of

Characterization of essential domains in HSD17B13 for cellular localization and enzymatic activity [Research Articles]

Human genetic studies recently identified an association of SNPs in the 17-β hydroxysteroid dehydrogenase 13 (HSD17B13) gene with alcoholic and nonalcoholic fatty liver disease development. Mutant HSD17B13 variants devoid of enzymatic function have been demonstrated to be protective from cirrhosis and liver cancer, supporting the development of HSD17B13 as a promising therapeutic target. Previous studies have demonstrated that HSD17B13 is a lipid droplet (LD)-associated protein. However, the critical domains that drive LD targeting or determine the enzymatic activity have yet to be defined. Here we used mutagenesis to generate multiple truncated and point-mutated proteins and were able to demonstrate in vitro that the N-terminal hydrophobic domain, PAT-like domain, and a putative α-helix/β-sheet/α-helix domain in HSD17B13 are all critical for LD targeting. Similarly, we characterized the predicted catalytic, substrate-binding, and homodimer interaction sites and found them to be essential for the enzymatic activity of HSD17B13, in addition to our previous identification of amino acid P260 and cofactor binding site. In conclusion, we identified critical domains and amino acid sites that are essential for the LD localization and protein function of HSD17B13, which may facilitate understanding of its function and targeting of this protein to treat chronic liver diseases.




of

Myc linked to dysregulation of cholesterol transport and storage in nonsmall cell lung cancer [Research Articles]

Nonsmall cell lung cancer (NSCLC) is a leading cause of cancer-related deaths. While mutations in Kras and overexpression of Myc are commonly found in patients, the role of altered lipid metabolism in lung cancer and its interplay with oncogenic Myc is poorly understood. Here we use a transgenic mouse model of Kras-driven lung adenocarcinoma with reversible activation of Myc combined with surface analysis lipid profiling of lung tumors and transcriptomics to study the effect of Myc activity on cholesterol homeostasis. Our findings reveal that the activation of Myc leads to the accumulation of cholesteryl esters (CEs) stored in lipid droplets. Subsequent Myc deactivation leads to further increases in CEs, in contrast to tumors in which Myc was never activated. Gene expression analysis linked cholesterol transport and storage pathways to Myc activity. Our results suggest that increased Myc activity is associated with increased cholesterol influx, reduced efflux, and accumulation of CE-rich lipid droplets in lung tumors. Targeting cholesterol homeostasis is proposed as a promising avenue to explore for novel treatments of lung cancer, with diagnostic and stratification potential in human NSCLC.




of

Progression of chronic kidney disease in familial LCAT deficiency: a follow-up of the Italian cohort [Patient-Oriented and Epidemiological Research]

Familial LCAT deficiency (FLD) is a rare genetic disorder of HDL metabolism, caused by loss-of-function mutations in the LCAT gene and characterized by a variety of symptoms including corneal opacities and kidney failure. Renal disease represents the leading cause of morbidity and mortality in FLD cases. However, the prognosis is not known and the rate of deterioration of kidney function is variable and unpredictable from patient to patient. In this article, we present data from a follow-up of the large Italian cohort of FLD patients, who have been followed for an average of 12 years. We show that renal failure occurs at the median age of 46 years, with a median time to a second recurrence of 10 years. Additionally, we identify high plasma unesterified cholesterol level as a predicting factor for rapid deterioration of kidney function. In conclusion, this study highlights the severe consequences of FLD, underlines the need of correct early diagnosis and referral of patients to specialized centers, and highlights the urgency for effective treatments to prevent or slow renal disease in patients with LCAT deficiency.




of

Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis [Research Articles]

Of the known regulators of atherosclerosis, miRNAs have been demonstrated to play critical roles in lipoprotein homeostasis and plaque formation. Here, we generated a novel animal model of atherosclerosis by knocking in LDLRW483X in C57BL/6 mice, as the W483X mutation in LDLR is considered the most common newly identified pathogenic mutation in Chinese familial hypercholesterolemia (FH) individuals. Using the new in vivo mouse model combined with a well-established atherosclerotic in vitro human cell model, we identified a novel atherosclerosis-related miRNA, miR-23a-3p, by microarray analysis of mouse aortic tissue specimens and human aortic endothelial cells (HAECs). miR-23a-3p was consistently downregulated in both models, which was confirmed by qPCR. Bioinformatics analysis and further validation experiments revealed that the TNFα-induced protein 3 (TNFAIP3) gene was the key target of miR-23a-3p. The miR-23a-3p-related functional pathways were then analyzed in HAECs. Collectively, the present results suggest that miR-23a-3p regulates inflammatory and apoptotic pathways in atherogenesis by targeting TNFAIP3 through the NF-B and p38/MAPK signaling pathways.




of

PLRP2 selectively localizes synaptic membrane proteins via acyl-chain remodeling of phospholipids [Research Articles]

The plasma membrane of neurons consists of distinct domains, each of which carries specialized functions and a characteristic set of membrane proteins. While this compartmentalized membrane organization is essential for neuronal functions, it remains controversial how neurons establish these domains on the laterally fluid membrane. Here, using immunostaining, lipid-MS analysis and gene ablation with the CRISPR/Cas9 system, we report that the pancreatic lipase-related protein 2 (PLRP2), a phospholipase A1 (PLA1), is a key organizer of membrane protein localization at the neurite tips of PC12 cells. PLRP2 produced local distribution of 1-oleoyl-2-palmitoyl-PC at these sites through acyl-chain remodeling of membrane phospholipids. The resulting lipid domain assembled the syntaxin 4 (Stx4) protein within itself by selectively interacting with the transmembrane domain of Stx4. The localized Stx4, in turn, facilitated the fusion of transport vesicles that contained the dopamine transporter with the domain of the plasma membrane, which led to the localized distribution of the transporter to that domain. These results revealed the pivotal roles of PLA1, specifically PLRP2, in the formation of functional domains in the plasma membrane of neurons. In addition, our results suggest a mode of membrane organization in which the local acyl-chain remodeling of membrane phospholipids controls the selective localization of membrane proteins by regulating both lipid-protein interactions and the fusion of transport vesicles to the lipid domain.




of

Bioavailability and spatial distribution of fatty acids in the rat retina after dietary omega-3 supplementation [Research Articles]

Spatial changes of FAs in the retina in response to different dietary n-3 formulations have never been explored, although a diet rich in EPA and DHA is recommended to protect the retina against the effects of aging. In this study, Wistar rats were fed for 8 weeks with balanced diet including either EPA-containing phospholipids (PLs), EPA-containing TGs, DHA-containing PLs, or DHA-containing TGs. Qualitative changes in FA composition of plasma, erythrocytes, and retina were evaluated by gas chromatography-flame ionization detector. Following the different dietary intakes, changes to the quantity and spatial organization of PC and PE species in retina were determined by LC coupled to MS/MS and MALDI coupled to MS imaging. The omega-3 content in the lipids of plasma and erythrocytes suggests that PLs as well as TGs are good omega-3 carriers for retina. However, a significant increase in DHA content in retina was observed, especially molecular species as di-DHA-containing PC and PE, as well as an increase in very long chain PUFAs (more than 28 carbons) following PL-EPA and TG-DHA diets only. All supplemented diets triggered spatial organization changes of DHA in the photoreceptor layer around the optic nerve. Taken together, these findings suggest that dietary omega-3 supplementation can modify the content of FAs in the rat retina.




of

Nuclear translocation ability of Lipin differentially affects gene expression and survival in fed and fasting Drosophila [Research Articles]

