterations affect key regulators of cell-cycle progression, namely MYC and CDKN2A/B. While homozygous CDKN2A/B loss has been directly associated with Richter transformation, we did not find this association for heterozygous loss of CDKN2A/B. Gains in 8q24.21 were either focal gains in a MYC enhancer region or large gains affecting the MYC locus, but only the latter type was highly enriched in relapsed/refractory CLL (17%). In addition to a high frequency of NOTCH1 mutations (23%), we found recurrent genetic alterations in SPEN (4% mutated), RBPJ (8% deleted) and SNW1 (8% deleted), all affecting a protein complex that represses transcription of NOTCH1 target genes. We investigated the functional impact of these alterations on HES1, DTX1 and MYC gene transcription and found derepression of these NOTCH1 target genes particularly with SPEN mutations. In summary, we provide new insights into the genomic architecture of high-risk CLL, define novel recurrent DNA copy number alterations and refine knowledge on del(9p), gain(8q) and alterations affecting NOTCH1 signaling. This study was registered at ClinicalTrials.gov with number NCT01392079. Full Article
cr An increase in MYC copy number has a progressive negative prognostic impact in patients with diffuse large B-cell and high-grade lymphoma, who may benefit from intensified treatment regimens By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 MYC translocations, a hallmark of Burkitt lymphoma, occur in 5-15% of diffuse large B-cell lymphoma, and have a negative prognostic impact. Numerical aberrations of MYC have also been detected in these patients, but their incidence and prognostic role are still controversial. We analyzed the clinical impact of MYC increased copy number on 385 patients with diffuse large B-cell lymphoma screened at diagnosis for MYC, BCL2, and BCL6 rearrangements. We enumerated the number of MYC copies, defining as amplified those cases with an uncountable number of extra-copies. The prevalence of MYC translocation, increased copy number and amplification was 8.8%, 15%, and 1%, respectively. Patients with 3 or 4 gene copies, accounting for more than 60% of patients with MYC copy number changes, had a more favorable outcome compared to patients with >4 copies or translocation of MYC, and were not influenced by the type of treatment received as first-line. Stratification according to the number of MYC extra-copies showed a negative correlation between an increasing number of copies and survival. Patients with >7 copies or the amplification of MYC had the poorest prognosis. Patients with >4 copies of MYC showed a similar, trending towards worse prognosis compared to patients with MYC translocation. The survival of patients with >4 copies, translocation or amplification of MYC seemed to be superior if intensive treatments were used. Our study underlines the importance of fluorescence in situ hybridization testing at diagnosis of diffuse large B-cell lymphoma to detect the rather frequent and clinically significant numerical aberrations of MYC. Full Article
cr CXCR4 upregulation is an indicator of sensitivity to B-cell receptor/PI3K blockade and a potential resistance mechanism in B-cell receptor-dependent diffuse large B-cell lymphomas By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 B-cell receptor (BCR) signaling pathway components represent promising treatment targets in multiple B-cell malignancies including diffuse large B-cell lymphoma (DLBCL). In in vitro and in vivo model systems, a subset of DLBCLs depend upon BCR survival signals and respond to proximal BCR/phosphoinositide 3 kinase (PI3K) blockade. However, single-agent BCR pathway inhibitors have had more limited activity in patients with DLBCL, underscoring the need for indicators of sensitivity to BCR blockade and insights into potential resistance mechanisms. Here, we report highly significant transcriptional upregulation of C-X-C chemokine receptor 4 (CXCR4) in BCR-dependent DLBCL cell lines and primary tumors following chemical spleen tyrosine kinase (SYK) inhibition, molecular SYK depletion or chemical PI3K blockade. SYK or PI3K inhibition also selectively upregulated cell surface CXCR4 protein expression in BCR-dependent DLBCLs. CXCR4 expression was directly modulated by fork-head box O1 via the PI3K/protein kinase B/forkhead box O1 signaling axis. Following chemical SYK inhibition, all BCR-dependent DLBCLs exhibited significantly increased stromal cell-derived factor-1α (SDF-1α) induced chemotaxis, consistent with the role of CXCR4 signaling in B-cell migration. Select PI3K isoform inhibitors also augmented SDF-1α induced chemotaxis. These data define CXCR4 upregulation as an indicator of sensitivity to BCR/PI3K blockade and identify CXCR4 signaling as a potential resistance mechanism in BCR-dependent DLBCLs. Full Article
cr Phosphorylation of BECLIN-1 by BCR-ABL suppresses autophagy in chronic myeloid leukemia By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Autophagy is a genetically regulated process of adaptation to metabolic stress and was recently shown to be involved in the treatment response of chronic myeloid leukemia (CML). However, in vivo data are limited and the molecular mechanism of autophagy regulators in the process of leukemogenesis is not completely understood. Here we show that Beclin-1 knockdown, but not Atg5 deletion in a murine CML model leads to a reduced leukemic burden and results in a significantly prolonged median survival of targeted mice. Further analyses of murine cell lines and primary patient material indicate that active BCR-ABL directly interacts with BECLIN-1 and phosphorylates its tyrosine residues 233 and 352, resulting in autophagy suppression. By using phosphorylation-deficient and phosphorylation-mimic mutants, we identify BCR-ABL induced BECLIN-1 phosphorylation as a crucial mechanism for BECLIN-1 complex formation: interaction analyses exhibit diminished binding of the positive autophagy regulators UVRAG, VPS15, ATG14 and VPS34 and enhanced binding of the negative regulator Rubicon to BCR-ABL-phosphorylated BECLIN-1. Taken together, our findings show interaction of BCR-ABL and BECLIN-1 thereby highlighting the importance of BECLIN-1-mediated autophagy in BCR-ABL+ cells. Full Article
cr Combined inhibition of MDM2 and BCR-ABL1 tyrosine kinase targets chronic myeloid leukemia stem/progenitor cells in a murine model By www.haematologica.org Published On :: 2020-05-01T00:05:41-07:00 Although highly effective, BCR-ABL1 tyrosine kinase inhibitors do not target chronic myeloid leukemia (CML) stem cells. Most patients relapse upon tyrosine kinase inhibitor therapy cessation. We reported previously that combined BCR-ABL1 and BCL-2 inhibition synergistically targets CML stem/progenitor cells. p53 induces apoptosis mainly by modulating BCL-2 family proteins. Although infrequently mutated in CML, p53 is antagonized by MDM2, which is regulated by BCR-ABL1 signaling. We hypothesized that MDM2 inhibition could sensitize CML cells to tyrosine kinase inhibitors. Using an inducible transgenic Scl-tTa-BCR-ABL1 murine CML model, we found, by RT-PCR and CyTOF proteomics increased p53 signaling in CML bone marrow (BM) cells compared with controls in CD45+ and linage-SCA-1+C-KIT+ populations. CML BM cells were more sensitive to exogenous BH3 peptides than controls. Combined inhibition of BCR-ABL1 with imatinib and MDM2 with DS-5272 increased NOXA level, markedly reduced leukemic linage-SCA-1+C-KIT+ cells and hematopoiesis, decreased leukemia burden, significantly prolonged the survival of mice engrafted with BM cells from Scl-tTa-BCR-ABL1 mice, and significantly decreased CML stem cell frequency in secondary transplantations. Our results suggest that CML stem/progenitor cells have increased p53 signaling and a propensity for apoptosis. Combined MDM2 and BCR-ABL1 inhibition targets CML stem/progenitor cells and has the potential to improve cure rates for CML. Full Article
