cr

Direct-to-Consumer Prescription Drug Advertising and Patient-Provider Interactions

Background:

Direct-to-consumer prescription drug advertising is prevalent and affects patient care. Previous research that examined its effect on the patient-provider relationship predates many changes in the advertising and medical landscape that have occurred in the last decade, such as the rise in online promotion and the push for value-based medicine.

Methods:

We conducted a nationally representative mail-push-to-web survey of 1744 US adults in 2017 to explore how patients view the effects of direct-to-consumer prescription drug advertising on patient-provider interactions.

Results:

Most respondents (76%) said they were likely to ask a health care provider about advertised drugs; 26% said they had already done so. Among the 26% of respondents who talked to a health care provider about a specific prescription drug they saw advertised, 16% said they received a prescription for the advertised drug. Few respondents (5%) reported that advertising had caused conflict with a health care provider, 16% said it had caused them to question their provider’s advice, and 23% said they were likely to look for a different provider if their provider refused to prescribe a requested brand name drug.

Discussion:

These results suggest that direct-to-consumer advertising is driving some patients to discuss specific products with their health care providers but that most patients do not believe advertising has a negative influence on the patient-provider interaction itself.




cr

Modifying Provider Vitamin D Screening Behavior in Primary Care

Purpose:

Clinical evidence shows minimal benefit to vitamin D screening and subsequent treatment in the general population. This study aims to assess the effectiveness of 2 light-touch interventions on reducing vitamin D test orders.

Methods:

The outcomes were weekly average vitamin D rates, computed from adult primary care encounters (preventive or nonpreventive) with a family medicine (FM) or internal medicine (IM) provider from June 14, 2018 through December 12, 2018. We conducted an interrupted time series analysis and estimated the cost impact of the interventions. The interventions consisted of an educational memo (August 9, 2018) distributed to providers and removal of the vitamin D test (FM: August 15, 2018; IM: October 17, 2018) from the providers’ quick order screen in the electronic health record. Change in order rates were analyzed among physicians (MDs and DOs), physician assistants (PAs), and nurse practitioners (NPs).

Results:

There were 587,506 primary care encounters (FM = 367,947; IM = 219,559). Vitamin D order rates decreased from 6.9% (FM = 5.1%; IM = 9.9%) to 5.2% (FM = 4% [P < .01], IM = 7.9% [P < .01]). For FM, the vitamin D test order rate continued to fall at a 0.08% per week rate after the interventions (end of study: 2.73%). The education intervention showed a relative decrease in each provider type (FM-physician = 16% [P < .01], FM-PA = 47% [P < .01], FM-NP = 20% [P = .01], IM-physician = 14% [P = .02], IM-PA = 52% [P < .01], IM-NP = 34% [P = .04]). Annualized savings was approximately 1 million dollars.

Conclusions:

Emailed evidence-based provider education may be an effective tool for modifying providers’ vitamin D test ordering behavior. The lack of the effectiveness of the vitamin D test removal from the quick order screen found for IM highlights the challenges facing simple electronic health record interventions when multiple alternate ordering pathways exist.




cr

Eliminating Patient Identified Barriers to Decrease Medicaid Inpatient Admission Rates and Improve Quality of Care

Background and Objectives:

The goal of this study was to decrease admission and readmission rate for the 2296 Medicaid patients in our clinic. Our focus was to eliminate patient identified barriers to care that led to decreased quality of care. The identified barriers for our clinic included distance to care, poor same-day access, communication, and fragmented care. A team-based, collaborative approach using members from all aspects of patient care.

Methods:

An initial survey identified which barriers to care our patients felt obstructed their care. With this data, along with a national literature review, our team used biweekly quality team meetings with LEAN methodology and Plan-Do-Study-Act cycles to create a 4-phase quality improvement project. A home-visit program to decrease distance to care, walk-in clinic to improve same-day access, strengthened collaboration with outside care managers and clinic staff to improve communication, and the introduction of an in-house phlebotomist to improve fragmented care were created and studied between June 2015 and December 2018. Admission rate, avoidable readmission rate, as well as other quality of care measurements were assessed with electronic medical record reports and through North Carolina Medicaid data reports.

Results:

Overall Medicaid admissions decreased 32.7% from starting numbers, 40.2% below expected benchmarks. Avoidable readmissions decreased 41.8%, 53.8% below the expected benchmark. Improvements in same-day access numbers and lab completion rate were also seen.

Discussion:

The team-based approach to eliminating patient-identified barriers decreased both admissions and avoidable readmissions for our Medicaid patients. It also improved quality-of-care measures. This approach has been shown to be beneficial at our clinic and can easily be replicated in other settings.




cr

Increasing Article Visibility: JABFM and Author Responsibilities and Possibilities

JABFM seeks to widely disseminate its peer-reviewed publications, increasing article visibility for the purpose of advancing scientific knowledge. We describe the journal’s approach to dissemination and recommend a number of strategies for authors to implement, including press releases and social media. Providing the article’s digital object identifier (DOI) is most useful, compared with links that can break, or attaching the article PDF, which will depress reader metrics. All JABFM articles are freely accessible online worldwide.




cr

Microclimate buffering and thermal tolerance across elevations in a tropical butterfly [RESEARCH ARTICLE]

Gabriela Montejo-Kovacevich, Simon H. Martin, Joana I. Meier, Caroline N. Bacquet, Monica Monllor, Chris D. Jiggins, and Nicola J. Nadeau

Microclimatic variability in tropical forests plays a key role in shaping species distributions and their ability to cope with environmental change, especially for ectotherms. Nonetheless, currently available climatic datasets lack data from the forest interior and, furthermore, our knowledge of thermal tolerance among tropical ectotherms is limited. We therefore studied natural variation in the microclimate experienced by tropical butterflies in the genus Heliconius across their Andean range in a single year. We found that the forest strongly buffers temperature and humidity in the understorey, especially in the lowlands, where temperatures are more extreme. There were systematic differences between our yearly records and macroclimate databases (WorldClim2), with lower interpolated minimum temperatures and maximum temperatures higher than expected. We then assessed thermal tolerance of 10 Heliconius butterfly species in the wild and found that populations at high elevations had significantly lower heat tolerance than those at lower elevations. However, when we reared populations of the widespread H. erato from high and low elevations in a common-garden environment, the difference in heat tolerance across elevations was reduced, indicating plasticity in this trait. Microclimate buffering is not currently captured in publicly available datasets, but could be crucial for enabling upland shifting of species sensitive to heat such as highland Heliconius. Plasticity in thermal tolerance may alleviate the effects of global warming on some widespread ectotherm species, but more research is needed to understand the long-term consequences of plasticity on populations and species.




cr

Food restriction delays seasonal sexual maturation but does not increase torpor use in male bats [RESEARCH ARTICLE]

Ewa Komar, Dina K. N. Dechmann, Nicolas J. Fasel, Marcin Zegarek, and Ireneusz Ruczynski

Balancing energy budgets can be challenging, especially in periods of food shortage, adverse weather conditions and increased energy demand due to reproduction. Bats have particularly high energy demands compared to other mammals and regularly use torpor to save energy. However, while torpor limits energy expenditure, it can also downregulate important processes, such as sperm production. This constraint could result in a trade-off between energy saving and future reproductive capacity. We mimicked harsh conditions by restricting food and tested the effect on changes in body mass, torpor use and seasonal sexual maturation in male parti-coloured bats (Vespertilio murinus). Food-restricted individuals managed to maintain their initial body mass, while in well-fed males, mass increased. Interestingly, despite large differences in food availability, there were only small differences in torpor patterns. However, well-fed males reached sexual maturity up to half a month earlier. Our results thus reveal a complex trade-off in resource allocation; independent of resource availability, males maintain a similar thermoregulation strategy and favour fast sexual maturation, but limited resources and low body mass moderate this latter process.




cr

Human recreation decreases antibody titre in bird nestlings: an overlooked transgenerational effect of disturbance [RESEARCH ARTICLE]

Yves Bötsch, Zulima Tablado, Bettina Almasi, and Lukas Jenni

Outdoor recreational activities are booming and most animals perceive humans as predators, which triggers behavioural and/or physiological reactions [e.g. heart rate increase, activation of the hypothalamic–pituitary–adrenal (HPA) axis]. Physiological stress reactions have been shown to affect the immune system of an animal and therefore may also affect the amount of maternal antibodies a female transmits to her offspring. A few studies have revealed that the presence of predators affects the amount of maternal antibodies deposited into eggs of birds. In this study, using Eurasian blue and great tit offspring (Cyanistes caeruleus and Parus major) as model species, we experimentally tested whether human recreation induces changes in the amount of circulating antibodies in young nestlings and whether this effect is modulated by habitat and competition. Moreover, we investigated whether these variations in antibody titre in turn have an impact on hatching success and offspring growth. Nestlings of great tit females that had been disturbed by experimental human recreation during egg laying had lower antibody titres compared with control nestlings. Antibody titre of nestling blue tits showed a negative correlation with the presence of great tits, rather than with human disturbance. The hatching success was positively correlated with the average amount of antibodies in great tit nestlings, independent of the treatment. Antibody titre in the first days of life in both species was positively correlated with body mass, but this relationship disappeared at fledging and was independent of treatment. We suggest that human recreation may have caused a stress-driven activation of the HPA axis in breeding females, chronically increasing their circulating corticosterone, which is known to have an immunosuppressive function. Either, lower amounts of antibodies are transmitted to nestlings or impaired transfer mechanisms lead to lower amounts of immunoglobulins in the eggs. Human disturbance could, therefore, have negative effects on nestling survival at early life-stages, when nestlings are heavily reliant on maternal antibodies, and in turn lead to lower breeding success and parental fitness. This is a so far overlooked effect of disturbance on early life in birds.