Lipins are eukaryotic proteins with functions in lipid synthesis and the homeostatic control of energy balance. They execute these functions by acting as phosphatidate phosphatase enzymes in the cytoplasm and by changing gene expression after translocation into the cell nucleus, in particular under fasting conditions. Here, we asked whether nuclear translocation and the enzymatic activity of Drosophila Lipin serve essential functions and how gene expression changes, under both fed and fasting conditions, when nuclear translocation is impaired. To address these questions, we created a Lipin null mutant, a mutant expressing Lipin lacking a nuclear localization signal (LipinNLS), and a mutant expressing enzymatically dead Lipin. Our data support the conclusion that the enzymatic but not nuclear gene regulatory activity of Lipin is essential for survival. Notably, adult LipinNLS flies were not only viable but also exhibited improved life expectancy. In contrast, they were highly susceptible to starvation. Both the improved life expectancy in the fed state and the decreased survival in the fasting state correlated with changes in metabolic gene expression. Moreover, increased life expectancy of fed flies was associated with a decreased metabolic rate. Interestingly, in addition to metabolic genes, genes involved in feeding behavior and the immune response were misregulated in LipinNLS flies. Altogether, our data suggest that the nuclear activity of Lipin influences the genomic response to nutrient availability with effects on life expectancy and starvation resistance. Thus, nutritional or therapeutic approaches that aim at lowering nuclear translocation of lipins in humans may be worth exploring.




of

Identification of unusual phospholipids from bovine heart mitochondria by HPLC-MS/MS [Research Articles]

Phospholipids, including ether phospholipids, are composed of numerous isomeric and isobaric species that have the same backbone and acyl chains. This structural resemblance results in similar fragmentation patterns by collision-induced dissociation of phospholipids regardless of class, yielding complicated MS/MS spectra when isobaric species are analyzed together. Furthermore, the presence of isobaric species can lead to misassignment of species when made solely based on their molecular weights. In this study, we used normal-phase HPLC for ESI-MS/MS analysis of phospholipids from bovine heart mitochondria. Class separation by HPLC eliminates chances for misidentification of isobaric species from different classes of phospholipids. Chromatography yields simple MS/MS spectra without interference from isobaric species, allowing clear identification of peaks corresponding to fragmented ions containing monoacylglycerol backbone derived from losing one acyl chain. Using these fragmented ions, we characterized individual and isomeric species in each class of mitochondrial phospholipids, including unusual species, such as PS, containing an ether linkage and species containing odd-numbered acyl chains in cardiolipin, PS, PI, and PG. We also characterized monolysocardiolipin and dilysocardiolipin, the least abundant but nevertheless important mitochondrial phospholipids. The results clearly show the power of HPLC-MS/MS for identification and characterization of phospholipids, including minor species.




of

Myeloid deletion and therapeutic activation of AMPK do not alter atherosclerosis in male or female mice [Research Articles]

The dysregulation of myeloid-derived cell metabolism can drive atherosclerosis. AMP-activated protein kinase (AMPK) controls various aspects of macrophage dynamics and lipid homeostasis, which are important during atherogenesis. Using LysM-Cre to drive the deletion of both the α1 and α2 catalytic subunits (MacKO), we aimed to clarify the role of myeloid-specific AMPK signaling in male and female mice made acutely atherosclerotic by injection of AAV vector encoding a gain-of-function mutant PCSK9 (PCSK9-AAV) and WD feeding. After 6 weeks of WD feeding, mice received a daily injection of either the AMPK activator A-769662 or a vehicle control for an additional 6 weeks. Following this (12 weeks total), we assessed myeloid cell populations and differences between genotype or sex were not observed. Similarly, aortic sinus plaque size, lipid staining, and necrotic area did not differ in male and female MacKO mice compared with their littermate floxed controls. Moreover, therapeutic intervention with A-769662 showed no treatment effect. There were also no observable differences in the amount of circulating total cholesterol or triglyceride, and only minor differences in the levels of inflammatory cytokines between groups. Finally, CD68+ area and markers of autophagy showed no effect of either lacking AMPK signaling or AMPK activation. Our data suggest that while defined roles for each catalytic AMPK subunit have been identified, complete deletion of myeloid AMPK signaling does not significantly impact atherosclerosis. Additionally, these findings suggest that intervention with the first-generation AMPK activator A-769662 is not able to stem the progression of atherosclerosis.




of

High resolution structure of human apolipoprotein (a) kringle IV type 2: beyond the lysine binding site [Research Articles]

Lipoprotein (a) [Lp(a)] is characterized by an LDL-like composition in terms of lipids and apoB100, and by one copy of a unique glycoprotein, apo(a). The apo(a) structure is mainly based on the repetition of tandem kringle domains with high homology to plasminogen kringles 4 and 5. Among them, kringle IV type 2 (KIV-2) is present in a highly variable number of genetically encoded repeats, whose length is inversely related to Lp(a) plasma concentration and cardiovascular risk. Despite it being the major component of apo(a), the actual function of KIV-2 is still unclear. Here, we describe the first high-resolution crystallographic structure of this domain. It shows a general fold very similar to other KIV domains with high and intermediate affinity for the lysine analog, -aminocaproic acid. Interestingly, KIV-2 presents a lysine binding site (LBS) with a unique shape and charge distribution. KIV-2 affinity for predicted small molecule binders was found to be negligible in surface plasmon resonance experiments; and with the LBS being nonfunctional, we propose to rename it "pseudo-LBS". Further investigation of the protein by computational small-molecule docking allowed us to identify a possible heparin-binding site away from the LBS, which was confirmed by specific reverse charge mutations abolishing heparin binding. This study opens new possibilities to define the pathogenesis of Lp(a)-related diseases and to facilitate the design of specific therapeutic drugs.




of

Depletion of essential isoprenoids and ER stress induction following acute liver-specific deletion of HMG-CoA reductase [Research Articles]

HMG-CoA reductase (Hmgcr) is the rate-limiting enzyme in the mevalonate pathway and is inhibited by statins. In addition to cholesterol, Hmgcr activity is also required for synthesizing nonsterol isoprenoids, such as dolichol, ubiquinone, and farnesylated and geranylgeranylated proteins. Here, we investigated the effects of Hmgcr inhibition on nonsterol isoprenoids in the liver. We have generated new genetic models to acutely delete genes in the mevalonate pathway in the liver using AAV-mediated delivery of Cre-recombinase (AAV-Cre) or CRISPR/Cas9 (AAV-CRISPR). The genetic deletion of Hmgcr by AAV-Cre resulted in extensive hepatocyte apoptosis and compensatory liver regeneration. At the biochemical level, we observed decreased levels of sterols and depletion of the nonsterol isoprenoids, dolichol and ubiquinone. At the cellular level, Hmgcr-null hepatocytes showed ER stress and impaired N-glycosylation. We further hypothesized that the depletion of dolichol, essential for N-glycosylation, could be responsible for ER stress. Using AAV-CRISPR, we somatically disrupted dehydrodolichyl diphosphate synthase subunit (Dhdds), encoding a branch point enzyme required for dolichol biosynthesis. Dhdds-null livers showed ER stress and impaired N-glycosylation, along with apoptosis and regeneration. Finally, the combined deletion of Hmgcr and Dhdds synergistically exacerbated hepatocyte ER stress. Our data show a critical role for mevalonate-derived dolichol in the liver and suggest that dolichol depletion is at least partially responsible for ER stress and apoptosis upon potent Hmgcr inhibition.




of

A novel phosphoglycerol serine-glycine lipodipeptide of Porphyromonas gingivalis is a TLR2 ligand [Research Articles]

Porphyromonas gingivalis is a Gram-negative anaerobic periodontal microorganism strongly associated with tissue-destructive processes in human periodontitis. Following oral infection with P. gingivalis, the periodontal bone loss in mice is reported to require the engagement of Toll-like receptor 2 (TLR2). Serine-glycine lipodipeptide or glycine aminolipid classes of P. gingivalis engage human and mouse TLR2, but a novel lipid class reported here is considerably more potent in engaging TLR2 and the heterodimer receptor TLR2/TLR6. The novel lipid class, termed Lipid 1256, consists of a diacylated phosphoglycerol moiety linked to a serine-glycine lipodipeptide previously termed Lipid 654. Lipid 1256 is approximately 50-fold more potent in engaging TLR2 than the previously reported serine-glycine lipid classes. Lipid 1256 also stimulates cytokine secretory responses from peripheral blood monocytes and is recovered in selected oral and intestinal Bacteroidetes organisms. Therefore, these findings suggest that Lipid 1256 may be a microbial TLR2 ligand relevant to chronic periodontitis in humans.