cr Oncogenic fusion protein BCR-FGFR1 requires the breakpoint cluster region-mediated oligomerization and chaperonin Hsp90 for activation By www.haematologica.org Published On :: 2020-05-01T00:05:41-07:00 Mutation and translocation of fibroblast growth factor receptors often lead to aberrant signaling and cancer. This work focuses on the t(8;22)(p11;q11) chromosomal translocation which creates the breakpoint cluster region (BCR) fibroblast growth factor receptor1 (FGFR1) (BCR-FGFR1) fusion protein. This fusion occurs in stem cell leukemia/lymphoma, which can progress to atypical chronic myeloid leukemia, acute myeloid leukemia, or B-cell lymphoma. This work focuses on the biochemical characterization of BCR-FGFR1 and identification of novel therapeutic targets. The tyrosine kinase activity of FGFR1 is required for biological activity as shown using transformation assays, interleukin-3 independent cell proliferation, and liquid chromatography/mass spectroscopy analyses. Furthermore, BCR contributes a coiled-coil oligomerization domain, also essential for oncogenic transformation by BCR-FGFR1. The importance of salt bridge formation within the coiled-coil domain is demonstrated, as disruption of three salt bridges abrogates cellular transforming ability. Lastly, BCR-FGFR1 acts as a client of the chaperonin heat shock protein 90 (Hsp90), suggesting that BCR-FGFR1 relies on Hsp90 complex to evade proteasomal degradation. Transformed cells expressing BCR-FGFR1 are sensitive to the Hsp90 inhibitor Ganetespib, and also respond to combined treatment with Ganetespib plus the FGFR inhibitor BGJ398. Collectively, these data suggest novel therapeutic approaches for future stem cell leukemia/lymphoma treatment: inhibition of BCR oligomerization by disruption of required salt bridges; and inhibition of the chaperonin Hsp90 complex. Full Article
cr Appropriation of GPIb{alpha} from platelet-derived extracellular vesicles supports monocyte recruitment in systemic inflammation By www.haematologica.org Published On :: 2020-05-01T00:05:41-07:00 Interactions between platelets, leukocytes and the vessel wall provide alternative pathological routes of thrombo-inflammatory leukocyte recruitment. We found that when platelets were activated by a range of agonists in whole blood, they shed platelet-derived extracellular vesicles which rapidly and preferentially bound to blood monocytes compared to other leukocytes. Platelet-derived extracellular vesicle binding to monocytes was initiated by P-selectin-dependent adhesion and was stabilised by binding of phosphatidylserine. These interactions resulted in the progressive transfer of the platelet adhesion receptor GPIbα to monocytes. GPIbα+-monocytes tethered and rolled on immobilised von Willebrand Factor or were recruited and activated on endothelial cells treated with TGF-β1 to induce the expression of von Willebrand Factor. In both models monocyte adhesion was ablated by a function-blocking antibody against GPIbα. Monocytes could also bind platelet-derived extracellular vesicle in mouse blood in vitro and in vivo. Intratracheal instillations of diesel nanoparticles, to model chronic pulmonary inflammation, induced accumulation of GPIbα on circulating monocytes. In intravital experiments, GPIbα+-monocytes adhered to the microcirculation of the TGF-β1-stimulated cremaster muscle, while in the ApoE–/– model of atherosclerosis, GPIbα+-monocytes adhered to the carotid arteries. In trauma patients, monocytes bore platelet markers within 1 hour of injury, the levels of which correlated with severity of trauma and resulted in monocyte clearance from the circulation. Thus, we have defined a novel thrombo-inflammatory pathway in which platelet-derived extracellular vesicles transfer a platelet adhesion receptor to monocytes, allowing their recruitment in large and small blood vessels, and which is likely to be pathogenic. Full Article
cr Recruiting TP53 to target chronic myeloid leukemia stem cells By www.haematologica.org Published On :: 2020-05-01T00:05:41-07:00 Full Article
cr IKZF1/3 and CRL4CRBN E3 ubiquitin ligase mutations and resistance to immunomodulatory drugs in multiple myeloma By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Full Article
cr CRISPR/Cas9-mediated gene deletion efficiently retards the progression of Philadelphia-positive acute lymphoblastic leukemia in a p210 BCR-ABL1T315I mutation mouse model By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Full Article
cr Prolonged treatment-free remission in chronic myeloid leukemia patients with previous BCR-ABL1 kinase domain mutations By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Full Article
cr Disease progression in myeloproliferative neoplasms: comparing patients in accelerated phase with those in chronic phase with increased blasts (<10%) or with other types of disease progression By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Full Article
cr Functional assessment of glucocerebrosidase modulator efficacy in primary patient-derived macrophages is essential for drug development and patient stratification By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Full Article
cr Erratum. WASH Regulates Glucose Homeostasis by Facilitating Glut2 Receptor Recycling in Pancreatic {beta}-Cells. Diabetes 2019;68:377-386 By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Full Article
cr A Mendelian Randomization Study Provides Evidence That Adiposity and Dyslipidemia Lead to Lower Urinary Albumin-to-Creatinine Ratio, a Marker of Microvascular Function By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Urinary albumin-to-creatinine ratio (ACR) is a marker of diabetic nephropathy and microvascular damage. Metabolic-related traits are observationally associated with ACR, but their causal role is uncertain. Here, we confirmed ACR as a marker of microvascular damage and tested whether metabolic-related traits have causal relationships with ACR. The association between ACR and microvascular function (responses to acetylcholine [ACH] and sodium nitroprusside) was tested in the SUMMIT study. Two-sample Mendelian randomization (MR) was used to infer the causal effects of 11 metabolic risk factors, including glycemic, lipid, and adiposity traits, on ACR. MR was performed in up to 440,000 UK Biobank and 54,451 CKDGen participants. ACR was robustly associated with microvascular function measures in SUMMIT. Using MR, we inferred that higher triglyceride (TG) and LDL cholesterol (LDL-C) levels caused elevated ACR. A 1 SD higher TG and LDL-C level caused a 0.062 (95% CI 0.040, 0.083) and a 0.026 (95% CI 0.008, 0.044) SD higher ACR, respectively. There was evidence that higher body fat and visceral body fat distribution caused elevated ACR, while a metabolically "favorable adiposity" phenotype lowered ACR. ACR is a valid marker for microvascular function. MR suggested that seven traits have causal effects on ACR, highlighting the role of adiposity-related traits in causing lower microvascular function. Full Article
cr A Phenotypic Screen Identifies Calcium Overload as a Key Mechanism of {beta}-Cell Glucolipotoxicity By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Type 2 diabetes (T2D) is caused by loss of pancreatic β-cell mass and failure of the remaining β-cells to deliver sufficient insulin to meet demand. β-Cell glucolipotoxicity (GLT), which refers to combined, deleterious effects of elevated glucose and fatty acid levels on β-cell function and survival, contributes to T2D-associated β-cell failure. Drugs and mechanisms that protect β-cells from GLT stress could potentially improve metabolic control in patients with T2D. In a phenotypic screen seeking low-molecular-weight compounds that protected β-cells from GLT, we identified compound A that selectively blocked GLT-induced apoptosis in rat insulinoma cells. Compound A and its optimized analogs also improved viability and function in primary rat and human islets under GLT. We discovered that compound A analogs decreased GLT-induced cytosolic calcium influx in islet cells, and all measured β-cell–protective effects correlated with this activity. Further studies revealed that the active compound from this series largely reversed GLT-induced global transcriptional changes. Our results suggest that taming cytosolic calcium overload in pancreatic islets can improve β-cell survival and function under GLT stress and thus could be an effective strategy for T2D treatment. Full Article