cr

The teleost fish intestine is a major oxalate-secreting epithelium [SHORT COMMUNICATION]

Jonathan M. Whittamore

Oxalate is a common constituent of kidney stones but the mechanism of its transport across epithelia are not well understood. With prior research on the role of the intestine focused on mammals this study considered oxalate handling by teleost fish. Given the osmotic challenge of seawater (SW), teleosts have limited scope for urinary oxalate excretion relative to freshwater (FW). The marine teleost intestine was hypothesized as the principal route for oxalate elimination thus demanding epithelial secretion. To test this, intestinal 14C-oxalate flux was compared between FW- and SW-acclimated sailfin molly (Poecilia latipinna). In SW, oxalate was secreted at remarkable rates (367.90±22.95 pmol cm–2 h–1) which were similar following FW transfer (387.59±27.82 pmol cm–2 h–1), implying no regulation by salinity. Nevertheless, this ability to secrete oxalate 15-19 times higher than mammalian small intestine supports this proposal of the teleost gut as a previously unrecognized excretory pathway.




cr

Wolbachia-infected ant colonies have increased reproductive investment and an accelerated life cycle [RESEARCH ARTICLE]

Rohini Singh and Timothy A. Linksvayer

Wolbachia is a widespread group of maternally-transmitted endosymbiotic bacteria that often manipulates the reproductive strategy and life history of its hosts to favor its own transmission. Wolbachia mediated phenotypic effects are well characterized in solitary hosts, but effects in social hosts are unclear. The invasive pharaoh ant, Monomorium pharaonis, shows natural variation in Wolbachia infection between colonies and can be readily bred under laboratory conditions. We previously showed that Wolbachia-infected pharaoh ant colonies had more queen-biased sex ratios than uninfected colonies, which is expected to favor the spread of maternally-transmitted Wolbachia. Here, we further characterize the effects of Wolbachia on the short- and longer-term reproductive and life history traits of pharaoh ant colonies. First, we characterized the reproductive differences between naturally infected and uninfected colonies at three discrete time points and found that infected colonies had higher reproductive investment (i.e. infected colonies produced more new queens), particularly when existing colony queens were three months old. Next, we compared the long-term growth and reproduction dynamics of infected and uninfected colonies across their whole life cycle. Infected colonies had increased colony-level growth and early colony reproduction, resulting in a shorter colony life cycle, when compared to uninfected colonies.




cr

Androgenic modulation of extraordinary muscle speed creates a performance trade-off with endurance [RESEARCH ARTICLE]

Daniel J. Tobiansky, Meredith C. Miles, Franz Goller, and Matthew J. Fuxjager

Performance trade-offs can dramatically alter an organism's evolutionary trajectory by making certain phenotypic outcomes unattainable. Understanding how these trade-offs arise from an animal's design is therefore an important goal of biology. To explore this topic, we study how androgenic hormones, which regulate skeletal muscle function, influence performance trade-offs relevant to different components of complex reproductive behaviour. We conduct this work in golden-collared manakins (Manacus vitellinus), a Neotropical bird in which males court females by rapidly snapping their wings together above their back. Androgens help mediate the snap displays by radically increasing the twitch speed of a dorsal wing muscle [scapulohumeralis caudalis (SH)], which actuates the bird's wing-snap. Through hormone manipulations and in situ muscle recordings, we test how these positive effects on SH speed influence trade-offs with endurance. Indeed, this trait impacts the display by shaping signal length. We find that androgen-dependent increases in SH speed incur a cost to endurance, particularly when this muscle performs at its functional limits. Moreover, when behavioural data are overlaid on our muscle recordings, displaying animals appear to balance display speed with fatigue-induced muscle fusion (physiological tetanus) to generate the fastest possible signal while maintaining an appropriate signal duration. Our results point to androgenic hormone action as a functional trigger of trade-offs in sexual performance—they enhance one element of a courtship display, but in doing so, impede another.




cr

Thermo-TRPs and gut microbiota are involved in thermogenesis and energy metabolism during low temperature exposure of obese mice [RESEARCH ARTICLE]

Jing Wen, Tingbei Bo, Xueying Zhang, Zuoxin Wang, and Dehua Wang

Ambient temperature and food composition can affect energy metabolism of the host. Thermal transient receptor potential (thermo-TRPs) ion channels can detect temperature signals and are involved in the regulation of thermogenesis and energy homeostasis. Further, the gut microbiota has also been implicated in thermogenesis and obesity. In the present study, we tested the hypothesis that thermo-TRPs and gut microbiota are involved in reducing diet-induced obesity (DIO) during low temperature exposure. C57BL/6J mice in obese (body mass gain >45%), lean (body mass gain <15%), and control (body mass gain<1%) groups were exposed to high (23±1°C) or low (4±1°C) ambient temperature for 28 days. Our data showed that low temperature exposure attenuated DIO, but enhanced brown adipose tissue (BAT) thermogenesis. Low temperature exposure also resulted in increased norepinephrine (NE) concentrations in the hypothalamus, decreased TRP melastatin 8 (TRPM8) expression in the small intestine, and altered composition and diversity of gut microbiota. In DIO mice, there was a decrease in overall energy intake along with a reduction in TRP ankyrin 1 (TRPA1) expression and an increase in NE concentration in the small intestine. DIO mice also showed increases in Oscillospira, [Ruminococcus], Lactococcus, and Christensenella and decreases in Prevotella, Odoribacter, and Lactobacillus at the genus level in fecal samples. Together, our data suggest that thermos-TRPs and gut microbiota are involved in thermogenesis and energy metabolism during low temperature exposure in DIO mice.




cr

Whale sharks increase swimming effort while filter feeding, but appear to maintain high foraging efficiencies [RESEARCH ARTICLE]

David E. Cade, J. Jacob Levenson, Robert Cooper, Rafael de la Parra, D. Harry Webb, and Alistair D. M. Dove

Whale sharks (Rhincodon typus Smith 1828) – the largest extant fish species – reside in tropical environments, making them an exception to the general rule that animal size increases with latitude. How this largest fish thrives in tropical environments that promote high metabolism but support less robust zooplankton communities has not been sufficiently explained. We used open-source inertial measurement units (IMU) to log 397 hours of whale shark behavior in Yucatan, Mexico, at a site of both active feeding and intense wildlife tourism. Here we show that the strategies employed by whale sharks to compensate for the increased drag of an open mouth are similar to ram-feeders five orders of magnitude smaller and one order of magnitude larger. Presumed feeding constituted 20% of the total time budget of four sharks, with individual feeding bouts lasting up to 11 consecutive hrs. Compared to normal, sub-surface swimming, three sharks increased their stroke rate and amplitude while surface feeding, while one shark that fed at depth did not demonstrate a greatly increased energetic cost. Additionally, based on time-depth budgets, we estimate that aerial surveys of shark populations should consider including a correction factor of 3 to account for the proportion of daylight hours that sharks are not visible at the surface. With foraging bouts generally lasting several hours, interruptions to foraging during critical feeding periods may represent substantial energetic costs to these endangered species, and this study presents baseline data from which management decisions affecting tourist interactions with whale sharks may be made.




cr

Secondary osteon structural heterogeneity between the cranial and caudal cortices of the proximal humerus in white-tailed deer [RESEARCH ARTICLE]

Jack Nguyen and Meir M. Barak

Cortical bone remodeling is an ongoing process triggered by microdamage, where osteoclasts resorb existing bone and osteoblasts deposit new bone in the form of secondary osteons (Haversian systems). Previous studies revealed regional variance in Haversian systems structure and possibly material, between opposite cortices of the same bone. As bone mechanical properties depend on tissue structure and material, it is predicted that bone mechanical properties will vary in accordance with structural and material regional heterogeneity. To test this hypothesis, we analyzed the structure, mineral content and compressive stiffness of secondary bone from the cranial and caudal cortices of the white-tailed deer proximal humerus. We found significantly larger Haversian systems and canals in the cranial cortex but no significant difference in mineral content between the two cortices. Accordingly, we found no difference in compressive stiffness between the two cortices and thus our working hypothesis was rejected. Seeing that the deer humerus is curved and thus likely subjected to bending during habitual locomotion, we expect that similar to other curved long bones, the cranial cortex of the deer humerus is likely subjected primarily to tensile strains and the caudal cortex is likely subject primarily to compressive strains. Consequently, our results suggest that strain magnitude (larger in compression) and sign (compression vs. tension) affect differently the osteoclasts and osteoblasts in the BMU. Our results further suggest that osteoclasts are inhibited in regions of high compressive strains (creating smaller Haversian systems) while osteoblasts’ osteoid deposition and mineralization is not affected by strain magnitude and sign.




cr

Renal, Cardiovascular, and Safety Outcomes of Canagliflozin by Baseline Kidney Function: A Secondary Analysis of the CREDENCE Randomized Trial

Background

Canagliflozin reduced renal and cardiovascular events in people with type 2 diabetes in the CREDENCE trial. We assessed efficacy and safety of canagliflozin by initial estimated glomerular filtration rate (eGFR).