of

The anti-tubercular activity of simvastatin is mediated by cholesterol-driven autophagy via the AMPK-mTORC1-TFEB axis [Research Articles]

The rise of drug-resistant tuberculosis poses a major risk to public health. Statins, which inhibit both cholesterol biosynthesis and protein prenylation branches of the mevalonate pathway, increase anti-tubercular antibiotic efficacy in animal models. However, the underlying molecular mechanisms are unknown. In this study, we used an in vitro macrophage infection model to investigate simvastatin’s anti-tubercular activity by systematically inhibiting each branch of the mevalonate pathway and evaluating the effects of the branch-specific inhibitors on mycobacterial growth. The anti-tubercular activity of simvastatin used at clinically relevant doses specifically targeted the cholesterol biosynthetic branch rather than the prenylation branches of the mevalonate pathway. Using Western blot analysis and AMP/ATP measurements, we found that simvastatin treatment blocked activation of mechanistic target of rapamycin complex 1 (mTORC1), activated AMP-activated protein kinase (AMPK) through increased intracellular AMP:ATP ratios, and favored nuclear translocation of transcription factor EB (TFEB). These mechanisms all induce autophagy, which is anti-mycobacterial. The biological effects of simvastatin on the AMPK-mTORC1-TFEB-autophagy axis were reversed by adding exogenous cholesterol to the cells. Our data demonstrate that the anti-tubercular activity of simvastatin requires inhibiting cholesterol biosynthesis, reveal novel links between cholesterol homeostasis, the AMPK-mTORC1-TFEB axis, and Mycobacterium tuberculosis infection control, and uncover new anti-tubercular therapy targets.




of

Stimulation of ABCB4/MDR3 ATPase activity requires an intact phosphatidylcholine lipid [Research Articles]

ABCB4/MDR3 is located in the canalicular membrane of hepatocytes and translocates PC-lipids from the cytoplasmic to the extracellular leaflet. ABCB4 is an ATP-dependent transporter that reduces the harsh detergent effect of the bile salts by counteracting self-digestion. To do so, ABCB4 provides PC lipids for extraction into bile. PC lipids account for 40% of the entire pool of lipids in the canalicular membrane with an unknown distribution over both leaflets. Extracted PC lipids end up in so-called mixed micelles. Mixed micelles are composed of phospholipids, bile salts, and cholesterol. Ninety to ninety-five percent of the phospholipids are members of the PC family, but only a subset of mainly 16.0-18:1 PC and 16:0-18:2 PC variants are present. To elucidate whether ABCB4 is the key discriminator in this enrichment of specific PC lipids, we used in vitro studies to identify crucial determinants in substrate selection. We demonstrate that PC-lipid moieties alone are insufficient for stimulating ABCB4 ATPase activity, and that at least two acyl chains and the backbone itself are required for a productive interaction. The nature of the fatty acids, like length or saturation has a quantitative impact on the ATPase activity. Our data demonstrate a two-step enrichment and protective function of ABCB4 to mitigate the harsh detergent effect of the bile salts, because ABCB4 can translocate more than just the PC-lipid variants found in bile.




of

Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice [Research Articles]

Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp–/–) mice and age-weight matched wild-type control mice. Young (10–12-week-old) L-Mttp–/– mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp–/– mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKC activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp–/– mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKC activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp–/– mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKC activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp–/– mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp–/– mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp–/– mice.




of

A review of phosphatidate phosphatase assays [Reviews]

Phosphatidate phosphatase (PAP) catalyzes the penultimate step in the synthesis of triacylglycerol and regulates the synthesis of membrane phospholipids. There is much interest in this enzyme because it controls the cellular levels of its substrate, phosphatidate (PA), and product, DAG; defects in the metabolism of these lipid intermediates are the basis for lipid-based diseases such as obesity, lipodystrophy, and inflammation. The measurement of PAP activity is required for studies aimed at understanding its mechanisms of action, how it is regulated, and for screening its activators and/or inhibitors. Enzyme activity is determined through the use of radioactive and nonradioactive assays that measure the product, DAG, or Pi. However, sensitivity and ease of use are variable across these methods. This review summarizes approaches to synthesize radioactive PA, to analyze radioactive and nonradioactive products, DAG and Pi, and discusses the advantages and disadvantages of each PAP assay.




of

Spatial profiling of gangliosides in mouse brain by mass spectrometry imaging [Images In Lipid Research]




of

Cutting out the fat: Site-specific deacylation of an ion channel [Membrane Biology]

S-Acylation, a reversible post-translational lipid modification of proteins, controls the properties and function of various proteins, including ion channels. Large conductance Ca2+-activated potassium (BK) channels are S-acylated at two sites that impart distinct functional effects. Whereas the enzymes that attach lipid groups are known, the enzymes mediating lipid removal (i.e. deacylation) are largely unknown. Here, McClafferty et al. identify two enzymes, ABHD17a and ABHD17c, that excise BK channel lipid groups with remarkable precision. These findings lend insights into mechanisms that orchestrate the (de)acylation that fine-tunes ion channel function in physiology and disease.




of

Post-translational regulation of the maȷor drug transporters in the families of organic anion transporters and organic anion-transporting polypeptides [Protein Structure and Folding]

The organic anion transporters (OATs) and organic anion–transporting polypeptides (OATPs) belong to the solute carrier (SLC) transporter superfamily and play important roles in handling various endogenous and exogenous compounds of anionic charge. The OATs and OATPs are often implicated in drug therapy by impacting the pharmacokinetics of clinically important drugs and, thereby, drug exposure in the target organs or cells. Various mechanisms (e.g. genetic, environmental, and disease-related factors, drug-drug interactions, and food-drug interactions) can lead to variations in the expression and activity of the anion drug-transporting proteins of OATs and OATPs, possibly impacting the therapeutic outcomes. Previous investigations mainly focused on the regulation at the transcriptional level and drug-drug interactions as competing substrates or inhibitors. Recently, evidence has accumulated that cellular trafficking, post-translational modification, and degradation mechanisms serve as another important layer for the mechanisms underlying the variations in the OATs and OATPs. This review will provide a brief overview of the major OATs and OATPs implicated in drug therapy and summarize recent progress in our understanding of the post-translational modifications, in particular ubiquitination and degradation pathways of the individual OATs and OATPs implicated in drug therapy.




of

Leptin modulates pancreatic {beta}-cell membrane potential through Src kinase-mediated phosphorylation of NMDA receptors [Membrane Biology]

The adipocyte-derived hormone leptin increases trafficking of KATP and Kv2.1 channels to the pancreatic β-cell surface, resulting in membrane hyperpolarization and suppression of insulin secretion. We have previously shown that this effect of leptin is mediated by the NMDA subtype of glutamate receptors (NMDARs). It does so by potentiating NMDAR activity, thus enhancing Ca2+ influx and the ensuing downstream signaling events that drive channel trafficking to the cell surface. However, the molecular mechanism by which leptin potentiates NMDARs in β-cells remains unknown. Here, we report that leptin augments NMDAR function via Src kinase–mediated phosphorylation of the GluN2A subunit. Leptin-induced membrane hyperpolarization diminished upon pharmacological inhibition of GluN2A but not GluN2B, indicating involvement of GluN2A-containing NMDARs. GluN2A harbors tyrosine residues that, when phosphorylated by Src family kinases, potentiate NMDAR activity. We found that leptin increases phosphorylation of Tyr-418 in Src, an indicator of kinase activation. Pharmacological inhibition of Src or overexpression of a kinase-dead Src mutant prevented the effect of leptin, whereas a Src kinase activator peptide mimicked it. Using mutant GluN2A overexpression, we show that Tyr-1292 and Tyr-1387 but not Tyr-1325 are responsible for the effect of leptin. Importantly, β-cells from db/db mice, a type 2 diabetes mouse model lacking functional leptin receptors, or from obese diabetic human donors failed to respond to leptin but hyperpolarized in response to NMDA. Our study reveals a signaling pathway wherein leptin modulates NMDARs via Src to regulate β-cell excitability and suggests NMDARs as a potential target to overcome leptin resistance.