cr Microencapsulated G3C Hybridoma Cell Graft Delays the Onset of Spontaneous Diabetes in NOD Mice by an Expansion of Gitr+ Treg Cells By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 As an alternative to lifelong insulin supplementation, potentiation of immune tolerance in patients with type 1 diabetes could prevent the autoimmune destruction of pancreatic islet β-cells. This study was aimed to assess whether the G3c monoclonal antibody (mAb), which triggers the glucocorticoid-induced TNFR-related (Gitr) costimulatory receptor, promotes the expansion of regulatory T cells (Tregs) in SV129 (wild-type) and diabetic-prone NOD mice. The delivery of the G3c mAb via G3C hybridoma cells enveloped in alginate-based microcapsules (G3C/cps) for 3 weeks induced Foxp3+ Treg-cell expansion in the spleen of wild-type mice but not in Gitr–/– mice. G3C/cps also induced the expansion of nonconventional Cd4+Cd25–/lowFoxp3lowGitrint/high (GITR single-positive [sp]) Tregs. Both Cd4+Cd25+GitrhighFoxp3+ and GITRsp Tregs (including also antigen-specific cells) were expanded in the spleen and pancreas of G3C/cps-treated NOD mice, and the number of intact islets was higher in G3C/cps-treated than in empty cps-treated and untreated animals. Consequently, all but two G3C/cps-treated mice did not develop diabetes and all but one survived until the end of the 24-week study. In conclusion, long-term Gitr triggering induces Treg expansion, thereby delaying/preventing diabetes development in NOD mice. This therapeutic approach may have promising clinical potential for the treatment of inflammatory and autoimmune diseases. Full Article
cr HRD1, an Important Player in Pancreatic {beta}-Cell Failure and Therapeutic Target for Type 2 Diabetic Mice By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Inadequate insulin secretion in response to glucose is an important factor for β-cell failure in type 2 diabetes (T2D). Although HMG-CoA reductase degradation 1 (HRD1), a subunit of the endoplasmic reticulum–associated degradation complex, plays a pivotal role in β-cell function, HRD1 elevation in a diabetic setting contributes to β-cell dysfunction. We report in this study the excessive HRD1 expression in islets from humans with T2D and T2D mice. Functional studies reveal that β-cell–specific HRD1 overexpression triggers impaired insulin secretion that will ultimately lead to severe hyperglycemia; by contrast, HRD1 knockdown improves glucose control and response in diabetic models. Proteomic analysis results reveal a large HRD1 interactome, which includes v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), a master regulator of genes implicated in the maintenance of β-cell function. Furthermore, mechanistic assay results indicate that HRD1 is a novel E3 ubiquitin ligase that targets MafA for ubiquitination and degradation in diabetic β-cells, resulting in cytoplasmic accumulation of MafA and in the reduction of its biological function in the nucleus. Our results not only reveal the pathological importance of excessive HRD1 in β-cell dysfunction but also establish the therapeutic importance of targeting HRD1 in order to prevent MafA loss and suppress the development of T2D. Full Article
cr DLL1- and DLL4-Mediated Notch Signaling Is Essential for Adult Pancreatic Islet Homeostasis By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Genes of the Notch signaling pathway are expressed in different cell types and organs at different time points during embryonic development and adulthood. The Notch ligand Delta-like 1 (DLL1) controls the decision between endocrine and exocrine fates of multipotent progenitors in the developing pancreas, and loss of Dll1 leads to premature endocrine differentiation. However, the role of Delta-Notch signaling in adult tissue homeostasis is not well understood. Here, we describe the spatial expression pattern of Notch pathway components in adult murine pancreatic islets and show that DLL1 and DLL4 are specifically expressed in β-cells, whereas JAGGED1 is expressed in α-cells. We show that mice lacking both DLL1 and DLL4 in adult β-cells display improved glucose tolerance, increased glucose-stimulated insulin secretion, and hyperglucagonemia. In contrast, overexpression of the intracellular domain of DLL1 in adult murine pancreatic β-cells results in impaired glucose tolerance and reduced insulin secretion, both in vitro and in vivo. These results suggest that Notch ligands play specific roles in the adult pancreas and highlight a novel function of the Delta/Notch pathway in β-cell insulin secretion. Full Article
cr Interindividual Heterogeneity of SGLT2 Expression and Function in Human Pancreatic Islets By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Studies implicating sodium–glucose cotransporter 2 (SGLT2) inhibitors in glucagon secretion by pancreatic α-cells reported controversial results. We hypothesized that interindividual heterogeneity in SGLT2 expression and regulation may affect glucagon secretion by human α-cells in response to SGLT2 inhibitors. An unbiased RNA-sequencing analysis of 207 donors revealed an unprecedented level of heterogeneity of SLC5A2 expression. To determine heterogeneity of SGLT2 expression at the protein level, the anti-SGLT2 antibody was first rigorously evaluated for specificity, followed by Western blot and immunofluorescence analysis on islets from 10 and 12 donors, respectively. The results revealed a high interdonor variability of SGLT2 protein expression. Quantitative analysis of 665 human islets showed a significant SGLT2 protein colocalization with glucagon but not with insulin or somatostatin. Moreover, glucagon secretion by islets from 31 donors at low glucose (1 mmol/L) was also heterogeneous and correlated with dapagliflozin-induced glucagon secretion at 6 mmol/L glucose. Intriguingly, islets from three donors did not secrete glucagon in response to either 1 mmol/L glucose or dapagliflozin, indicating a functional impairment of the islets of these donors to glucose sensing and SGLT2 inhibition. Collectively, these data suggest that heterogeneous expression of SGLT2 protein and variability in glucagon secretory responses contribute to interindividual differences in response to SGLT2 inhibitors. Full Article
cr A Variation on the Theme: SGLT2 Inhibition and Glucagon Secretion in Human Islets By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Full Article
cr The Use of Mendelian Randomization to Determine the Role of Metabolic Traits on Urinary Albumin-to-Creatinine Ratio By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Full Article
cr "Take Me To Your Leader": An Electrophysiological Appraisal of the Role of Hub Cells in Pancreatic Islets By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 The coordinated electrical activity of β-cells within the pancreatic islet drives oscillatory insulin secretion. A recent hypothesis postulates that specially equipped "hub" or "leader" cells within the β-cell network drive islet oscillations and that electrically silencing or optically ablating these cells suppresses coordinated electrical activity (and thus insulin secretion) in the rest of the islet. In this Perspective, we discuss this hypothesis in relation to established principles of electrophysiological theory. We conclude that whereas electrical coupling between β-cells is sufficient for the propagation of excitation across the islet, there is no obvious electrophysiological mechanism that explains how hyperpolarizing a hub cell results in widespread inhibition of islet electrical activity and disruption of their coordination. Thus, intraislet diffusible factors should perhaps be considered as an alternate mechanism. Full Article
cr MicroRNA Networks in Pancreatic Islet Cells: Normal Function and Type 2 Diabetes By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Impaired insulin secretion from the pancreatic β-cells is central in the pathogenesis of type 2 diabetes (T2D), and microRNAs (miRNAs) are fundamental regulatory factors in this process. Differential expression of miRNAs contributes to β-cell adaptation to compensate for increased insulin resistance, but deregulation of miRNA expression can also directly cause β-cell impairment during the development of T2D. miRNAs are small noncoding RNAs that posttranscriptionally reduce gene expression through translational inhibition or mRNA destabilization. The nature of miRNA targeting implies the presence of complex and large miRNA–mRNA regulatory networks in every cell, including the insulin-secreting β-cell. Here we exemplify one such network using our own data on differential miRNA expression in the islets of T2D Goto-Kakizaki rat model. Several biological processes are influenced by multiple miRNAs in the β-cell, but so far most studies have focused on dissecting the mechanism of action of individual miRNAs. In this Perspective we present key islet miRNA families involved in T2D pathogenesis including miR-200, miR-7, miR-184, miR-212/miR-132, and miR-130a/b/miR-152. Finally, we highlight four challenges and opportunities within islet miRNA research, ending with a discussion on how miRNAs can be utilized as therapeutic targets contributing to personalized T2D treatment strategies. Full Article