Methods

CREDENCE randomly assigned 4401 participants with an eGFR of 30 to <90 ml/min per 1.73 m2 and substantial albuminuria to canagliflozin 100 mg or placebo. We used Cox proportional hazards regression to analyze effects on renal and cardiovascular efficacy and safety outcomes within screening eGFR subgroups (30 to <45, 45 to <60, and 60 to <90 ml/min per 1.73 m2) and linear mixed effects models to analyze the effects on eGFR slope.

Results

At screening, 1313 (30%), 1279 (29%), and 1809 (41%) participants had an eGFR of 30 to <45, 45 to <60, and 60 to <90 ml/min per 1.73 m2, respectively. The relative benefits of canagliflozin for renal and cardiovascular outcomes appeared consistent among eGFR subgroups (all P interaction >0.11). Subgroups with lower eGFRs, who were at greater risk, exhibited larger absolute benefits for renal outcomes. Canagliflozin’s lack of effect on serious adverse events, amputations, and fractures appeared consistent among eGFR subgroups. In all subgroups, canagliflozin use led to an acute eGFR drop followed by relative stabilization of eGFR loss. Among those with an eGFR of 30 to <45 ml/min per 1.73 m2, canagliflozin led to an initial drop of 2.03 ml/min per 1.73 m2. Thereafter, decline in eGFR was slower in the canagliflozin versus placebo group (–1.72 versus –4.33 ml/min per 1.73 m2; between-group difference 2.61 ml/min per 1.73 m2).

Conclusions

Canagliflozin safely reduced the risk of renal and cardiovascular events, with consistent results across eGFR subgroups, including the subgroup initiating treatment with an eGFR of 30 to <45 ml/min per 1.73 m2. Absolute benefits for renal outcomes were greatest in subgroups with lower eGFR.

Clinical Trial registry name and registration number

Evaluation of the Effects of Canagliflozin on Renal and Cardiovascular Outcomes in Participants With Diabetic Nephropathy (CREDENCE), NCT02065791.




cr

Atorvastatin Reduces In Vivo Fibrin Deposition and Macrophage Accumulation, and Improves Primary Patency Duration and Maturation of Murine Arteriovenous Fistula

Background

Arteriovenous fistulas placed surgically for dialysis vascular access have a high primary failure rate resulting from excessive inward remodeling, medial fibrosis, and thrombosis. No clinically established pharmacologic or perisurgical therapies currently address this unmet need. Statins’ induction of multiple anti-inflammatory and antithrombotic effects suggests that these drugs might reduce arteriovenous fistula failure. Yet, the in vivo physiologic and molecular effects of statins on fistula patency and maturation remain poorly understood.

Methods

We randomized 108 C57Bl/6J mice to receive daily atorvastatin 1.14 mg/kg or PBS (control) starting 7 days before end-to-side carotid artery–jugular vein fistula creation and for up to 42 days after fistula creation. We then assessed longitudinally the effects of statin therapy on primary murine fistula patency and maturation. We concomitantly analyzed the in vivo arteriovenous fistula thrombogenic and inflammatory macrophage response to statin therapy, using the fibrin-targeted, near-infrared fluorescence molecular imaging agent FTP11-CyAm7 and dextranated, macrophage-avid nanoparticles CLIO-VT680.

Results

In vivo molecular-structural imaging demonstrated that atorvastatin significantly reduced fibrin deposition at day 7 and macrophage accumulation at days 7 and 14, findings supported by histopathologic and gene-expression analyses. Structurally, atorvastatin promoted favorable venous limb outward remodeling, preserved arteriovenous fistula blood flow, and prolonged primary arteriovenous fistula patency through day 42 (P<0.05 versus control for all measures).

Conclusions

These findings provide new in vivo evidence that statins improve experimental arteriovenous fistula patency and maturation, indicating that additional clinical evaluation of statin therapy in patients on dialysis undergoing arteriovenous fistula placement is warranted.




cr

Axon microdissection and transcriptome profiling reveals the in vivo RNA content of fully differentiated myelinated motor axons [ARTICLE]

Axonal protein synthesis has been shown to play a role in developmental and regenerative growth, as well as in the maintenance of the axoplasm in a steady state. Recent studies have begun to identify the mRNAs localized in axons, which could be translated locally under different conditions. Despite that by now hundreds or thousands of mRNAs have been shown to be localized into the axonal compartment of cultured neurons in vitro, knowledge of which mRNAs are localized in mature myelinated axons is quite limited. With the purpose of characterizing the transcriptome of mature myelinated motor axons of peripheral nervous systems, we modified the axon microdissection method devised by Koenig, enabling the isolation of the axoplasm RNA to perform RNA-seq analysis. The transcriptome analysis indicates that the number of RNAs detected in mature axons is lower in comparison with in vitro data, depleted of glial markers, and enriched in neuronal markers. The mature myelinated axons are enriched for mRNAs related to cytoskeleton, translation, and oxidative phosphorylation. Moreover, it was possible to define core genes present in axons when comparing our data with transcriptomic data of axons grown in different conditions. This work provides evidence that axon microdissection is a valuable method to obtain genome-wide data from mature and myelinated axons of the peripheral nervous system, and could be especially useful for the study of axonal involvement in neurodegenerative pathologies of motor neurons such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophies (SMA).




cr

A single unidirectional piRNA cluster similar to the flamenco locus is the major source of EVE-derived transcription and small RNAs in Aedes aegypti mosquitoes [ARTICLE]

Endogenous viral elements (EVEs) are found in many eukaryotic genomes. Despite considerable knowledge about genomic elements such as transposons (TEs) and retroviruses, we still lack information about nonretroviral EVEs. Aedes aegypti mosquitoes have a highly repetitive genome that is covered with EVEs. Here, we identified 129 nonretroviral EVEs in the AaegL5 version of the A. aegypti genome. These EVEs were significantly associated with TEs and preferentially located in repeat-rich clusters within intergenic regions. Genome-wide transcriptome analysis showed that most EVEs generated transcripts although only around 1.4% were sense RNAs. The majority of EVE transcription was antisense and correlated with the generation of EVE-derived small RNAs. A single genomic cluster of EVEs located in a 143 kb repetitive region in chromosome 2 contributed with 42% of antisense transcription and 45% of small RNAs derived from viral elements. This region was enriched for TE-EVE hybrids organized in the same coding strand. These generated a single long antisense transcript that correlated with the generation of phased primary PIWI-interacting RNAs (piRNAs). The putative promoter of this region had a conserved binding site for the transcription factor Cubitus interruptus, a key regulator of the flamenco locus in Drosophila melanogaster. Here, we have identified a single unidirectional piRNA cluster in the A. aegypti genome that is the major source of EVE transcription fueling the generation of antisense small RNAs in mosquitoes. We propose that this region is a flamenco-like locus in A. aegypti due to its relatedness to the major unidirectional piRNA cluster in Drosophila melanogaster.




cr

Distribution of Ventilation Measured by Electrical Impedance Tomography in Critically Ill Children