of

Functional impact of a congenital stationary night blindness type 2 mutation depends on subunit composition of Cav1.4 Ca2+ channels [Neurobiology]

Voltage-gated Cav1 and Cav2 Ca2+ channels are comprised of a pore-forming α1 subunit (Cav1.1-1.4, Cav2.1-2.3) and auxiliary β (β1-4) and α2δ (α2δ−1−4) subunits. The properties of these channels vary with distinct combinations of Cav subunits and alternative splicing of the encoding transcripts. Therefore, the impact of disease-causing mutations affecting these channels may depend on the identities of Cav subunits and splice variants. Here, we analyzed the effects of a congenital stationary night blindness type 2 (CSNB2)-causing mutation, I745T (IT), in Cav1.4 channels typical of those in human retina: Cav1.4 splice variants with or without exon 47 (Cav1.4+ex47 and Cav1.4Δex47, respectively), and the auxiliary subunits, β2X13 and α2δ-4. We find that IT caused both Cav1.4 splice variants to activate at significantly more negative voltages and with slower deactivation kinetics than the corresponding WT channels. These effects of the IT mutation, along with unexpected alterations in ion selectivity, were generally larger in channels lacking exon 47. The weaker ion selectivity caused by IT led to hyperpolarizing shifts in the reversal potential and large outward currents that were evident in channels containing the auxiliary subunits β2X13 and α2δ-4 but not in those with β2A and α2δ-1. We conclude that the IT mutation stabilizes channel opening and alters ion selectivity of Cav1.4 in a manner that is strengthened by exclusion of exon 47 and inclusion of β2X13 and α2δ-4. Our results reveal complex actions of IT in modifying the properties of Cav1.4 channels, which may influence the pathological consequences of this mutation in retinal photoreceptors.




of

Neuroligin-2 dependent conformational activation of collybistin reconstituted in supported hybrid membranes [Membrane Biology]

The assembly of the postsynaptic transmitter sensing machinery at inhibitory nerve cell synapses requires the intimate interplay between cell adhesion proteins, scaffold and adaptor proteins, and γ-aminobutyric acid (GABA) or glycine receptors. We developed an in vitro membrane system to reconstitute this process, to identify the essential protein components, and to define their mechanism of action, with a specific focus on the mechanism by which the cytosolic C terminus of the synaptic cell adhesion protein Neuroligin-2 alters the conformation of the adaptor protein Collybistin-2 and thereby controls Collybistin-2-interactions with phosphoinositides (PtdInsPs) in the plasma membrane. Supported hybrid membranes doped with different PtdInsPs and 1,2-dioleoyl-sn-glycero-3-{[N-(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl} nickel salt (DGS-NTA(Ni)) to allow for the specific adsorption of the His6-tagged intracellular domain of Neuroligin-2 (His-cytNL2) were prepared on hydrophobically functionalized silicon dioxide substrates via vesicle spreading. Two different collybistin variants, the WT protein (CB2SH3) and a mutant that adopts an intrinsically 'open' and activated conformation (CB2SH3/W24A-E262A), were bound to supported membranes in the absence or presence of His-cytNL2. The corresponding binding data, obtained by reflectometric interference spectroscopy, show that the interaction of the C terminus of Neuroligin-2 with Collybistin-2 induces a conformational change in Collybistin-2 that promotes its interaction with distinct membrane PtdInsPs.




of

Conserved biophysical features of the CaV2 presynaptic Ca2+ channel homologue from the early-diverging animal Trichoplax adhaerens [Membrane Biology]

The dominant role of CaV2 voltage-gated calcium channels for driving neurotransmitter release is broadly conserved. Given the overlapping functional properties of CaV2 and CaV1 channels, and less so CaV3 channels, it is unclear why there have not been major shifts toward dependence on other CaV channels for synaptic transmission. Here, we provide a structural and functional profile of the CaV2 channel cloned from the early-diverging animal Trichoplax adhaerens, which lacks a nervous system but possesses single gene homologues for CaV1–CaV3 channels. Remarkably, the highly divergent channel possesses similar features as human CaV2.1 and other CaV2 channels, including high voltage–activated currents that are larger in external Ba2+ than in Ca2+; voltage-dependent kinetics of activation, inactivation, and deactivation; and bimodal recovery from inactivation. Altogether, the functional profile of Trichoplax CaV2 suggests that the core features of presynaptic CaV2 channels were established early during animal evolution, after CaV1 and CaV2 channels emerged via proposed gene duplication from an ancestral CaV1/2 type channel. The Trichoplax channel was relatively insensitive to mammalian CaV2 channel blockers ω-agatoxin-IVA and ω-conotoxin-GVIA and to metal cation blockers Cd2+ and Ni2+. Also absent was the capacity for voltage-dependent G-protein inhibition by co-expressed Trichoplax Gβγ subunits, which nevertheless inhibited the human CaV2.1 channel, suggesting that this modulatory capacity evolved via changes in channel sequence/structure, and not G proteins. Last, the Trichoplax channel was immunolocalized in cells that express an endomorphin-like peptide implicated in cell signaling and locomotive behavior and other likely secretory cells, suggesting contributions to regulated exocytosis.




of

{alpha}-Synuclein facilitates endocytosis by elevating the steady-state levels of phosphatidylinositol 4,5-bisphosphate [Membrane Biology]

α-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson's disease (PD). It is an intrinsically disordered protein that binds acidic phospholipids. Growing evidence supports a role for α-Syn in membrane trafficking, including, mechanisms of endocytosis and exocytosis, although the exact role of α-Syn in these mechanisms is currently unclear. Here we investigate the associations of α-Syn with the acidic phosphoinositides (PIPs), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). Our results show that α-Syn colocalizes with PIP2 and the phosphorylated active form of the clathrin adaptor protein 2 (AP2) at clathrin-coated pits. Using endocytosis of transferrin as an indicator for clathrin-mediated endocytosis (CME), we find that α-Syn involvement in endocytosis is specifically mediated through PI(4,5)P2 levels on the plasma membrane. In accord with their effects on PI(4,5)P2 levels, the PD associated A30P, E46K, and A53T mutations in α-Syn further enhance CME in neuronal and nonneuronal cells. However, lysine to glutamic acid substitutions at the KTKEGV repeat domain of α-Syn, which interfere with phospholipid binding, are ineffective in enhancing CME. We further show that the rate of synaptic vesicle (SV) endocytosis is differentially affected by the α-Syn mutations and associates with their effects on PI(4,5)P2 levels, however, with the exception of the A30P mutation. This study provides evidence for a critical involvement of PIPs in α-Syn–mediated membrane trafficking.




of

Exofacial membrane composition and lipid metabolism regulates plasma membrane P4-ATPase substrate specificity [Lipids]

The plasma membrane of a cell is characterized by an asymmetric distribution of lipid species across the exofacial and cytofacial aspects of the bilayer. Regulation of membrane asymmetry is a fundamental characteristic of membrane biology and is crucial for signal transduction, vesicle transport, and cell division. The type IV family of P-ATPases, or P4-ATPases, establishes membrane asymmetry by selection and transfer of a subset of membrane lipids from the lumenal or exofacial leaflet to the cytofacial aspect of the bilayer. It is unclear how P4-ATPases sort through the spectrum of membrane lipids to identify their desired substrate(s) and how the membrane environment modulates this activity. Therefore, we tested how the yeast plasma membrane P4-ATPase, Dnf2, responds to changes in membrane composition induced by perturbation of endogenous lipid biosynthetic pathways or exogenous application of lipid. The primary substrates of Dnf2 are glucosylceramide (GlcCer) and phosphatidylcholine (PC, or their lyso-lipid derivatives), and we find that these substrates compete with each other for transport. Acutely inhibiting sphingolipid synthesis using myriocin attenuates transport of exogenously applied GlcCer without perturbing PC transport. Deletion of genes controlling later steps of glycosphingolipid production also perturb GlcCer transport to a greater extent than PC transport. In contrast, perturbation of ergosterol biosynthesis reduces PC and GlcCer transport equivalently. Surprisingly, application of lipids that are poor transport substrates differentially affects PC and GlcCer transport by Dnf2, thus altering substrate preference. Our data indicate that Dnf2 exhibits exquisite sensitivity to the membrane composition, thus providing feedback onto the function of the P4-ATPases.