cr Viewpoint: The COVID-19 and climate crises By bjgp.org Published On :: 2020-04-30T16:04:41-07:00 Full Article
cr How accurate are GPs at integrating evidence into prescribing decisions? By bjgp.org Published On :: 2020-04-30T16:04:41-07:00 Full Article
cr THE DECLARATION OF ASTANA AND WHAT IT MEANS FOR THE GLOBAL ROLE OF NAPCRG AND WONCA [Family Medicine Updates] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 Full Article
cr INTRODUCING THE BEST PRACTICE GUIDE FOR STRATEGIC PLANNING TO INCREASE STUDENT CHOICE OF FAMILY MEDICINE [Family Medicine Updates] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 Full Article
cr Body Surface Examination Facilitated by Digital Microscopy [Innovations in Primary Care] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 Full Article
cr Impacts of Operational Failures on Primary Care Physicians Work: A Critical Interpretive Synthesis of the Literature [Systematic Review] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 PURPOSE Operational failures are system-level errors in the supply of information, equipment, and materials to health care personnel. We aimed to review and synthesize the research literature to determine how operational failures in primary care affect the work of primary care physicians. METHODS We conducted a critical interpretive synthesis. We searched 7 databases for papers published in English from database inception until October 2017 for primary research of any design that addressed problems interfering with primary care physicians’ work. All potentially eligible titles/abstracts were screened by 1 reviewer; 30% were subject to second screening. We conducted an iterative critique, analysis, and synthesis of included studies. RESULTS Our search retrieved 8,544 unique citations. Though no paper explicitly referred to "operational failures," we identified 95 papers that conformed to our general definition. The included studies show a gap between what physicians perceived they should be doing and what they were doing, which was strongly linked to operational failures—including those relating to technology, information, and coordination—over which physicians often had limited control. Operational failures actively configured physicians’ work by requiring significant compensatory labor to deliver the goals of care. This labor was typically unaccounted for in scheduling or reward systems and had adverse consequences for physician and patient experience. CONCLUSIONS Primary care physicians’ efforts to compensate for suboptimal work systems are often concealed, risking an incomplete picture of the work they do and problems they routinely face. Future research must identify which operational failures are highest impact and tractable to improvement. Full Article
cr Maternity Care and Buprenorphine Prescribing in New Family Physicians [Research Brief] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 The American Board of Family Medicine routinely surveys its Diplomates in each national graduating cohort 3 years out of training. These data were used to characterize early career family physicians whose services include management of pregnancy and prescribing buprenorphine. A total of 261 (5.1%) respondents both provide maternity care and prescribe buprenorphine. Family physicians who care for pregnant women and also prescribe buprenorphine represented 50.4% of all buprenorphine prescribers. The family physicians in this group were trained in a small number of residency programs, with only 15 programs producing at least 25% of graduates who do this work. Full Article
cr Impacts of Operational Failures on Primary Care Physicians Work: A Critical Interpretive Synthesis of the Literature [Departments] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 Full Article
cr COVID-19 and the Inpatient Dialysis Unit: Managing Resources during Contingency Planning Pre-Crisis By cjasn.asnjournals.org Published On :: 2020-05-07T10:00:25-07:00 Full Article
cr RIPK3 Orchestrates Fatty Acid Metabolism in Tumor-Associated Macrophages and Hepatocarcinogenesis By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 Metabolic reprogramming is critical for the polarization and function of tumor-associated macrophages (TAM) and hepatocarcinogenesis, but how this reprogramming occurs is unknown. Here, we showed that receptor-interacting protein kinase 3 (RIPK3), a central factor in necroptosis, is downregulated in hepatocellular carcinoma (HCC)–associated macrophages, which correlated with tumorigenesis and enhanced the accumulation and polarization of M2 TAMs. Mechanistically, RIPK3 deficiency in TAMs reduced reactive oxygen species and significantly inhibited caspase1-mediated cleavage of PPAR. These effects enabled PPAR activation and facilitated fatty acid metabolism, including fatty acid oxidation (FAO), and induced M2 polarization in the tumor microenvironment. RIPK3 upregulation or FAO blockade reversed the immunosuppressive activity of TAMs and dampened HCC tumorigenesis. Our findings provide molecular basis for the regulation of RIPK3-mediated, lipid metabolic reprogramming of TAMs, thus highlighting a potential strategy for targeting the immunometabolism of HCC. Full Article
cr Single-Cell Immune Competency Signatures Associate with Survival in Phase II GVAX and CRS-207 Randomized Studies in Patients with Metastatic Pancreatic Cancer By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 The identification of biomarkers for patient stratification is fundamental to precision medicine efforts in oncology. Here, we identified two baseline, circulating immune cell subsets associated with overall survival in patients with metastatic pancreatic cancer who were enrolled in two phase II randomized studies of GVAX pancreas and CRS-207 immunotherapy. Single-cell mass cytometry was used to simultaneously measure 38 cell surface or intracellular markers in peripheral blood mononuclear cells obtained from a phase IIa patient subcohort (N = 38). CITRUS, an algorithm for identification of stratifying subpopulations in multidimensional cytometry datasets, was used to identify single-cell signatures associated with clinical outcome. Patients with a higher abundance of CD8+CD45RO–CCR7–CD57+ cells and a lower abundance of CD14+CD33+CD85j+ cells had improved overall survival [median overall survival, range (days) 271, 43–1,247] compared with patients with a lower abundance of CD8+CD45RO–CCR7–CD57+ cells and higher abundance of CD14+CD33+CD85j+ cells (77, 24–1,247 days; P = 0.0442). The results from this prospective–retrospective biomarker analysis were validated by flow cytometry in 200 patients with pancreatic cancer enrolled in a phase IIb study (P = 0.0047). The identified immune correlates provide potential prognostic or predictive signatures that could be employed for patient stratification. Full Article
cr The Role of Fnr Paralogs in Controlling Anaerobic Metabolism in the Diazotroph Paenibacillus polymyxa WLY78 [Environmental Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Fnr is a transcriptional regulator that controls the expression of a variety of genes in response to oxygen limitation in bacteria. Genome sequencing revealed four genes (fnr1, fnr3, fnr5, and fnr7) coding for Fnr proteins in Paenibacillus polymyxa WLY78. Fnr1 and Fnr3 showed more similarity to each other than to Fnr5 and Fnr7. Also, Fnr1 and Fnr3 exhibited high similarity with Bacillus cereus Fnr and Bacillus subtilis Fnr in sequence and structures. Both the aerobically purified His-tagged Fnr1 and His-tagged Fnr3 in Escherichia coli could bind to the specific DNA promoter. Deletion analysis showed that the four fnr genes, especially fnr1 and fnr3, have significant impacts on growth and nitrogenase activity. Single deletion of fnr1 or fnr3 led to a 50% reduction in nitrogenase activity, and double deletion of fnr1 and fnr3 resulted to a 90% reduction in activity. Genome-wide transcription analysis showed that Fnr1 and Fnr3 indirectly activated expression of nif (nitrogen fixation) genes and Fe transport genes under anaerobic conditions. Fnr1 and Fnr3 inhibited expression of the genes involved in the aerobic respiratory chain and activated expression of genes responsible for anaerobic electron acceptor genes. IMPORTANCE The members of the nitrogen-fixing Paenibacillus spp. have great potential to be used as a bacterial fertilizer in agriculture. However, the functions of the fnr gene(s) in nitrogen fixation and other metabolisms in Paenibacillus spp. are not known. Here, we found that in P. polymyxa WLY78, Fnr1 and Fnr3 were responsible for regulation of numerous genes in response to changes in oxygen levels, but Fnr5 and Fnr7 exhibited little effect. Fnr1 and Fnr3 indirectly or directly regulated many types of important metabolism, such as nitrogen fixation, Fe uptake, respiration, and electron transport. This study not only reveals the function of the fnr genes of P. polymyxa WLY78 in nitrogen fixation and other metabolisms but also will provide insight into the evolution and regulatory mechanisms of fnr in Paenibacillus. Full Article