BACKGROUND:Electrical impedance tomography (EIT) is a noninvasive, portable lung imaging technique that provides functional distribution of ventilation. We aimed to describe the relationship between the distribution of ventilation by mode of ventilation and level of oxygenation impairment in children who are critically ill. We also aimed to describe the safety of EIT application.METHODS:A prospective observational study of EIT images obtained from subjects in the pediatric ICU. Images were categorized by whether the subjects were on intermittent mandatory ventilation (IMV), continuous spontaneous ventilation, or no positive-pressure ventilation. Images were categorized by the level of oxygenation impairment when using SpO2/FIO2. Distribution of ventilation is described by the center of ventilation.RESULTS:Sixty-four images were obtained from 25 subjects. Forty-two images obtained during IMV with a mean ± SD center of ventilation of 55 ± 6%, 14 images during continuous spontaneous ventilation with a mean ± SD center of ventilation of 48.1 ± 11%, and 8 images during no positive-pressure ventilation with a mean ± SD center of ventilation of 47.5 ± 10%. Seventeen images obtained from subjects with moderate oxygenation impairment with a mean ± SD center of ventilation of 59.3 ± 1.9%, 12 with mild oxygenation impairment with a mean ± SD center of ventilation of 52.6 ± 2.3%, and 4 without oxygenation impairment with a mean ± SD center of ventilation of 48.3 ± 4%. There was more ventral distribution of ventilation with IMV versus continuous spontaneous ventilation (P = .009), with IMV versus no positive-pressure ventilation (P = .01) cohorts, and with moderate oxygenation impairment versus cohorts without oxygenation impairment (P = .009). There were no adverse events related to the placement and use of EIT in our study.CONCLUSIONS:Children who had worse oxygen impairment or who received controlled modes of ventilation had more ventral distribution of ventilation than those without oxygen impairment or the subjects who were spontaneously breathing. The ability of EIT to detect changes in the distribution of ventilation in real time may allow for distribution-targeted mechanical ventilation strategies to be deployed proactively; however, future studies are needed to determine the effectiveness of such a strategy.




cr

Ontogeny and Cross-species Comparison of Pathways Involved in Drug Absorption, Distribution, Metabolism, and Excretion in Neonates (Review): Kidney [Minireview]

The kidneys play an important role in many processes, including urine formation, water conservation, acid-base equilibrium, and elimination of waste. The anatomic and functional development of the kidney has different maturation time points in humans versus animals, with critical differences between species in maturation before and after birth. Absorption, distribution, metabolism, and excretion (ADME) of drugs vary depending on age and maturation, which will lead to differences in toxicity and efficacy. When neonate/juvenile laboratory animal studies are designed, a thorough knowledge of the differences in kidney development between newborns/children and laboratory animals is essential. The human and laboratory animal data must be combined to obtain a more complete picture of the development in the kidneys around the neonatal period and the complexity of ADME in newborns and children. This review examines the ontogeny and cross-species differences in ADME processes in the developing kidney in preterm and term laboratory animals and children. It provides an overview of insights into ADME functionality in the kidney by identifying what is currently known and which gaps still exist. Currently important renal function properties such as glomerular filtration rate, renal blood flow, and ability to concentrate are generally well known, while detailed knowledge about transporter and metabolism maturation is growing but is still lacking. Preclinical data in those properties is limited to rodents and generally covers only the expression levels of transporter or enzyme-encoding genes. More knowledge on a functional level is needed to predict the kinetics and toxicity in neonate/juvenile toxicity and efficacy studies.

SIGNIFICANCE STATEMENT

This review provides insight in cross-species developmental differences of absorption, distribution, metabolism, and excretion properties in the kidney, which should be considered in neonate/juvenile study interpretation, hypotheses generation, and experimental design.




cr

Effects of deficiency in the RLBP1-encoded visual cycle protein CRALBP on visual dysfunction in humans and mice [Cell Biology]

Mutations in retinaldehyde-binding protein 1 (RLBP1), encoding the visual cycle protein cellular retinaldehyde-binding protein (CRALBP), cause an autosomal recessive form of retinal degeneration. By binding to 11-cis-retinoid, CRALBP augments the isomerase activity of retinoid isomerohydrolase RPE65 (RPE65) and facilitates 11-cis-retinol oxidation to 11-cis-retinal. CRALBP also maintains the 11-cis configuration and protects against unwanted retinaldehyde activity. Studying a sibling pair that is compound heterozygous for mutations in RLBP1/CRALBP, here we expand the phenotype of affected individuals, elucidate a previously unreported phenotype in RLBP1/CRALBP carriers, and demonstrate consistencies between the affected individuals and Rlbp1/Cralbp−/− mice. In the RLBP1/CRALBP-affected individuals, nonrecordable rod-specific electroretinogram traces were recovered after prolonged dark adaptation. In ultrawide-field fundus images, we observed radially arranged puncta typical of RLBP1/CRALBP-associated disease. Spectral domain-optical coherence tomography (SD-OCT) revealed hyperreflective aberrations within photoreceptor-associated bands. In short-wavelength fundus autofluorescence (SW-AF) images, speckled hyperautofluorescence and mottling indicated macular involvement. In both the affected individuals and their asymptomatic carrier parents, reduced SW-AF intensities, measured as quantitative fundus autofluorescence (qAF), indicated chronic impairment in 11-cis-retinal availability and provided information on mutation severity. Hypertransmission of the SD-OCT signal into the choroid together with decreased near-infrared autofluorescence (NIR-AF) provided evidence for retinal pigment epithelial cell (RPE) involvement. In Rlbp1/Cralbp−/− mice, reduced 11-cis-retinal levels, qAF and NIR-AF intensities, and photoreceptor loss were consistent with the clinical presentation of the affected siblings. These findings indicate that RLBP1 mutations are associated with progressive disease involving RPE atrophy and photoreceptor cell degeneration. In asymptomatic carriers, qAF disclosed previously undetected visual cycle deficiency.




cr

SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation [Protein Synthesis and Degradation]

SUMOylation is a posttranslational modification (PTM) at a lysine residue and is crucial for the proper functions of many proteins, particularly of transcription factors, in various biological processes. Zinc finger homeobox 3 (ZFHX3), also known as AT motif-binding factor 1 (ATBF1), is a large transcription factor that is active in multiple pathological processes, including atrial fibrillation and carcinogenesis, and in circadian regulation and development. We have previously demonstrated that ZFHX3 is SUMOylated at three or more lysine residues. Here, we investigated which enzymes regulate ZFHX3 SUMOylation and whether SUMOylation modulates ZFHX3 stability and function. We found that SUMO1, SUMO2, and SUMO3 each are conjugated to ZFHX3. Multiple lysine residues in ZFHX3 were SUMOylated, but Lys-2806 was the major SUMOylation site, and we also found that it is highly conserved among ZFHX3 orthologs from different animal species. Using molecular analyses, we identified the enzymes that mediate ZFHX3 SUMOylation; these included SUMO1-activating enzyme subunit 1 (SAE1), an E1-activating enzyme; SUMO-conjugating enzyme UBC9 (UBC9), an E2-conjugating enzyme; and protein inhibitor of activated STAT2 (PIAS2), an E3 ligase. Multiple analyses established that both SUMO-specific peptidase 1 (SENP1) and SENP2 deSUMOylate ZFHX3. SUMOylation at Lys-2806 enhanced ZFHX3 stability by interfering with its ubiquitination and proteasomal degradation. Functionally, Lys-2806 SUMOylation enabled ZFHX3-mediated cell proliferation and xenograft tumor growth of the MDA-MB-231 breast cancer cell line. These findings reveal the enzymes involved in, and the functional consequences of, ZFHX3 SUMOylation, insights that may help shed light on ZFHX3's roles in various cellular and pathophysiological processes.




cr

The streptococcal multidomain fibrillar adhesin CshA has an elongated polymeric architecture [Microbiology]

The cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. Streptococcus gordonii is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans. The fibrillar adhesin CshA is an important determinant of S. gordonii adherence, forming peritrichous fibrils on its surface that bind host cells and other microorganisms. CshA possesses a distinctive multidomain architecture comprising an N-terminal target-binding region fused to 17 repeat domains (RDs) that are each ∼100 amino acids long. Here, using structural and biophysical methods, we demonstrate that the intact CshA repeat region (CshA_RD1–17, domains 1–17) forms an extended polymeric monomer in solution. We recombinantly produced a subset of CshA RDs and found that they differ in stability and unfolding behavior. The NMR structure of CshA_RD13 revealed a hitherto unreported all β-fold, flanked by disordered interdomain linkers. These findings, in tandem with complementary hydrodynamic studies of CshA_RD1–17, indicate that this polypeptide possesses a highly unusual dynamic transitory structure characterized by alternating regions of order and disorder. This architecture provides flexibility for the adhesive tip of the CshA fibril to maintain bacterial attachment that withstands shear forces within the human host. It may also help mitigate deleterious folding events between neighboring RDs that share significant structural identity without compromising mechanical stability.




cr

Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from Cupriavidus necator [Molecular Biophysics]

Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD+-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium Cupriavidus necator H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe4S4 in FdsB and Fe2S2 in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH•, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH−, initially formed via NADH-mediated reduction, to the Fe2S2 cluster. This Fe2S2 cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the re-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD+ binding in proper NADH dehydrogenases.




cr

Phosphoproteomic characterization of the signaling network resulting from activation of the chemokine receptor CCR2 [Genomics and Proteomics]