of

Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and IonQuant [Technological Innovation and Resources]

Ion mobility brings an additional dimension of separation to LC–MS, improving identification of peptides and proteins in complex mixtures. A recently introduced timsTOF mass spectrometer (Bruker) couples trapped ion mobility separation to TOF mass analysis. With the parallel accumulation serial fragmentation (PASEF) method, the timsTOF platform achieves promising results, yet analysis of the data generated on this platform represents a major bottleneck. Currently, MaxQuant and PEAKS are most used to analyze these data. However, because of the high complexity of timsTOF PASEF data, both require substantial time to perform even standard tryptic searches. Advanced searches (e.g. with many variable modifications, semi- or non-enzymatic searches, or open searches for post-translational modification discovery) are practically impossible. We have extended our fast peptide identification tool MSFragger to support timsTOF PASEF data, and developed a label-free quantification tool, IonQuant, for fast and accurate 4-D feature extraction and quantification. Using a HeLa data set published by Meier et al. (2018), we demonstrate that MSFragger identifies significantly (~30%) more unique peptides than MaxQuant (1.6.10.43), and performs comparably or better than PEAKS X+ (~10% more peptides). IonQuant outperforms both in terms of number of quantified proteins while maintaining good quantification precision and accuracy. Runtime tests show that MSFragger and IonQuant can fully process a typical two-hour PASEF run in under 70 min on a typical desktop (6 CPU cores, 32 GB RAM), significantly faster than other tools. Finally, through semi-enzymatic searching, we significantly increase the number of identified peptides. Within these semi-tryptic identifications, we report evidence of gas-phase fragmentation before MS/MS analysis.




of

Open Database Searching Enables the Identification and Comparison of Bacterial Glycoproteomes without Defining Glycan Compositions Prior to Searching [Technological Innovation and Resources]

Mass spectrometry has become an indispensable tool for the characterization of glycosylation across biological systems. Our ability to generate rich fragmentation of glycopeptides has dramatically improved over the last decade yet our informatic approaches still lag behind. Although glycoproteomic informatics approaches using glycan databases have attracted considerable attention, database independent approaches have not. This has significantly limited high throughput studies of unusual or atypical glycosylation events such as those observed in bacteria. As such, computational approaches to examine bacterial glycosylation and identify chemically diverse glycans are desperately needed. Here we describe the use of wide-tolerance (up to 2000 Da) open searching as a means to rapidly examine bacterial glycoproteomes. We benchmarked this approach using N-linked glycopeptides of Campylobacter fetus subsp. fetus as well as O-linked glycopeptides of Acinetobacter baumannii and Burkholderia cenocepacia revealing glycopeptides modified with a range of glycans can be readily identified without defining the glycan masses before database searching. Using this approach, we demonstrate how wide tolerance searching can be used to compare glycan use across bacterial species by examining the glycoproteomes of eight Burkholderia species (B. pseudomallei; B. multivorans; B. dolosa; B. humptydooensis; B. ubonensis, B. anthina; B. diffusa; B. pseudomultivorans). Finally, we demonstrate how open searching enables the identification of low frequency glycoforms based on shared modified peptides sequences. Combined, these results show that open searching is a robust computational approach for the determination of glycan diversity within bacterial proteomes.




of

Proteomics of Galapagos Marine Iguanas Links Function of Femoral Gland Proteins to the Immune System [Research]

Communication between individuals via molecules, termed chemosignaling, is widespread among animal and plant species. However, we lack knowledge on the specific functions of the substances involved for most systems. The femoral gland is an organ that secretes a waxy substance involved in chemical communication in lizards. Although the lipids and volatile substances secreted by the femoral glands have been investigated in several biochemical studies, the protein composition and functions of secretions remain completely unknown. Applying a proteomic approach, we provide the first attempt to comprehensively characterize the protein composition of femoral gland secretions from the Galápagos marine iguana. Using samples from several organs, the marine iguana proteome was assembled by next-generation sequencing and MS, resulting in 7513 proteins. Of these, 4305 proteins were present in the femoral gland, including keratins, small serum proteins, and fatty acid-binding proteins. Surprisingly, no proteins with discernible roles in partner recognition or inter-species communication could be identified. However, we did find several proteins with direct associations to the innate immune system, including lysozyme C, antileukoproteinase (ALP), pulmonary surfactant protein (SFTPD), and galectin (LGALS1) suggesting that the femoral glands function as an important barrier to infection. Furthermore, we report several novel anti-microbial peptides from the femoral glands that show similar action against Escherichia coli and Bacillus subtilis such as oncocin, a peptide known for its effectiveness against Gram-negative pathogens. This proteomics data set is a valuable resource for future functional protein analysis and demonstrates that femoral gland secretions also perform functions of the innate immune system.




of

Data, Reagents, Assays and Merits of Proteomics for SARS-CoV-2 Research and Testing [Research]

As the COVID-19 pandemic continues to spread, thousands of scientists around the globe have changed research direction to understand better how the virus works and to find out how it may be tackled. The number of manuscripts on preprint servers is soaring and peer-reviewed publications using MS-based proteomics are beginning to emerge. To facilitate proteomic research on SARS-CoV-2, the virus that causes COVID-19, this report presents deep-scale proteomes (10,000 proteins; >130,000 peptides) of common cell line models, notably Vero E6, Calu-3, Caco-2, and ACE2-A549 that characterize their protein expression profiles including viral entry factors such as ACE2 or TMPRSS2. Using the 9 kDa protein SRP9 and the breast cancer oncogene BRCA1 as examples, we show how the proteome expression data can be used to refine the annotation of protein-coding regions of the African green monkey and the Vero cell line genomes. Monitoring changes of the proteome on viral infection revealed widespread expression changes including transcriptional regulators, protease inhibitors, and proteins involved in innate immunity. Based on a library of 98 stable-isotope labeled synthetic peptides representing 11 SARS-CoV-2 proteins, we developed PRM (parallel reaction monitoring) assays for nano-flow and micro-flow LC–MS/MS. We assessed the merits of these PRM assays using supernatants of virus-infected Vero E6 cells and challenged the assays by analyzing two diagnostic cohorts of 24 (+30) SARS-CoV-2 positive and 28 (+9) negative cases. In light of the results obtained and including recent publications or manuscripts on preprint servers, we critically discuss the merits of MS-based proteomics for SARS-CoV-2 research and testing.




of

An Interaction Network of RNA-Binding Proteins Involved in Drosophila Oogenesis [Research]

During Drosophila oogenesis, the localization and translational regulation of maternal transcripts relies on RNA-binding proteins (RBPs). Many of these RBPs localize several mRNAs and may have additional direct interaction partners to regulate their functions. Using immunoprecipitation from whole Drosophila ovaries coupled to mass spectrometry, we examined protein-protein associations of 6 GFP-tagged RBPs expressed at physiological levels. Analysis of the interaction network and further validation in human cells allowed us to identify 26 previously unknown associations, besides recovering several well characterized interactions. We identified interactions between RBPs and several splicing factors, providing links between nuclear and cytoplasmic events of mRNA regulation. Additionally, components of the translational and RNA decay machineries were selectively co-purified with some baits, suggesting a mechanism for how RBPs may regulate maternal transcripts. Given the evolutionary conservation of the studied RBPs, the interaction network presented here provides the foundation for future functional and structural studies of mRNA localization across metazoans.




of

Kir2.1 Interactome Mapping Uncovers PKP4 as a Modulator of the Kir2.1-Regulated Inward Rectifier Potassium Currents [Research]