cr Different Effects of Soil Fertilization on Bacterial Community Composition in the Penicillium canescens Hyphosphere and in Bulk Soil [Environmental Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 This study investigated the effects of long-term soil fertilization on the composition and potential for phosphorus (P) and nitrogen (N) cycling of bacterial communities associated with hyphae of the P-solubilizing fungus Penicillium canescens. Using a baiting approach, hyphosphere bacterial communities were recovered from three soils that had received long-term amendment in the field with mineral or mineral plus organic fertilizers. P. canescens hyphae recruited bacterial communities with a decreased diversity and an increased abundance of Proteobacteria relative to what was observed in soil communities. As core bacterial taxa, Delftia and Pseudomonas spp. were present in all hyphosphere samples irrespective of soil fertilization. However, the type of fertilization showed significant impacts on the diversity, composition, and distinctive taxa/operational taxonomic units (OTUs) of hyphosphere communities. The soil factors P (Olsen method), exchangeable Mg, exchangeable K, and pH were important for shaping soil and hyphosphere bacterial community compositions. An increased relative abundance of organic P metabolism genes was found in hyphosphere communities from soil that had not received P fertilizers, which could indicate P limitation near the fungal hyphae. Additionally, P. canescens hyphae recruited bacterial communities with a higher abundance of N fixation genes than found in soil communities, which might imply a role of hyphosphere communities for fungal N nutrition. Furthermore, the relative abundances of denitrification genes were greater in several hyphosphere communities, indicating an at least partly anoxic microenvironment with a high carbon-to-N ratio around the hyphae. In conclusion, soil fertilization legacy shapes P. canescens hyphosphere microbiomes and their functional potential related to P and N cycling. IMPORTANCE P-solubilizing Penicillium strains are introduced as biofertilizers to agricultural soils to improve plant P nutrition. Currently, little is known about the ecology of these biofertilizers, including their interactions with other soil microorganisms. This study shows that communities dominated by Betaproteobacteria and Gammaproteobacteria colonize P. canescens hyphae in soil and that the compositions of these communities depend on the soil conditions. The potential of these communities for N and organic P cycling is generally higher than that of soil communities. The high potential for organic P metabolism might complement the ability of the fungus to solubilize inorganic P, and it points to the hyphosphere as a hot spot for P metabolism. Furthermore, the high potential for N fixation could indicate that P. canescens recruits bacteria that are able to improve its N nutrition. Hence, this community study identifies functional groups relevant for the future optimization of next-generation biofertilizer consortia for applications in soil. Full Article
cr Diversity and Genetic Basis for Carbapenem Resistance in a Coastal Marine Environment [Public and Environmental Health Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Resistance to the "last-resort" antibiotics, such as carbapenems, has led to very few antibiotics being left to treat infections by multidrug-resistant bacteria. Spread of carbapenem resistance (CR) has been well characterized for the clinical environment. However, there is a lack of information about its environmental distribution. Our study reveals that CR is present in a wide range of Gram-negative bacteria in the coastal seawater environment, including four phyla, eight classes, and 30 genera. These bacteria were likely introduced into seawater via stormwater flows. Some CR isolates found here, such as Acinetobacter junii, Acinetobacter johnsonii, Brevundimonas vesicularis, Enterococcus durans, Pseudomonas monteilii, Pseudomonas fulva, and Stenotrophomonas maltophilia, are further relevant to human health. We also describe a novel metallo-β-lactamase (MBL) for marine Rheinheimera isolates with CR, which has likely been horizontally transferred to Citrobacter freundii or Enterobacter cloacae. In contrast, another MBL of the New Delhi type was likely acquired by environmental Variovorax isolates from Escherichia coli, Klebsiella pneumoniae, or Acinetobacter baumannii utilizing a plasmid. Our findings add to the growing body of evidence that the aquatic environment is both a reservoir and a vector for novel CR genes. IMPORTANCE Resistance against the "last-resort" antibiotics of the carbapenem family is often based on the production of carbapenemases, and this has been frequently observed in clinical samples. However, the dissemination of carbapenem resistance (CR) in the environment has been less well explored. Our study shows that CR is commonly found in a range of bacterial taxa in the coastal aquatic environment and can involve the exchange of novel metallo-β-lactamases from typical environmental bacteria to potential human pathogens or vice versa. The outcomes of this study contribute to a better understanding of how aquatic and marine bacteria can act as reservoirs and vectors for CR outside the clinical setting. Full Article
cr Comparative Whole-Genome Phylogeny of Animal, Environmental, and Human Strains Confirms the Genogroup Organization and Diversity of the Stenotrophomonas maltophilia Complex [Public and Environmental Health Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 The Stenotrophomonas maltophilia complex (Smc) comprises opportunistic environmental Gram-negative bacilli responsible for a variety of infections in both humans and animals. Beyond its large genetic diversity, its genetic organization in genogroups was recently confirmed through the whole-genome sequencing of human and environmental strains. As they are poorly represented in these analyses, we sequenced the whole genomes of 93 animal strains to determine their genetic background and characteristics. Combining these data with 81 newly sequenced human strains and the genomes available from RefSeq, we performed a genomic analysis that included 375 nonduplicated genomes with various origins (animal, 104; human, 226; environment, 30; unknown, 15). Phylogenetic analysis and clustering based on genome-wide average nucleotide identity confirmed and specified the genetic organization of Smc in at least 20 genogroups. Two new genogroups were identified, and two previously described groups were further divided into two subgroups each. Comparing the strains isolated from different host types and their genogroup affiliation, we observed a clear disequilibrium in certain groups. Surprisingly, some antimicrobial resistance genes, integrons, and/or clusters of attC sites lacking integron-integrase (CALIN) sequences targeting antimicrobial compounds extensively used in animals were mainly identified in animal strains. We also identified genes commonly found in animal strains coding for efflux systems. The result of a large whole-genome analysis performed by us supports the hypothesis of the putative contribution of animals as a reservoir of Stenotrophomonas maltophilia complex strains and/or resistance genes for strains in humans. IMPORTANCE Given its naturally large antimicrobial resistance profile, the Stenotrophomonas maltophilia complex (Smc) is a set of emerging pathogens of immunosuppressed and cystic fibrosis patients. As it is group of environmental microorganisms, this adaptation to humans is an opportunity to understand the genetic and metabolic selective mechanisms involved in this process. The previously reported genomic organization was incomplete, as data from animal strains were underrepresented. We added the missing piece of the puzzle with whole-genome sequencing of 93 strains of animal origin. Beyond describing the phylogenetic organization, we confirmed the genetic diversity of the Smc, which could not be estimated through routine phenotype- or matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF)-based laboratory tests. Animals strains seem to play a key role in the diversity of Smc and could act as a reservoir for mobile resistance genes. Some genogroups seem to be associated with particular hosts; the genetic support of this association and the role of the determinants/corresponding genes need to be explored. Full Article