Leukocyte recruitment is a universal feature of tissue inflammation and regulated by the interactions of chemokines with their G protein–coupled receptors. Activation of CC chemokine receptor 2 (CCR2) by its cognate chemokine ligands, including CC chemokine ligand 2 (CCL2), plays a central role in recruitment of monocytes in several inflammatory diseases. In this study, we used phosphoproteomics to conduct an unbiased characterization of the signaling network resulting from CCL2 activation of CCR2. Using data-independent acquisition MS analysis, we quantified both the proteome and phosphoproteome in FlpIn-HEK293T cells stably expressing CCR2 at six time points after activation with CCL2. Differential expression analysis identified 699 significantly regulated phosphorylation sites on 441 proteins. As expected, many of these proteins are known to participate in canonical signal transduction pathways and in the regulation of actin cytoskeleton dynamics, including numerous guanine nucleotide exchange factors and GTPase-activating proteins. Moreover, we identified regulated phosphorylation sites in numerous proteins that function in the nucleus, including several constituents of the nuclear pore complex. The results of this study provide an unprecedented level of detail of CCR2 signaling and identify potential targets for regulation of CCR2 function.




cr

Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer ad&#x0237;acent motif (PAM) sequences [Molecular Biophysics]

The CRISPR/Cas9 nucleases have been widely applied for genome editing in various organisms. Cas9 nucleases complexed with a guide RNA (Cas9–gRNA) find their targets by scanning and interrogating the genomic DNA for sequences complementary to the gRNA. Recognition of the DNA target sequence requires a short protospacer adjacent motif (PAM) located outside this sequence. Given that the efficiency of target location may depend on the strength of interactions that promote target recognition, here we sought to compare affinities of different Cas9 nucleases for their cognate PAM sequences. To this end, we measured affinities of Cas9 nucleases from Streptococcus pyogenes, Staphylococcus aureus, and Francisella novicida complexed with guide RNAs (gRNAs) (SpCas9–gRNA, SaCas9–gRNA, and FnCas9–gRNA, respectively) and of three engineered SpCas9–gRNA variants with altered PAM specificities for short, PAM-containing DNA probes. We used a “beacon” assay that measures the relative affinities of DNA probes by determining their ability to competitively affect the rate of Cas9–gRNA binding to fluorescently labeled target DNA derivatives called “Cas9 beacons.” We observed significant differences in the affinities for cognate PAM sequences among the studied Cas9 enzymes. The relative affinities of SpCas9–gRNA and its engineered variants for canonical and suboptimal PAMs correlated with previous findings on the efficiency of these PAM sequences in genome editing. These findings suggest that high affinity of a Cas9 nuclease for its cognate PAM promotes higher genome-editing efficiency.




cr

Pro-515 of the dynamin-like GTPase MxB contributes to HIV-1 inhibition by regulating MxB oligomerization and binding to HIV-1 capsid [Microbiology]

Interferon-regulated myxovirus resistance protein B (MxB) is an interferon-induced GTPase belonging to the dynamin superfamily. It inhibits infection with a wide range of different viruses, including HIV-1, by impairing viral DNA entry into the nucleus. Unlike the related antiviral GTPase MxA, MxB possesses an N-terminal region that contains a nuclear localization signal and is crucial for inhibiting HIV-1. Because MxB previously has been shown to reside in both the nuclear envelope and the cytoplasm, here we used bioinformatics and biochemical approaches to identify a nuclear export signal (NES) responsible for MxB's cytoplasmic location. Using the online computational tool LocNES (Locating Nuclear Export Signals or NESs), we identified five putative NES candidates in MxB and investigated whether their deletion caused nuclear localization of MxB. Our results revealed that none of the five deletion variants relocates to the nucleus, suggesting that these five predicted NES sequences do not confer NES activity. Interestingly, deletion of one sequence, encompassing amino acids 505–527, abrogated the anti-HIV-1 activity of MxB. Further mutation experiments disclosed that amino acids 515–519, and Pro-515 in particular, regulate MxB oligomerization and its binding to HIV-1 capsid, thereby playing an important role in MxB-mediated restriction of HIV-1 infection. In summary, our results indicate that none of the five predicted NES sequences in MxB appears to be required for its nuclear export. Our findings also reveal several residues in MxB, including Pro-515, critical for its oligomerization and anti-HIV-1 function.




cr

Chemical roadblocking of DNA transcription for nascent RNA display [RNA]

Site-specific arrest of RNA polymerases (RNAPs) is fundamental to several technologies that assess RNA structure and function. Current in vitro transcription “roadblocking” approaches inhibit transcription elongation by blocking RNAP with a protein bound to the DNA template. One limitation of protein-mediated transcription roadblocking is that it requires inclusion of a protein factor extrinsic to the minimal in vitro transcription reaction. In this work, we developed a chemical approach for halting transcription by Escherichia coli RNAP. We first established a sequence-independent method for site-specific incorporation of chemical lesions into dsDNA templates by sequential PCR and translesion synthesis. We then show that interrupting the transcribed DNA strand with an internal desthiobiotin-triethylene glycol modification or 1,N6-etheno-2'-deoxyadenosine base efficiently and stably halts Escherichia coli RNAP transcription. By encoding an intrinsic stall site within the template DNA, our chemical transcription roadblocking approach enables display of nascent RNA molecules from RNAP in a minimal in vitro transcription reaction.




cr

Inflammatory and mitogenic signals drive interleukin 23 subunit alpha (IL23A) secretion independent of IL12B in intestinal epithelial cells [Signal Transduction]

The heterodimeric cytokine interleukin-23 (IL-23 or IL23A/IL12B) is produced by dendritic cells and macrophages and promotes the proinflammatory and regenerative activities of T helper 17 (Th17) and innate lymphoid cells. A recent study has reported that IL-23 is also secreted by lung adenoma cells and generates an inflammatory and immune-suppressed stroma. Here, we observed that proinflammatory tumor necrosis factor (TNF)/NF-κB and mitogen-activated protein kinase (MAPK) signaling strongly induce IL23A expression in intestinal epithelial cells. Moreover, we identified a strong crosstalk between the NF-κB and MAPK/ERK kinase (MEK) pathways, involving the formation of a transcriptional enhancer complex consisting of proto-oncogene c-Jun (c-Jun), RELA proto-oncogene NF-κB subunit (RelA), RUNX family transcription factor 1 (RUNX1), and RUNX3. Collectively, these proteins induced IL23A secretion, confirmed by immunoprecipitation of endogenous IL23A from activated human colorectal cancer (CRC) cell culture supernatants. Interestingly, IL23A was likely secreted in a noncanonical form, as it was not detected by an ELISA specific for heterodimeric IL-23 likely because IL12B expression is absent in CRC cells. Given recent evidence that IL23A promotes tumor formation, we evaluated the efficacy of MAPK/NF-κB inhibitors in attenuating IL23A expression and found that the MEK inhibitor trametinib and BAY 11–7082 (an IKKα/IκB inhibitor) effectively inhibited IL23A in a subset of human CRC lines with mutant KRAS or BRAFV600E mutations. Together, these results indicate that proinflammatory and mitogenic signals dynamically regulate IL23A in epithelial cells. They further reveal its secretion in a noncanonical form independent of IL12B and that small-molecule inhibitors can attenuate IL23A secretion.




cr

RNA helicase-regulated processing of the Synechocystis rimO-crhR operon results in differential cistron expression and accumulation of two sRNAs [Gene Regulation]

The arrangement of functionally-related genes in operons is a fundamental element of how genetic information is organized in prokaryotes. This organization ensures coordinated gene expression by co-transcription. Often, however, alternative genetic responses to specific stress conditions demand the discoordination of operon expression. During cold temperature stress, accumulation of the gene encoding the sole Asp–Glu–Ala–Asp (DEAD)-box RNA helicase in Synechocystis sp. PCC 6803, crhR (slr0083), increases 15-fold. Here, we show that crhR is expressed from a dicistronic operon with the methylthiotransferase rimO/miaB (slr0082) gene, followed by rapid processing of the operon transcript into two monocistronic mRNAs. This cleavage event is required for and results in destabilization of the rimO transcript. Results from secondary structure modeling and analysis of RNase E cleavage of the rimO–crhR transcript in vitro suggested that CrhR plays a role in enhancing the rate of the processing in an auto-regulatory manner. Moreover, two putative small RNAs are generated from additional processing, degradation, or both of the rimO transcript. These results suggest a role for the bacterial RNA helicase CrhR in RNase E-dependent mRNA processing in Synechocystis and expand the known range of organisms possessing small RNAs derived from processing of mRNA transcripts.




cr

Lithological and chemostratigraphic discrimination of facies within the Bowland Shale Formation within the Craven and Edale basins, UK

The Carboniferous Bowland Shale Formation of the UK is a proven hydrocarbon source rock and currently a target for shale gas exploration. Most existing analysis details lithofacies and geochemical assessment of a small number of boreholes. Given a paucity of relevant borehole cores, surface samples provide a valuable contribution to the assessment of this unconventional gas source. This study reviews existing literature on the formation's hydrocarbon geochemistry and provides new lithological descriptions of seven lithofacies, XRD mineralogy and hydrocarbon-specific geochemical data for 32 outcrop localities within the Craven and Edale basins, respectively in the northern and southern parts of the resource area. Low oxygen indices suggest that the majority of samples are relatively unaltered (in terms of hydrocarbon geochemistry), and therefore suitable for the characterization of the shale organic character. Total organic carbon (TOC) ranges from 0.7 to 6.5 wt%, with highest values associated with maximum flooding surfaces. Mean Tmax values of 447 and 441°C for the Edale and Craven basins, respectively, suggest that nearly all the samples were too immature to have generated appreciable amounts of dry gas. The oil saturation index is consistently below the >100 mg g–1 TOC benchmark, suggesting that they are not prospective for shale oil.