Kir2.1, a strong inward rectifier potassium channel encoded by the KCNJ2 gene, is a key regulator of the resting membrane potential of the cardiomyocyte and plays an important role in controlling ventricular excitation and action potential duration in the human heart. Mutations in KCNJ2 result in inheritable cardiac diseases in humans, e.g. the type-1 Andersen-Tawil syndrome (ATS1). Understanding the molecular mechanisms that govern the regulation of inward rectifier potassium currents by Kir2.1 in both normal and disease contexts should help uncover novel targets for therapeutic intervention in ATS1 and other Kir2.1-associated channelopathies. The information available to date on protein-protein interactions involving Kir2.1 channels remains limited. Additional efforts are necessary to provide a comprehensive map of the Kir2.1 interactome. Here we describe the generation of a comprehensive map of the Kir2.1 interactome using the proximity-labeling approach BioID. Most of the 218 high-confidence Kir2.1 channel interactions we identified are novel and encompass various molecular mechanisms of Kir2.1 function, ranging from intracellular trafficking to cross-talk with the insulin-like growth factor receptor signaling pathway, as well as lysosomal degradation. Our map also explores the variations in the interactome profiles of Kir2.1WT versus Kir2.1314-315, a trafficking deficient ATS1 mutant, thus uncovering molecular mechanisms whose malfunctions may underlie ATS1 disease. Finally, using patch-clamp analysis, we validate the functional relevance of PKP4, one of our top BioID interactors, to the modulation of Kir2.1-controlled inward rectifier potassium currents. Our results validate the power of our BioID approach in identifying functionally relevant Kir2.1 interactors and underline the value of our Kir2.1 interactome as a repository for numerous novel biological hypotheses on Kir2.1 and Kir2.1-associated diseases.




of

Depolarization-dependent Induction of Site-specific Changes in Sialylation on N-linked Glycoproteins in Rat Nerve Terminals [Research]

Synaptic transmission leading to release of neurotransmitters in the nervous system is a fast and highly dynamic process. Previously, protein interaction and phosphorylation have been thought to be the main regulators of synaptic transmission. Here we show that sialylation of N-linked glycosylation is a novel potential modulator of neurotransmitter release mechanisms by investigating depolarization-dependent changes of formerly sialylated N-linked glycopeptides. We suggest that negatively charged sialic acids can be modulated, similarly to phosphorylation, by the action of sialyltransferases and sialidases thereby changing local structure and function of membrane glycoproteins. We characterized site-specific alteration in sialylation on N-linked glycoproteins in isolated rat nerve terminals after brief depolarization using quantitative sialiomics. We identified 1965 formerly sialylated N-linked glycosites in synaptic proteins and found that the abundances of 430 glycosites changed after 5 s depolarization. We observed changes on essential synaptic proteins such as synaptic vesicle proteins, ion channels and transporters, neurotransmitter receptors and cell adhesion molecules. This study is to our knowledge the first to describe ultra-fast site-specific modulation of the sialiome after brief stimulation of a biological system.




of

Correction: Concentration Determination of >200 Proteins in Dried Blood Spots for Biomarker Discovery and Validation [Addition and Correction]




of

MSstatsTMT: Statistical Detection of Differentially Abundant Proteins in Experiments with Isobaric Labeling and Multiple Mixtures [Technological Innovation and Resources]

Tandem mass tag (TMT) is a multiplexing technology widely-used in proteomic research. It enables relative quantification of proteins from multiple biological samples in a single MS run with high efficiency and high throughput. However, experiments often require more biological replicates or conditions than can be accommodated by a single run, and involve multiple TMT mixtures and multiple runs. Such larger-scale experiments combine sources of biological and technical variation in patterns that are complex, unique to TMT-based workflows, and challenging for the downstream statistical analysis. These patterns cannot be adequately characterized by statistical methods designed for other technologies, such as label-free proteomics or transcriptomics. This manuscript proposes a general statistical approach for relative protein quantification in MS- based experiments with TMT labeling. It is applicable to experiments with multiple conditions, multiple biological replicate runs and multiple technical replicate runs, and unbalanced designs. It is based on a flexible family of linear mixed-effects models that handle complex patterns of technical artifacts and missing values. The approach is implemented in MSstatsTMT, a freely available open-source R/Bioconductor package compatible with data processing tools such as Proteome Discoverer, MaxQuant, OpenMS, and SpectroMine. Evaluation on a controlled mixture, simulated datasets, and three biological investigations with diverse designs demonstrated that MSstatsTMT balanced the sensitivity and the specificity of detecting differentially abundant proteins, in large-scale experiments with multiple biological mixtures.




of

Molecular Profiling of Innate Immune Response Mechanisms in Ventilator-associated Pneumonia [Research]

Ventilator-associated pneumonia (VAP) is a common hospital-acquired infection, leading to high morbidity and mortality. Currently, bronchoalveolar lavage (BAL) is used in hospitals for VAP diagnosis and guiding treatment options. Although BAL collection procedures are invasive, alternatives such as endotracheal aspirates (ETA) may be of diagnostic value, however, their use has not been thoroughly explored. Longitudinal ETA and BAL were collected from 16 intubated patients up to 15 days, of which 11 developed VAP. We conducted a comprehensive LC–MS/MS based proteome and metabolome characterization of longitudinal ETA and BAL to detect host and pathogen responses to VAP infection. We discovered a diverse ETA proteome of the upper airways reflective of a rich and dynamic host-microbe interface. Prior to VAP diagnosis by microbial cultures from BAL, patient ETA presented characteristic signatures of reactive oxygen species and neutrophil degranulation, indicative of neutrophil mediated pathogen processing as a key host response to the VAP infection. Along with an increase in amino acids, this is suggestive of extracellular membrane degradation resulting from proteolytic activity of neutrophil proteases. The metaproteome approach successfully allowed simultaneous detection of pathogen peptides in patients' ETA, which may have potential use in diagnosis. Our findings suggest that ETA may facilitate early mechanistic insights into host-pathogen interactions associated with VAP infection and therefore provide its diagnosis and treatment.




of

Benefits of Collisional Cross Section Assisted Precursor Selection (caps-PASEF) for Cross-linking Mass Spectrometry [Research]

Ion mobility separates molecules in the gas-phase based on their physico-chemical properties, providing information about their size as collisional cross-sections. The timsTOF Pro combines trapped ion mobility with a quadrupole, collision cell and a TOF mass analyzer, to probe ions at high speeds with on-the-fly fragmentation. Here, we show that on this platform ion mobility is beneficial for cross-linking MS (XL-MS). Cross-linking reagents covalently link amino acids in proximity, resulting in peptide pairs after proteolytic digestion. These cross-linked peptides are typically present at low abundance in the background of normal peptides, which can partially be resolved by using enrichable cross-linking reagents. Even with a very efficient enrichable cross-linking reagent, like PhoX, the analysis of cross-linked peptides is still hampered by the co-enrichment of peptides connected to a partially hydrolyzed reagent – termed mono-linked peptides. For experiments aiming to uncover protein-protein interactions these are unwanted byproducts. Here, we demonstrate that gas-phase separation by ion mobility enables the separation of mono-linked peptides from cross-linked peptide pairs. A clear partition between these two classes is observed at a CCS of 500 Å2 and a monoisotopic mass of 2 kDa, which can be used for targeted precursor selection. A total of 50-70% of the mono-linked peptides are prevented from sequencing, allowing the analysis to focus on sequencing the relevant cross-linked peptide pairs. In applications to both simple proteins and protein mixtures and a complete highly complex lysate this approach provides a substantial increase in detected cross-linked peptides.




of

Agonists of Orally Expressed TRP Channels Stimulate Salivary Secretion and Modify the Salivary Proteome [Research]

Natural compounds that can stimulate salivary secretion are of interest in developing treatments for xerostomia, the perception of a dry mouth, that affects between 10 and 30% of the adult and elderly population. Chemesthetic transient receptor potential (TRP) channels are expressed in the surface of the oral mucosa. The TRPV1 agonists capsaicin and piperine have been shown to increase salivary flow when introduced into the oral cavity but the sialogogic properties of other TRP channel agonists have not been investigated. In this study we have determined the influence of different TRP channel agonists on the flow and protein composition of saliva. Mouth rinsing with the TRPV1 agonist nonivamide or menthol, a TRPM8 agonist, increased whole mouth saliva (WMS) flow and total protein secretion compared with unstimulated saliva, the vehicle control mouth rinse or cinnamaldehyde, a TRPA1 agonist. Nonivamide also increased the flow of labial minor gland saliva but parotid saliva flow rate was not increased. The influence of TRP channel agonists on the composition and function of the salivary proteome was investigated using a multi-batch quantitative MS method novel to salivary proteomics. Inter-personal and inter-mouth rinse variation was observed in the secreted proteomes and, using a novel bioinformatics method, inter-day variation was identified with some of the mouth rinses. Significant changes in specific salivary proteins were identified after all mouth rinses. In the case of nonivamide, these changes were attributed to functional shifts in the WMS secreted, primarily the over representation of salivary and nonsalivary cystatins which was confirmed by immunoassay. This study provides new evidence of the impact of TRP channel agonists on the salivary proteome and the stimulation of salivary secretion by a TRPM8 channel agonist, which suggests that TRP channel agonists are potential candidates for developing treatments for sufferers of xerostomia.