cr Prebiotics Inhibit Proteolysis by Gut Bacteria in a Host Diet-Dependent Manner: a Three-Stage Continuous In Vitro Gut Model Experiment [Food Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Dietary protein residue can result in microbial generation of various toxic metabolites in the gut, such as ammonia. A prebiotic is "a substrate that is selectively utilised by host microorganisms conferring a health benefit" (G. R. Gibson, R. Hutkins, M. E. Sanders, S. L. Prescott, et al., Nat Rev Gastroenterol Hepatol 14:491–502, 2017, https://doi.org/10.1038/nrgastro.2017.75). Prebiotics are carbohydrates that may have the potential to reverse the harmful effects of gut bacterial protein fermentation. Three-stage continuous colonic model systems were inoculated with fecal samples from omnivore and vegetarian volunteers. Casein (equivalent to 105 g protein consumption per day) was used within the systems as a protein source. Two different doses of inulin-type fructans (Synergy1) were later added (equivalent to 10 g per day in vivo and 15 g per day) to assess whether this influenced protein fermentation. Bacteria were enumerated by fluorescence in situ hybridization with flow cytometry. Metabolites from bacterial fermentation (short-chain fatty acid [SCFA], ammonia, phenol, indole, and p-cresol) were monitored to further analyze proteolysis and the prebiotic effect. A significantly higher number of bifidobacteria was observed with the addition of inulin together with reduction of Desulfovibrio spp. Furthermore, metabolites from protein fermentation, such as branched-chain fatty acids (BCFA) and ammonia, were significantly lowered with Synergy1. Production of p-cresol varied among donors, as we recognized four high producing models and two low producing models. Prebiotic addition reduced its production only in vegetarian high p-cresol producers. IMPORTANCE Dietary protein levels are generally higher in Western populations than in the world average. We challenged three-stage continuous colonic model systems containing high protein levels and confirmed the production of potentially harmful metabolites from proteolysis, especially replicates of the transverse and distal colon. Fermentations of proteins with a prebiotic supplementation resulted in a change in the human gut microbiota and inhibited the production of some proteolytic metabolites. Moreover, we observed both bacterial and metabolic differences between fecal bacteria from omnivore donors and vegetarian donors. Proteins with prebiotic supplementation showed higher Bacteroides spp. and inhibited Clostridium cluster IX in omnivore models, while in vegetarian modes, Clostridium cluster IX was higher and Bacteroides spp. lower with high protein plus prebiotic supplementation. Synergy1 addition inhibited p-cresol production in vegetarian high p-cresol-producing models while the inhibitory effect was not seen in omnivore models. Full Article
cr Ecological and Ontogenetic Components of Larval Lake Sturgeon Gut Microbiota Assembly, Successional Dynamics, and Ecological Evaluation of Neutral Community Processes [Microbial Ecology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Gastrointestinal (GI) or gut microbiotas play essential roles in host development and physiology. These roles are influenced partly by the microbial community composition. During early developmental stages, the ecological processes underlying the assembly and successional changes in host GI community composition are influenced by numerous factors, including dispersal from the surrounding environment, age-dependent changes in the gut environment, and changes in dietary regimes. However, the relative importance of these factors to the gut microbiota is not well understood. We examined the effects of environmental (diet and water sources) and host early ontogenetic development on the diversity of and the compositional changes in the gut microbiota of a primitive teleost fish, the lake sturgeon (Acipenser fulvescens), based on massively parallel sequencing of the 16S rRNA gene. Fish larvae were raised in environments that differed in water source (stream versus filtered groundwater) and diet (supplemented versus nonsupplemented Artemia fish). We quantified the gut microbial community structure at three stages (prefeeding and 1 and 2 weeks after exogenous feeding began). The diversity declined and the community composition differed significantly among stages; however, only modest differences associated with dietary or water source treatments were documented. Many taxa present in the gut were over- or underrepresented relative to neutral expectations in each sampling period. The findings indicate dynamic relationships between the gut microbiota composition and host gastrointestinal physiology, with comparatively smaller influences being associated with the rearing environments. Neutral models of community assembly could not be rejected, but selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for sturgeon conservation and aquaculture production specifically and applications of microbe-based management in teleost fish generally. IMPORTANCE We quantified the effects of environment (diet and water sources) and host early ontogenetic development on the diversity of and compositional changes in gut microbial communities based on massively parallel sequencing of the 16S rRNA genes from the GI tracts of larval lake sturgeon (Acipenser fulvescens). The gut microbial community diversity declined and the community composition differed significantly among ontogenetic stages; however, only modest differences associated with dietary or water source treatments were documented. Selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for lake sturgeon and early larval ecology and survival in their natural habitat and for conservation and aquaculture production specifically, as well as applications of microbe-based management in teleost fish generally. Full Article
cr Correction for Pozsgai et al., "Modified mariner Transposons for Random Inducible-Expression Insertions and Transcriptional Reporter Fusion Insertions in Bacillus subtilis" [Author Correction] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Full Article
cr Two Functional Fatty Acyl Coenzyme A Ligases Affect Free Fatty Acid Metabolism To Block Biosynthesis of an Antifungal Antibiotic in Lysobacter enzymogenes [Environmental Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 In Lysobacter enzymogenes OH11, RpfB1 and RpfB2 were predicted to encode acyl coenzyme A (CoA) ligases. RpfB1 is located in the Rpf gene cluster. Interestingly, we found an RpfB1 homolog (RpfB2) outside this canonical gene cluster, and nothing is known about its functionality or mechanism. Here, we report that rpfB1 and rpfB2 can functionally replace EcFadD in the Escherichia coli fadD mutant JW1794. RpfB activates long-chain fatty acids (n-C16:0 and n-C18:0) for the corresponding fatty acyl-CoA ligase (FCL) activity in vitro, and Glu-361 plays critical roles in the catalytic mechanism of RpfB1 and RpfB2. Deletion of rpfB1 and rpfB2 resulted in significantly increased heat-stable antifungal factor (HSAF) production, and overexpression of rpfB1 or rpfB2 completely suppressed HSAF production. Deletion of rpfB1 and rpfB2 resulted in increased L. enzymogenes diffusible signaling factor 3 (LeDSF3) synthesis in L. enzymogenes. Overall, our results showed that changes in intracellular free fatty acid levels significantly altered HSAF production. Our report shows that intracellular free fatty acids are required for HSAF production and that RpfB affects HSAF production via FCL activity. The global transcriptional regulator Clp directly regulated the expression of rpfB1 and rpfB2. In conclusion, these findings reveal new roles of RpfB in antibiotic biosynthesis in L. enzymogenes. IMPORTANCE Understanding the biosynthetic and regulatory mechanisms of heat-stable antifungal factor (HSAF) could improve the yield in Lysobacter enzymogenes. Here, we report that RpfB1 and RpfB2 encode acyl coenzyme A (CoA) ligases. Our research shows that RpfB1 and RpfB2 affect free fatty acid metabolism via fatty acyl-CoA ligase (FCL) activity to reduce the substrate for HSAF synthesis and, thereby, block HSAF production in L. enzymogenes. Furthermore, these findings reveal new roles for the fatty acyl-CoA ligases RpfB1 and RpfB2 in antibiotic biosynthesis in L. enzymogenes. Importantly, the novelty of this work is the finding that RpfB2 lies outside the Rpf gene cluster and plays a key role in HSAF production, which has not been reported in other diffusible signaling factor (DSF)/Rpf-producing bacteria. Full Article