Supplementary material: A table summarizing the location, geological description and age of all of the samples in this paper is available at https://doi.org/10.6084/m9.figshare.c.4444589




cr

Structural constraints on Lower Carboniferous shale gas exploration in the Craven Basin, NW England

Detailed interpretation of a 3D seismic data volume reveals the detrimental effect that post-depositional tectonic deformation has had on buried Lower Carboniferous (Dinantian–Namurian) shales and its consequences for shale gas exploration in the SW part (Fylde area) of the Craven Basin in NW England. The structural styles primarily result from Devono-Carboniferous (syn-sedimentary) extension, post-rift subsidence and Variscan inversion, a renewed phase of Permo-Triassic extension, and Cenozoic uplift and basin exhumation. In contrast to the shallow dips and bedding continuity that characterizes productive shale gas plays in other basins (e.g. in the USA and Argentina), our mapping shows that the area is affected by deformation that results in the Bowland Shale Formation targets being folded and dissected into fault-bound compartments defined by SW–NE striking (Lower Carboniferous and Variscan) reverse faults and SSW–NNE to N–S striking (Permo-Triassic) normal faults. The fault networks and the misalignment between the elongate compartments they contain and the present-day minimum horizontal stress orientation limit the length over which long lateral boreholes can remain in a productive horizon, placing an important constraint on optimal well positioning, reducing the size of the shale gas resource and affecting well productivity. Our subsurface mapping using this high-fidelity dataset provides an accurate picture of the Upper Palaeozoic structure and demonstrates that faulting is denser and more complex than apparent from geological mapping of the surface outcrop. That structural complexity has direct and significant consequences for: the location of well pads; the lateral continuity of target shale gas horizons; the evaluation of the risk of inducing seismicity on seismically resolvable (large displacement) fault planes prior to drilling; and the likelihood of faults with small throws (below seismic resolution) being present.




cr

Reply to Discussion on 'Breakup continents at magma poor rifted margins: a seismic v. outcrop perspective. Journal of the Geological Society, London, 175, 875-882




cr

Discussion on 'Breaking up continents at magma-poor rifted margins: a seismic v. outcrop perspective Journal of the Geological Society, London, 175, 875-882




cr

The progressive development of microfabrics from initial deposition to slump deformation: an example from a modern sedimenary melange on the Nankai Prism

The progressive development of microfabrics from initial deposition to slump deformation and then a submarine slide was investigated in an active subduction zone using cores recovered during the Integrated Ocean Drilling Program Expedition 333. A Pleistocene–Holocene sequence was recovered at Site C0018A, which was located on a slope basin on the footwall of the megasplay fault in the Nankai Trough, SW Japan. Six mass-transport deposit units intercalated with coherent intervals were recovered from the upper 190 m of the drilled succession. The initial microfabrics in the undeformed hemipelagic sediments were characterized by random and porous fabrics composed predominantly of clay aggregations and connectors. The initial fabrics were cardhouse fabrics, which consist of clay flakes with edge-to-edge (E–E) and/or edge-to-face (E–F) contacts. These initial microfabrics developed into compacted microfabrics, which are random and consolidated fabrics (bookhouse fabrics) that consist of clay flakes with E–F and/or face-to-face (F–F) contacts and develop during burial as a pure shear deformation. During slumping, these fabrics were then deformed under simple shear to become predominantly F–F contacts and form clay chains. Thus, the microfabrics in these submarine slides are a sedimentary mélange that developed locally into a preferred clay orientation with F–F contacts.

Supplementary material: A schematic illustration showing sedimentation processes and fabrics is available at https://doi.org/10.6084/m9.figshare.c.4483385

Thematic collection: This article is part of the Polygenetic mélanges collection available at: https://www.lyellcollection.org/cc/polygenetic-melanges




cr

Mid-Eocene giant slope failure (sedimentary melanges) in the Ligurian accretionary wedge (NW Italy) and relationships with tectonics, global climate change and the dissociation of gas hydrates

Upper Lutetian–Bartonian sedimentary mélanges, corresponding to ancient mud-rich submarine mass transport deposits, are widely distributed over an area c. 300 km long and tens of kilometres wide along the exhumed outer part of the External Ligurian accretionary wedge in the Northern Apennines. The occurrence of methane-derived carbonate concretions (septarians) in a specific tectonostratigraphic position below these sedimentary mélanges allows us to document the relationships among a significant period of regional-scale slope failure, climate change (the Early and Mid-Eocene Optimum stages), the dissociation of gas hydrates and accretionary tectonics during the Ligurian Tectonic Phase (early–mid-Lutetian). The distribution of septarians at the core of thrust-related anticlines suggests that the dissociation of gas hydrates was triggered by accretionary tectonics rather than climate change. The different ages of slope failure emplacement and the formation of the septarians support the view that the dissociation of gas hydrates was not the most important trigger for slope failure. The latter occurred during a tectonic quiescence stage associated with a regressive depositional trend, and probably minor residual tectonic pulses, which followed the Ligurian Tectonic Phase, favouring the dynamic re-equilibrium of the External Ligurian accretionary wedge. Our findings provide useful information for a better understanding of the factors controlling giant slope failure events in modern accretionary settings, where they may cause tsunamis.




cr

Redefinition of the Ligurian Units at the Alps-Apennines junction (NW Italy) and their role in the evolution of the Ligurian accretionary wedge: constraints from melanges and broken formations

We document that the undifferentiated chaotic Ligurian Units of the Monferrato–Torino Hill sector (MO-TH) at the Alps–Apennines junction consist of three different units that are comparable with the Cassio, Caio and Sporno Units of the External Ligurian Units of the Northern Apennines. Their internal stratigraphy reflects the character of units deposited in an ocean–continent transition (OCT) zone between the northwestern termination of the Ligurian–Piedmont oceanic basin and the thinned passive margin of Adria microcontinent. The inherited wedge-shaped architecture of this OCT, which gradually closed toward the north in the present-day Canavese Zone, controlled the Late Cretaceous–early Eocene flysch deposition at the trench of the External Ligurian accretionary wedge during the oblique subduction. This favoured the formation of an accretionary wedge increasing in thickness and elevation toward the SE, from the MO-TH to the Emilia Northern Apennines. Our results therefore provide significant information on both the palaeogeographical reconstruction of the northwestern termination of the Ligurian–Piedmont oceanic basin and the role played by inherited along-strike variations (stratigraphy, structural architecture and morphology) of OCT zones in controlling subduction–accretionary processes.

Supplementary material: A spreadsheet with X-ray fluorescence spectrometry and inductively coupled plasma mass spectrometry whole-rock major and trace element composition of mantle peridotites, and photomicrographs of mantle peridotites are available at https://doi.org/10.6084/m9.figshare.c.4519643




cr

Kinetics, Longevity, and Cross-Reactivity of Antineuraminidase Antibody after Natural Infection with Influenza A Viruses [Clinical Immunology]

The kinetics, longevity, and breadth of antibodies to influenza virus neuraminidase (NA) in archival, sequential serum/plasma samples from influenza A virus (IAV) H5N1 infection survivors and from patients infected with the 2009 pandemic IAV (H1N1) virus were determined using an enzyme-linked lectin-based assay. The reverse-genetics-derived H4N1 viruses harboring a hemagglutinin (HA) segment from A/duck/Shan Tou/461/2000 (H4N9) and an NA segment derived from either IAV H5N1 clade 1, IAV H5N1 clade 2.3.4, the 2009 pandemic IAV (H1N1) (H1N1pdm), or A/Puerto Rico/8/1934 (H1N1) virus were used as the test antigens. These serum/plasma samples were also investigated by microneutralization (MN) and/or hemagglutination inhibition (HI) assays. Neuraminidase-inhibiting (NI) antibodies against N1 NA of both homologous and heterologous viruses were observed in H5N1 survivors and H1N1pdm patients. H5N1 survivors who were never exposed to H1N1pdm virus developed NI antibodies to H1N1pdm NA. Seroconversion of NI antibodies was observed in 65% of the H1N1pdm patients at day 7 after disease onset, but an increase in titer was not observed in serum samples obtained late in infection. On the other hand, an increase in seroconversion rate with the HI assay was observed in the follow-up series of sera obtained on days 7, 14, 28, and 90 after infection. The study also showed that NI antibodies are broadly reactive, while MN and HI antibodies are more strain specific.