of

Radiosensitization by Kinase Inhibition Revealed by Phosphoproteomic Analysis of Pancreatic Cancer Cells [Research]

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers and known for its extensive genetic heterogeneity, high therapeutic resistance, and strong variation in intrinsic radiosensitivity. To understand the molecular mechanisms underlying radioresistance, we screened the phenotypic response of 38 PDAC cell lines to ionizing radiation. Subsequent phosphoproteomic analysis of two representative sensitive and resistant lines led to the reproducible identification of 7,800 proteins and 13,000 phosphorylation sites (p-sites). Approximately 700 p-sites on 400 proteins showed abundance changes after radiation in all cell lines regardless of their phenotypic sensitivity. Apart from recapitulating known radiation response phosphorylation markers such as on proteins involved in DNA damage repair, the analysis uncovered many novel members of a radiation-responsive signaling network that was apparent only at the level of protein phosphorylation. These regulated p-sites were enriched in potential ATM substrates and in vitro kinase assays corroborated 10 of these. Comparing the proteomes and phosphoproteomes of radiosensitive and -resistant cells pointed to additional tractable radioresistance mechanisms involving apoptotic proteins. For instance, elevated NADPH quinine oxidoreductase 1 (NQO1) expression in radioresistant cells may aid in clearing harmful reactive oxygen species. Resistant cells also showed elevated phosphorylation levels of proteins involved in cytoskeleton organization including actin dynamics and focal adhesion kinase (FAK) activity and one resistant cell line showed a strong migration phenotype. Pharmacological inhibition of the kinases FAK by Defactinib and of CHEK1 by Rabusertib showed a statistically significant sensitization to radiation in radioresistant PDAC cells. Together, the presented data map a comprehensive molecular network of radiation-induced signaling, improves the understanding of radioresistance and provides avenues for developing radiotherapeutic strategies.




of

The Neuroproteomic Basis of Enhanced Perception and Processing of Brood Signals That Trigger Increased Reproductive Investment in Honeybee (Apis mellifera) Workers [Research]

The neuronal basis of complex social behavior is still poorly understood. In honeybees, reproductive investment decisions are made at the colony-level. Queens develop from female-destined larvae that receive alloparental care from nurse bees in the form of ad-libitum royal jelly (RJ) secretions. Typically, the number of raised new queens is limited but genetic breeding of "royal jelly bees" (RJBs) for enhanced RJ production over decades has led to a dramatic increase of reproductive investment in queens. Here, we compare RJBs to unselected Italian bees (ITBs) to investigate how their cognitive processing of larval signals in the mushroom bodies (MBs) and antennal lobes (ALs) may contribute to their behavioral differences. A cross-fostering experiment confirms that the RJB syndrome is mainly due to a shift in nurse bee alloparental care behavior. Using olfactory conditioning of the proboscis extension reflex, we show that the RJB nurses spontaneously respond more often to larval odors compared with ITB nurses but their subsequent learning occurs at similar rates. These phenotypic findings are corroborated by our demonstration that the proteome of the brain, particularly of the ALs differs between RJBs and ITBs. Notably, in the ALs of RJB newly emerged bees and nurses compared with ITBs, processes of energy and nutrient metabolism, signal transduction are up-regulated, priming the ALs for receiving and processing the brood signals from the antennae. Moreover, highly abundant major royal jelly proteins and hexamerins in RJBs compared with ITBs during early life when the nervous system still develops suggest crucial new neurobiological roles for these well-characterized proteins. Altogether, our findings reveal that RJBs have evolved a strong olfactory response to larvae, enabled by numerous neurophysiological adaptations that increase the nurse bees' alloparental care behavior.




of

Novel Proteome Extraction Method Illustrates a Conserved Immunological Signature of MSI-H Colorectal Tumors [Research]

Using a simple, environment friendly proteome extraction (TOP), we were able to optimize the analysis of clinical samples. Using our TOP method we analyzed a clinical cohort of microsatellite stable (MSS) and unstable (MSI-H) colorectal carcinoma (CRC). We identified a tumor cell specific, STAT1-centered, immune signature expressed by the MSI-H tumor cells. We then showed that long, but not short, exposure to Interferon- induces a similar signature in vitro. We identified 10 different temporal protein expression patterns, classifying the Interferon- protein temporal regulation in CRC. Our data sheds light on the changes that tumor cells undergo under long-term immunological pressure in vivo, the importance of STAT proteins in specific biological scenarios. The data generated could help find novel clinical biomarkers and therapeutic approaches.




of

Examining and Fine-tuning the Selection of Glycan Compositions with GlyConnect Compozitor [Research]

A key point in achieving accurate intact glycopeptide identification is the definition of the glycan composition file that is used to match experimental with theoretical masses by a glycoproteomics search engine. At present, these files are mainly built from searching the literature and/or querying data sources focused on posttranslational modifications. Most glycoproteomics search engines include a default composition file that is readily used when processing MS data. We introduce here a glycan composition visualizing and comparative tool associated with the GlyConnect database and called GlyConnect Compozitor. It offers a web interface through which the database can be queried to bring out contextual information relative to a set of glycan compositions. The tool takes advantage of compositions being related to one another through shared monosaccharide counts and outputs interactive graphs summarizing information searched in the database. These results provide a guide for selecting or deselecting compositions in a file in order to reflect the context of a study as closely as possible. They also confirm the consistency of a set of compositions based on the content of the GlyConnect database. As part of the tool collection of the Glycomics@ExPASy initiative, Compozitor is hosted at https://glyconnect.expasy.org/compozitor/ where it can be run as a web application. It is also directly accessible from the GlyConnect database.




of

FYN and ABL Regulate the Interaction Networks of the DCBLD Receptor Family [Research]

The Discoidin, CUB, and LCCL domain-containing protein (DCBLD) family consists of two type-I transmembrane scaffolding receptors, DCBLD1 and DCBLD2, which play important roles in development and cancer. The nonreceptor tyrosine kinases FYN and ABL are known to drive phosphorylation of tyrosine residues in YXXP motifs within the intracellular domains of DCBLD family members, which leads to the recruitment of the Src homology 2 (SH2) domain of the adaptors CT10 regulator of kinase (CRK) and CRK-like (CRKL). We previously characterized the FYN- and ABL-driven phosphorylation of DCBLD family YXXP motifs. However, we have identified additional FYN- and ABL-dependent phosphorylation sites on DCBLD1 and DCBLD2. This suggests that beyond CRK and CRKL, additional DCBLD interactors may be regulated by FYN and ABL activity. Here, we report a quantitative proteomics approach in which we map the FYN- and ABL-regulated interactomes of DCBLD family members. We found FYN and ABL regulated the binding of several signaling molecules to DCBLD1 and DCBLD2, including members of the 14-3-3 family of adaptors. Biochemical investigation of the DCBLD2/14-3-3 interaction revealed ABL-induced binding of 14-3-3 family members directly to DCBLD2.




of

Glutathionylation Decreases Methyltransferase Activity of PRMT5 and Inhibits Cell Proliferation [Research]