cr Genetic Influences of the Microbiota on the Life Span of Drosophila melanogaster [Invertebrate Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 To better understand how associated microorganisms ("microbiota") influence organismal aging, we focused on the model organism Drosophila melanogaster. We conducted a metagenome-wide association (MGWA) as a screen to identify bacterial genes associated with variation in the D. melanogaster life span. The results of the MGWA predicted that bacterial cysteine and methionine metabolism genes influence fruit fly longevity. A mutant analysis, in which flies were inoculated with Escherichia coli strains bearing mutations in various methionine cycle genes, confirmed a role for some methionine cycle genes in extending or shortening fruit fly life span. Initially, we predicted these genes might influence longevity by mimicking or opposing methionine restriction, an established mechanism for life span extension in fruit flies. However, follow-up transcriptome sequencing (RNA-seq) and metabolomic experiments were generally inconsistent with this conclusion and instead implicated glucose and vitamin B6 metabolism in these influences. We then tested if bacteria could influence life span through methionine restriction using a different set of bacterial strains. Flies reared with a bacterial strain that ectopically expressed bacterial transsulfuration genes and lowered the methionine content of the fly diet also extended female D. melanogaster life span. Taken together, the microbial influences shown here overlap with established host genetic mechanisms for aging and therefore suggest overlapping roles for host and microbial metabolism genes in organismal aging. IMPORTANCE Associated microorganisms ("microbiota") are intimately connected to the behavior and physiology of their animal hosts, and defining the mechanisms of these interactions is an urgent imperative. This study focuses on how microorganisms influence the life span of a model host, the fruit fly Drosophila melanogaster. First, we performed a screen that suggested a strong influence of bacterial methionine metabolism on host life span. Follow-up analyses of gene expression and metabolite abundance identified stronger roles for vitamin B6 and glucose than methionine metabolism among the tested mutants, possibly suggesting a more limited role for bacterial methionine metabolism genes in host life span effects. In a parallel set of experiments, we created a distinct bacterial strain that expressed life span-extending methionine metabolism genes and showed that this strain can extend fly life span. Therefore, this work identifies specific bacterial genes that influence host life span, including in ways that are consistent with the expectations of methionine restriction. Full Article
cr Microbial Diversity in Deep-Subsurface Hot Brines of Northwest Poland: from Community Structure to Isolate Characteristics [Geomicrobiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Deep-subsurface hot brines in northwest Poland, extracted through boreholes reaching 1.6 and 2.6 km below the ground surface, were microbiologically investigated using culture-independent and culture-dependent methods. The high-throughput sequencing of 16S rRNA gene amplicons showed a very low diversity of bacterial communities, which were dominated by phyla Proteobacteria and Firmicutes. Bacterial genera potentially involved in sulfur oxidation and nitrate reduction (Halothiobacillus and Methylobacterium) prevailed in both waters over the sulfate reducers ("Candidatus Desulforudis" and Desulfotomaculum). Only one archaeal taxon, affiliated with the order Thermoplasmatales, was detected in analyzed samples. Bacterial isolates obtained from these deep hot brines were closely related to Bacillus paralicheniformis based on the 16S rRNA sequence similarity. However, genomic and physiological analyses made for one of the isolates, Bacillus paralicheniformis strain TS6, revealed the existence of more diverse metabolic pathways than those of its moderate-temperature counterpart. These specific traits may be associated with the ecological adaptations to the extreme habitat, which suggest that some lineages of B. paralicheniformis are halothermophilic. IMPORTANCE Deep-subsurface aquifers, buried thousands of meters down the Earth’s crust, belong to the most underexplored microbial habitats. Although a few studies revealed the existence of microbial life at the depths, the knowledge about the microbial life in the deep hydrosphere is still scarce due to the limited access to such environments. Studying the subsurface microbiome provides unique information on microbial diversity, community structure, and geomicrobiological processes occurring under extreme conditions of the deep subsurface. Our study shows that low-diversity microbial assemblages in subsurface hot brines were dominated by the bacteria involved in biogeochemical cycles of sulfur and nitrogen. Based on genomic and physiological analyses, we found that the Bacillus paralicheniformis isolate obtained from the brine under study differed from the mesophilic species in the presence of specific adaptations to harsh environmental conditions. We indicate that some lineages of B. paralicheniformis are halothermophilic, which was not previously reported. Full Article
cr Diazotrophs Show Signs of Restoration in Amazon Rain Forest Soils with Ecosystem Rehabilitation [Microbial Ecology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Biological nitrogen fixation can be an important source of nitrogen in tropical forests that serve as a major CO2 sink. Extensive deforestation of the Amazon is known to influence microbial communities and the biogeochemical cycles they mediate. However, it is unknown how diazotrophs (nitrogen-fixing microorganisms) respond to deforestation and subsequent ecosystem conversion to agriculture, as well as whether they can recover in secondary forests that are established after agriculture is abandoned. To address these knowledge gaps, we combined a spatially explicit sampling approach with high-throughput sequencing of nifH genes. The main objectives were to assess the functional distance decay relationship of the diazotrophic bacterial community in a tropical forest ecosystem and to quantify the roles of various factors that drive the observed changes in the diazotrophic community structure. We observed an increase in local diazotrophic diversity (α-diversity) with a decrease in community turnover (β-diversity), associated with a shift in diazotrophic community structure as a result of the forest-to-pasture conversion. Both diazotrophic community turnover and structure showed signs of recovery in secondary forests. Changes in the diazotrophic community were primarily driven by the change in land use rather than differences in geochemical characteristics or geographic distances. The diazotroph communities in secondary forests resembled those in primary forests, suggesting that at least partial recovery of diazotrophs is possible following agricultural abandonment. IMPORTANCE The Amazon region is a major tropical forest region that is being deforested at an alarming rate to create space for cattle ranching and agriculture. Diazotrophs (nitrogen-fixing microorganisms) play an important role in supplying soil N for plant growth in tropical forests. It is unknown how diazotrophs respond to deforestation and whether they can recover in secondary forests that establish after agriculture is abandoned. Using high-throughput sequencing of nifH genes, we characterized the response of diazotrophs’ β-diversity and identified major drivers of changes in diazotrophs from forest-to-pasture and pasture-to-secondary-forest conversions. Studying the impact of land use change on diazotrophs is important for a better understanding of the impact of deforestation on tropical forest ecosystem functioning, and our results on the potential recovery of diazotrophs in secondary forests imply the possible restoration of ecosystem functions in secondary forests. Full Article