cr

Development of a High-Throughput Respiratory Syncytial Virus Fluorescent Focus-Based Microneutralization Assay [Diagnostic Laboratory Immunology]

Neutralizing antibodies specific for respiratory syncytial virus (RSV) represent a major protective mechanism against RSV infection, as demonstrated by the efficacy of the immune-prophylactic monoclonal antibody palivizumab in preventing RSV-associated lower respiratory tract infections in premature infants. Accordingly, the RSV neutralization assay has become a key functional method to assess the neutralizing activity of serum antibodies in preclinical animal models, epidemiology studies, and clinical trials. In this study, we qualified a 24-h, fluorescent focus-based microneutralization (RSVA FFA-MN) method that requires no medium exchange or pre- or postinfection processing to detect green fluorescent protein-expressing RSV strain A2 (RSVA-GFP)-infected cells, using a high-content imaging system for automated image acquisition and focus enumeration. The RSVA FFA-MN method was shown to be sensitive, with a limit of detection (LOD) and limit of quantitation (LOQ) of 1:10, or 3.32 log2; linear over a range of 4.27 to 9.65 log2 50% inhibitory concentration (IC50); and precise, with intra- and interassay coefficients of variation of <21%. This precision allowed the choice of a statistically justified 3-fold-rise seroresponse cutoff criterion. The repeatability and robustness of this method were demonstrated by including a pooled human serum sample in every assay as a positive control (PC). Over 3 years of testing between two laboratories, this PC generated data falling within 2.5 standard deviations of the mean 98.7% of the time (n = 1,720). This high-throughput and reliable RSV microneutralization assay has proven useful for testing sera from preclinical vaccine candidate evaluation studies, epidemiology studies, and both pediatric and adult vaccine clinical trials.




cr

Single-cell RNA-seq analysis of human CSF microglia and myeloid cells in neuroinflammation

Objective

To identify and characterize myeloid cell populations within the CSF of patients with MS and anti-myelin oligodendrocyte glycoprotein (MOG) disorder by high-resolution single-cell gene expression analysis.

Methods

Single-cell RNA sequencing (scRNA-seq) was used to profile individual cells of CSF and blood from 2 subjects with relapsing-remitting MS (RRMS) and one with anti-MOG disorder. Publicly available scRNA-seq data from the blood and CSF of 2 subjects with HIV were also analyzed. An informatics pipeline was used to cluster cell populations by transcriptomic profiling. Based on gene expression by CSF myeloid cells, a flow cytometry panel was devised to examine myeloid cell populations from the CSF of 11 additional subjects, including individuals with RRMS, anti-MOG disorder, and control subjects without inflammatory demyelination.

Results

Common myeloid populations were identified within the CSF of subjects with RRMS, anti-MOG disorder, and HIV. These included monocytes, conventional and plasmacytoid dendritic cells, and cells with a transcriptomic signature matching microglia. Microglia could be discriminated from other myeloid cell populations in the CSF by flow cytometry.

Conclusions

High-resolution single-cell gene expression analysis clearly distinguishes distinct myeloid cell types present within the CSF of subjects with neuroinflammation. A population of microglia exists within the human CSF, which is detectable by surface protein expression. The function of these cells during immunity and disease requires further investigation.




cr

Dimethyl fumarate suppresses granulocyte macrophage colony-stimulating factor-producing Th1 cells in CNS neuroinflammation

Objective

To study the immunomodulatory effect of dimethyl fumarate (DF) on granulocyte macrophage colony-stimulating factor (GM-CSF) production in CD4+ T cells in experimental autoimmune encephalomyelitis (EAE) and human peripheral blood mononuclear cells (PBMCs).

Methods

We collected splenocytes and CD4+ T cells from C57BL/6 wild-type and interferon (IFN)-–deficient mice. For human PBMCs, venous blood was collected from healthy donors, and PBMCs were collected using the Percoll gradient method. Cells were cultured with anti-CD3/28 in the presence/absence of DF for 3 to 5 days. Cells were stained and analyzed by flow cytometry. Cytokines were measured by ELISA in cell supernatants. For in vivo experiments, EAE was induced by myelin oligodendrocyte glycoprotein35–55 and mice were treated with oral DF or vehicle daily.

Results

DF acts directly on CD4+ T cells and suppresses GM-CSF–producing Th1 not Th17 or single GM-CSF+ T cells in EAE. In addition, GM-CSF suppression depends on the IFN- pathway. We also show that DF specifically suppresses Th1 and GM-CSF–producing Th1 cells in PBMCs from healthy donors.

Conclusions

We suggest that DF exclusively suppresses GM-CSF–producing Th1 cells in both animal and human CD4+ T cells through an IFN-–dependent pathway. These findings indicate that DF has a better therapeutic effect on patients with Th1-dominant immunophenotype. However, future longitudinal study to validate this finding in MS is needed.




cr

Ocrelizumab initiation in patients with MS: A multicenter observational study

Objective

To provide first real-world experience on patients with MS treated with the B cell–depleting antibody ocrelizumab.

Methods

We retrospectively collected data of patients who had received at least 1 treatment cycle (2 infusions) of ocrelizumab at 3 large neurology centers. Patients' characteristics including premedication, clinical disease course, and documented side effects were analyzed.

Results

We could identify 210 patients (125 women, mean age ± SD, 42.1 ± 11.4 years) who had received ocrelizumab with a mean disease duration of 7.3 years and a median Expanded Disability Status Scale score of 3.75 (interquartile range 2.5–5.5; range 0–8). Twenty-six percent of these patients had a primary progressive MS (PPMS), whereas 74% had a relapsing-remitting (RRMS) or active secondary progressive (aSPMS) disease course. Twenty-four percent of all patients were treatment naive, whereas 76% had received immune therapies before. After ocrelizumab initiation (median follow-up was 200 days, range 30–1,674 days), 13% of patients with RRMS/aSPMS experienced a relapse (accounting for an annualized relapse rate of 0.17, 95% CI 0.10–0.24), and 5% of all patients with MS experienced a 12-week confirmed disability progression. Treatment was generally well tolerated, albeit only short-term side effects were recorded, including direct infusion-related reactions and mild infections.

Conclusions

We provide class IV evidence that treatment with ocrelizumab can stabilize naive and pretreated patients, indicating that ocrelizumab is an option following potent MS drugs such as natalizumab and fingolimod. Further studies are warranted to confirm these findings and to reveal safety concerns in the longer-term follow-up.

Classification of evidence

This study provides Class IV evidence that for patients with MS, ocrelizumab can stabilize both treatment-naive and previously treated patients.




cr

Intranasal midazolam for treating acute respiratory crises in a woman with stiff person syndrome

Stiff person syndrome (SPS) is a rare neurologic disorder characterized by progressively worsening rigidity and spasms of the axial and limb muscles. Dyspnea has been recently recognized as a common symptom in SPS,1 and life-threatening respiratory crises have been occasionally reported and suspected to be responsible for sudden death in these patients.2,3 The pathophysiologic mechanisms of these respiratory manifestations remain unclear. Some authors have hypothesized that rigidity and/or spasm of the muscles of the trunk could prevent normal rib cage movements and excursion of the diaphragm.1




cr

The shear stiffness criterion for rock joints considering rock wear behaviour

Rock is a material that is affected by wear, and the curvature of the asperities on a rock joint surface increases with the degree of wear after shearing. Based on the Greenwood and Williamson (GW) model, a new model considering the change of asperity curvature is proposed to explain the wear behaviour of rock joints. First, the shear stiffness formula for a joint surface is derived when the asperity curvature is constant, which shows that the shear stiffness increases with increase of asperity curvature. According to the Mohr–Coulomb criterion, the yield position of a single asperity under normal force and tangential friction force is discussed. Then, the critical normal force for a single asperity at a specific friction coefficient is obtained, which shows that the normal force corresponds to the curvature radius of the asperity. A rough surface model with multi-level curvature radius is proposed. With increase of normal force, the higher-order asperities gradually fail and the curvature radius become larger. A specific pressure value excites a specific radius of curvature, and the larger the pressure, the larger the radius of curvature. The relation between the normal force and the curvature radius is proposed and a shear stiffness formula considering the change of curvature radius of the asperity is derived. The proposed model is verified on the basis of the published experimental results. The calculation results of the proposed model can reflect the test results well: for a given joint surface, with increase in normal force the joint surface gradually becomes smooth; for different joint surfaces, with increase in roughness, the joint surface is more easily smoothed.




cr

Stability analyses of large waste dumps via 3D numerical modelling considering cracks and earthquake loading: a case study of Zhujiabaobao waste dump