cr Unexpected Abundance and Diversity of Phototrophs in Mats from Morphologically Variable Microbialites in Great Salt Lake, Utah [Microbial Ecology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Microbial mat communities are associated with extensive (~700 km2) and morphologically variable carbonate structures, termed microbialites, in the hypersaline Great Salt Lake (GSL), Utah. However, whether the composition of GSL mat communities covaries with microbialite morphology and lake environment is unknown. Moreover, the potential adaptations that allow the establishment of these extensive mat communities at high salinity (14% to 17% total salts) are poorly understood. To address these questions, microbial mats were sampled from seven locations in the south arm of GSL representing different lake environments and microbialite morphologies. Despite the morphological differences, microbialite-associated mats were taxonomically similar and were dominated by the cyanobacterium Euhalothece and several heterotrophic bacteria. Metagenomic sequencing of a representative mat revealed Euhalothece and subdominant Thiohalocapsa populations that harbor the Calvin cycle and nitrogenase, suggesting they supply fixed carbon and nitrogen to heterotrophic bacteria. Fifteen of the next sixteen most abundant taxa are inferred to be aerobic heterotrophs and, surprisingly, harbor reaction center, rhodopsin, and/or bacteriochlorophyll biosynthesis proteins, suggesting aerobic photoheterotrophic (APH) capabilities. Importantly, proteins involved in APH are enriched in the GSL community relative to that in microbialite mat communities from lower salinity environments. These findings indicate that the ability to integrate light into energy metabolism is a key adaptation allowing for robust mat development in the hypersaline GSL. IMPORTANCE The earliest evidence of life on Earth is from organosedimentary structures, termed microbialites, preserved in 3.481-billion-year-old (Ga) rocks. Phototrophic microbial mats form in association with an ~700-km2 expanse of morphologically diverse microbialites in the hypersaline Great Salt Lake (GSL), Utah. Here, we show taxonomically similar microbial mat communities are associated with morphologically diverse microbialites across the lake. Metagenomic sequencing reveals an abundance and diversity of autotrophic and heterotrophic taxa capable of harvesting light energy to drive metabolism. The unexpected abundance of and diversity in the mechanisms of harvesting light energy observed in GSL mat populations likely function to minimize niche overlap among coinhabiting taxa, provide a mechanism(s) to increase energy yield and osmotic balance during salt stress, and enhance fitness. Together, these physiological benefits promote the formation of robust mats that, in turn, influence the formation of morphologically diverse microbialite structures that can be imprinted in the rock record. Full Article
cr Temperature and Nutrient Levels Correspond with Lineage-Specific Microdiversification in the Ubiquitous and Abundant Freshwater Genus Limnohabitans [Environmental Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Most freshwater bacterial communities are characterized by a few dominant taxa that are often ubiquitous across freshwater biomes worldwide. Our understanding of the genomic diversity within these taxonomic groups is limited to a subset of taxa. Here, we investigated the genomic diversity that enables Limnohabitans, a freshwater genus key in funneling carbon from primary producers to higher trophic levels, to achieve abundance and ubiquity. We reconstructed eight putative Limnohabitans metagenome-assembled genomes (MAGs) from stations located along broad environmental gradients existing in Lake Michigan, part of Earth’s largest surface freshwater system. De novo strain inference analysis resolved a total of 23 strains from these MAGs, which strongly partitioned into two habitat-specific clusters with cooccurring strains from different lineages. The largest number of strains belonged to the abundant LimB lineage, for which robust in situ strain delineation had not previously been achieved. Our data show that temperature and nutrient levels may be important environmental parameters associated with microdiversification within the Limnohabitans genus. In addition, strains predominant in low- and high-phosphorus conditions had larger genomic divergence than strains abundant under different temperatures. Comparative genomics and gene expression analysis yielded evidence for the ability of LimB populations to exhibit cellular motility and chemotaxis, a phenotype not yet associated with available Limnohabitans isolates. Our findings broaden historical marker gene-based surveys of Limnohabitans microdiversification and provide in situ evidence of genome diversity and its functional implications across freshwater gradients. IMPORTANCE Limnohabitans is an important bacterial taxonomic group for cycling carbon in freshwater ecosystems worldwide. Here, we examined the genomic diversity of different Limnohabitans lineages. We focused on the LimB lineage of this genus, which is globally distributed and often abundant, and its abundance has shown to be largely invariant to environmental change. Our data show that the LimB lineage is actually comprised of multiple cooccurring populations for which the composition and genomic characteristics are associated with variations in temperature and nutrient levels. The gene expression profiles of this lineage suggest the importance of chemotaxis and motility, traits that had not yet been associated with the Limnohabitans genus, in adapting to environmental conditions. Full Article
cr Unnecessary antibiotic prescribing in a Canadian primary care setting: a descriptive analysis using routinely collected electronic medical record data By www.cmajopen.ca Published On :: 2020-05-07T05:57:29-07:00 Background: Unnecessary antibiotic use in the community in Canada is not well defined. Our objective was to quantify unnecessary antibiotic prescribing in a Canadian primary care setting. Methods: We performed a descriptive analysis in Ontario from April 2011 to March 2016 using the Electronic Medical Records Primary Care database linked to other health administrative data sets at ICES. We determined antibiotic prescribing rates (per 100 patient–physician encounters) for 23 common conditions and estimated rates of unnecessary prescribing using predefined expected prescribing rates, both stratified by condition and patient age group. Results: The study included 341 physicians, 204 313 patients and 499 570 encounters. The rate of unnecessary antibiotic prescribing for included conditions was 15.4% overall and was 17.6% for those less than 2 years of age, 18.6% for those aged 2–18, 14.5% for those aged 19–64 and 13.0% for those aged 65 or more. The highest unnecessary prescribing rates were observed for acute bronchitis (52.6%), acute sinusitis (48.4%) and acute otitis media (39.3%). The common cold, acute bronchitis, acute sinusitis and miscellaneous nonbacterial infections were responsible for 80% of the unnecessary antibiotic prescriptions. Of all antibiotics prescribed, 12.0% were for conditions for which they are never indicated, and 12.3% for conditions for which they are rarely indicated. In children, 25% of antibiotics were for conditions for which they are never indicated (e.g., common cold). Interpretation: Antibiotics were prescribed unnecessarily for 15.4% of included encounters in a Canadian primary care setting. Almost one-quarter of antibiotics were prescribed for conditions for which they are rarely or never indicated. These findings should guide safe reductions in the use of antibiotics for the common cold, bronchitis and sinusitis. Full Article