This paper uses a 3D model for stability assessment of Zhujiabaobao waste dump with ground cracks. The study data were gathered via reconnaissance, geomorphological analysis and laboratory experiment. A 3D finite extended element method model that can consider cracks was then used to calculate the factor of safety (FOS) of the waste dump via the strength reduction technique. The simulation shows the dump to have an FOS of 1.22 and both the position and depth of penetration of cracks in the waste dump have a crucial impact on the stability of the slope. Because the study area is located in a seismically active area, simulation and analysis of the dynamic response of the waste dump under different magnitudes of seismic waves (peak acceleration is 0.05, 0.15, 0.25 and 0.45g) were performed via an explicit dynamic model. The simulation shows that high steps in the slope are particularly responsive to earthquakes. The approach used here for analysing stability under static and dynamic loads is useful for hazard prevention and mitigation.




cr

Discriminating aggregate sources with in situ mineral chemistry: an Irish example

The need to characterize and distinguish geographically adjacent aggregate quarry sources prompted the SEM-EDS analysis of pyrite (FeS2) within fill material taken from eight different quarry sources. This experiment was undertaken to investigate the possibility of geochemically separating these quarry sources based on the major element concentration of their pyrite. The results show that median values for Fe and S vary by up to 7.6 and 8.55 wt% respectively. By implementing statistical methods, including k-means clustering and principal component analysis, it is possible to geochemically discriminate three of the eight sources.




cr

Multicenter Evaluation of a PCR-Based Digital Microfluidics and Electrochemical Detection System for the Rapid Identification of 15 Fungal Pathogens Directly from Positive Blood Cultures [Mycology]

Routine identification of fungal pathogens from positive blood cultures by culture-based methods can be time-consuming, delaying treatment with appropriate antifungal agents. The GenMark Dx ePlex investigational use only blood culture identification fungal pathogen panel (BCID-FP) rapidly detects 15 fungal targets simultaneously in blood culture samples positive for fungi by Gram staining. We aimed to determine the performance of the BCID-FP in a multicenter clinical study. Blood culture samples collected at 10 United States sites and tested with BCID-FP at 4 sites were compared to the standard-of-care microbiological and biochemical techniques, fluorescence in situ hybridization using peptide nucleic acid probes (PNA-FISH) and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Discrepant results were analyzed by bi-directional PCR/sequencing of residual blood culture samples. A total of 866 clinical samples, 120 retrospectively and 21 prospectively collected, along with 725 contrived samples were evaluated. Sensitivity and specificity of detection of Candida species (C. albicans, C. auris, C. dubliniensis, C. famata, C. glabrata, C. guilliermondii, C. kefyr, C. krusei, C. lusitaniae, C. parapsilosis, and C. tropicalis) ranged from 97.1 to 100% and 99.8 to 100%, respectively. For the other organism targets, sensitivity and specificity were as follows: 100% each for Cryptococcus neoformans and C. gattii, 98.6% and 100% for Fusarium spp., and 96.2% and 99.9% for Rhodotorula spp., respectively. In 4 of the 141 clinical samples, the BCID-FP panel correctly identified an additional Candida species, undetected by standard-of-care methods. The BCID-FP panel offers a faster turnaround time for identification of fungal pathogens in positive blood cultures that may allow for earlier antifungal interventions and includes C. auris, a highly multidrug-resistant fungus.




cr

Differentiation of Community-Associated and Livestock-Associated Methicillin-Resistant Staphylococcus aureus Isolates and Identification of spa Types by Use of PCR and High-Resolution Melt Curve Analysis [Clinical Veterinary Microbiology]

Infections due to methicillin-resistant Staphylococcus aureus (MRSA) are present worldwide and represent a major public health concern. The capability of PCR followed by high-resolution melt (HRM) curve analysis for the detection of community-associated and livestock-associated MRSA strains and the identification of staphylococcal protein A (spa) locus was evaluated in 74 MRSA samples which were isolated from the environment, humans, and pigs on a single piggery. PCR-HRM curve analysis identified four spa types among MRSA samples and differentiated MRSA strains accordingly. A nonsubjective differentiation model was developed according to genetic confidence percentage values produced by tested samples, which did not require visual interpretation of HRM curve results. The test was carried out at different settings, and result data were reanalyzed and confirmed with DNA sequencing. PCR-HRM curve analysis proved to be a robust and reliable test for spa typing and can be used as a tool in epidemiological studies.




cr

High-Content Screening, a Reliable System for Coxiella burnetii Isolation from Clinical Samples [Bacteriology]

Q fever, caused by Coxiella burnetii, is a worldwide zoonotic disease that may cause severe forms in humans and requires a specific and prolonged antibiotic treatment. Although current serological and molecular detection tools allow a reliable diagnosis of the disease, culture of C. burnetii strains is mandatory to assess their susceptibility to antibiotics and sequence their genome in order to optimize patient management and epidemiological studies. However, cultivating this fastidious microorganism is difficult and restricted to reference centers, as it requires biosafety level 3 laboratories and relies on cell culture performed by experienced technicians. In addition, the culture yield is low, which results in a small number of isolates being available. In this work, we developed a novel high-content screening (HCS) isolation strategy based on optimized high-throughput cell culture and automated microscopic detection of infected cells with specifically designed algorithms targeting cytopathic effects. This method was more efficient than the shell vial assay, at the level of time dependency, when applied to both frozen specimens (7 isolates recovered by HCS only, sensitivity 91% versus 78% for shell vial) and fresh samples (1 additional isolate using HCS, sensitivity 7% versus 5% for shell vial), for which most strains were recovered more rapidly with the new technique. In addition, detecting positive cultures by an automated microscope reduced the need for expertise and saved 24% of technician working time. Application of HCS to antibiotic susceptibility testing of 12 strains demonstrated that it was as efficient as the standard procedure that combines shell vial culture and quantitative PCR.




cr

Evaluation of a Novel Multiplex PCR Panel Compared to Quantitative Bacterial Culture for Diagnosis of Lower Respiratory Tract Infections [Bacteriology]

Quantitative bacterial culture of bronchoalveolar lavage fluids (BALF) is labor-intensive, and the delay involved in performing culture, definitive identification, and susceptibility testing often results in prolonged use of broad-spectrum antibiotics. The Unyvero lower respiratory tract (LRT) panel (Curetis, Holzgerlingen, Germany) allows the multiplexed rapid detection and identification of 20 potential etiologic agents of pneumonia within 5 h of collection. In addition, the assay includes detection of gene sequences that confer antimicrobial resistance. We retrospectively compared the performance of the molecular panel to routine quantitative bacterial culture methods on remnant BALF. Upon testing 175 BALF, we were able to analyze positive agreement of 181 targets from 129 samples, and 46 samples were negative. The positive percent agreement (PPA) among the microbial targets was 96.5%, and the negative percent agreement (NPA) was 99.6%. The targets with a PPA of <100% were Staphylococcus aureus (34/37 [91.9%]), Streptococcus pneumoniae (10/11 [90.9%]), and Enterobacter cloacae complex (2/4 [50%]). For the analyzable resistance targets, concordance with phenotypic susceptibility testing was 79% (14/18). This study found the Unyvero LRT panel largely concordant with culture results; however, no outcome or clinical impact studies were performed.




cr

Pooling Pharyngeal, Anorectal, and Urogenital Samples for Screening Asymptomatic Men Who Have Sex with Men for Chlamydia trachomatis and Neisseria gonorrhoeae [Bacteriology]

Screening for Chlamydia trachomatis and Neisseria gonorrhoeae at the pharyngeal, urogenital, and anorectal sites is recommended for men who have sex with men (MSM). Combining the three individual-site samples into a single pooled sample could result in significant cost savings, provided there is no significant sensitivity reduction. The aim of this study was to examine the sensitivity of pooled samples for detecting chlamydia and gonorrhea in asymptomatic MSM using a nucleic acid amplification test. Asymptomatic MSM who tested positive for chlamydia or gonorrhoea were invited to participate. Paired samples were obtained from participants prior to administration of treatment. To form the pooled sample, the anorectal swab was agitated in the urine specimen transport tube and then discarded. The pharyngeal swab and 2 ml of urine sample were then added to the tube. The difference in sensitivity between testing of pooled samples and individual-site testing was calculated against an expanded gold standard, where an individual is considered positive if either pooled-sample or individual-site testing returns a positive result. All samples were tested using the Aptima Combo 2 assay. A total of 162 MSM were enrolled in the study. Sensitivities of pooled-sample testing were 86% (94/109; 95% confidence interval [CI], 79 to 92%]) for chlamydia and 91% (73/80; 95% CI, 83 to 96%) for gonorrhea. The sensitivity reduction was significant for chlamydia (P = 0.02) but not for gonorrhea (P = 0.34). Pooling caused 22 infections (15 chlamydia and 7 gonorrhoea) to be missed, and the majority were single-site infections (19/22). Pooling urogenital and extragenital samples from asymptomatic MSM reduced the sensitivity of detection by approximately 10% for chlamydia but not for gonorrhea.