Glutathionylation is an important posttranslational modification that protects proteins from further oxidative damage as well as influencing protein structure and activity. In the present study, we demonstrate that the cysteine-42 residue in protein arginine N-methyltransferase 5 (PRMT5) is glutathionylated in aged mice or in cells that have been exposed to oxidative stress. Deglutathionylation of this protein is catalyzed by glutaredoxin-1 (Grx1). Using mutagenesis and subsequent biochemical analyses, we show that glutathionylation decreased the binding affinity of PRMT5 with methylosome protein-50 (MEP50) and reduced the methyltransferase activity of PRMT5. Furthermore, overexpression of PRMT5-C42A mutant caused a significant increase in histone methylation in HEK293T and A549 cells and promoted cell growth, whereas overexpression of the PRMT5-C42D mutant, a mimic of glutathionylated PRMT5, inhibited cell proliferation. Taken together, our results demonstrate a new mechanism of regulation of PRMT5 methyltransferases activity and suggest that PRMT5 glutathionylation is partly responsible for reactive oxygen species-mediated cell growth inhibition.




of

The Capture of a Disabled Proteasome Identifies Erg25 as a Substrate for Endoplasmic Reticulum Associated Degradation [Research]

Studies in the yeast Saccharomyces cerevisiae have helped define mechanisms underlying the activity of the ubiquitin–proteasome system (UPS), uncover the proteasome assembly pathway, and link the UPS to the maintenance of cellular homeostasis. However, the spectrum of UPS substrates is incompletely defined, even though multiple techniques—including MS—have been used. Therefore, we developed a substrate trapping proteomics workflow to identify previously unknown UPS substrates. We first generated a yeast strain with an epitope tagged proteasome subunit to which a proteasome inhibitor could be applied. Parallel experiments utilized inhibitor insensitive strains or strains lacking the tagged subunit. After affinity isolation, enriched proteins were resolved, in-gel digested, and analyzed by high resolution liquid chromatography-tandem MS. A total of 149 proteasome partners were identified, including all 33 proteasome subunits. When we next compared data between inhibitor sensitive and resistant cells, 27 proteasome partners were significantly enriched. Among these proteins were known UPS substrates and proteins that escort ubiquitinated substrates to the proteasome. We also detected Erg25 as a high-confidence partner. Erg25 is a methyl oxidase that converts dimethylzymosterol to zymosterol, a precursor of the plasma membrane sterol, ergosterol. Because Erg25 is a resident of the endoplasmic reticulum (ER) and had not previously been directly characterized as a UPS substrate, we asked whether Erg25 is a target of the ER associated degradation (ERAD) pathway, which most commonly mediates proteasome-dependent destruction of aberrant proteins. As anticipated, Erg25 was ubiquitinated and associated with stalled proteasomes. Further, Erg25 degradation depended on ERAD-associated ubiquitin ligases and was regulated by sterol synthesis. These data expand the cohort of lipid biosynthetic enzymes targeted for ERAD, highlight the role of the UPS in maintaining ER function, and provide a novel tool to uncover other UPS substrates via manipulations of our engineered strain.




of

Analytical Guidelines for co-fractionation Mass Spectrometry Obtained through Global Profiling of Gold Standard Saccharomyces cerevisiae Protein Complexes [Research]

Co-fractionation MS (CF-MS) is a technique with potential to characterize endogenous and unmanipulated protein complexes on an unprecedented scale. However this potential has been offset by a lack of guidelines for best-practice CF-MS data collection and analysis. To obtain such guidelines, this study thoroughly evaluates novel and published Saccharomyces cerevisiae CF-MS data sets using very high proteome coverage libraries of yeast gold standard complexes. A new method for identifying gold standard complexes in CF-MS data, Reference Complex Profiling, and the Extending 'Guilt-by-Association' by Degree (EGAD) R package are used for these evaluations, which are verified with concurrent analyses of published human data. By evaluating data collection designs, which involve fractionation of cell lysates, it is found that near-maximum recall of complexes can be achieved with fewer samples than published studies. Distributing sample collection across orthogonal fractionation methods, rather than a single high resolution data set, leads to particularly efficient recall. By evaluating 17 different similarity scoring metrics, which are central to CF-MS data analysis, it is found that two metrics rarely used in past CF-MS studies – Spearman and Kendall correlations – and the recently introduced Co-apex metric frequently maximize recall, whereas a popular metric—Euclidean distance—delivers poor recall. The common practice of integrating external genomic data into CF-MS data analysis is also evaluated, revealing that this practice may improve the precision and recall of known complexes but is generally unsuitable for predicting novel complexes in model organisms. If studying nonmodel organisms using orthologous genomic data, it is found that particular subsets of fractionation profiles (e.g. the lowest abundance quartile) should be excluded to minimize false discovery. These assessments are summarized in a series of universally applicable guidelines for precise, sensitive and efficient CF-MS studies of known complexes, and effective predictions of novel complexes for orthogonal experimental validation.




of

Sialylation of Asparagine 612 Inhibits Aconitase Activity during Mouse Sperm Capacitation; a Possible Mechanism for the Switch from Oxidative Phosphorylation to Glycolysis [Research]

After ejaculation, mammalian spermatozoa must undergo a process known as capacitation in order to successfully fertilize the oocyte. Several post-translational modifications occur during capacitation, including sialylation, which despite being limited to a few proteins, seems to be essential for proper sperm-oocyte interaction. Regardless of its importance, to date, no single study has ever identified nor quantified which glycoproteins bearing terminal sialic acid (Sia) are altered during capacitation. Here we characterize sialylation during mouse sperm capacitation. Using tandem MS coupled with liquid chromatography (LC–MS/MS), we found 142 nonreductant peptides, with 9 of them showing potential modifications on their sialylated oligosaccharides during capacitation. As such, N-linked sialoglycopeptides from C4b-binding protein, endothelial lipase (EL), serine proteases 39 and 52, testis-expressed protein 101 and zonadhesin were reduced following capacitation. In contrast, mitochondrial aconitate hydratase (aconitase; ACO2), a TCA cycle enzyme, was the only protein to show an increase in Sia content during capacitation. Interestingly, although the loss of Sia within EL (N62) was accompanied by a reduction in its phospholipase A1 activity, a decrease in the activity of ACO2 (i.e. stereospecific isomerization of citrate to isocitrate) occurred when sialylation increased (N612). The latter was confirmed by N612D recombinant protein tagged with both His and GFP. The replacement of Sia for the negatively charged Aspartic acid in the N612D mutant caused complete loss of aconitase activity compared with the WT. Computer modeling show that N612 sits atop the catalytic site of ACO2. The introduction of Sia causes a large conformational change in the alpha helix, essentially, distorting the active site, leading to complete loss of function. These findings suggest that the switch from oxidative phosphorylation, over to glycolysis that occurs during capacitation may come about through sialylation of ACO2.




of

High-dimensional Cytometry (ExCYT) and Mass Spectrometry of Myeloid Infiltrate in Clinically Localized Clear Cell Renal Cell Carcinoma Identifies Novel Potential Myeloid Targets for Immunotherapy [Research]

Renal Cell Carcinoma (RCC) is one of the most commonly diagnosed cancers worldwide with research efforts dramatically improving understanding of the biology of the disease. To investigate the role of the immune system in treatment-naïve clear cell Renal Cell Carcinoma (ccRCC), we interrogated the immune infiltrate in patient-matched ccRCC tumor samples, benign normal adjacent tissue (NAT) and peripheral blood mononuclear cells (PBMCs isolated from whole blood, focusing our attention on the myeloid cell infiltrate. Using flow cytometric, MS, and ExCYT analysis, we discovered unique myeloid populations in PBMCs across patient samples. Furthermore, normal adjacent tissues and ccRCC tissues contained numerous myeloid populations with a unique signature for both tissues. Enrichment of the immune cell (CD45+) fraction and subsequent gene expression analysis revealed a number of myeloid-related genes that were differentially expressed. These data provide evidence, for the first time, of an immunosuppressive and pro-tumorigenic role of myeloid cells in early, clinically localized ccRCC. The identification of a number of immune proteins for therapeutic targeting provides a rationale for investigation into the potential efficacy of earlier intervention with single-agent or combination immunotherapy for ccRCC.




of

An in-depth Comparison of the Pediatric and Adult Urinary N-glycomes [Research]

We performed an in-depth characterization and comparison of the pediatric and adult urinary glycomes using a nanoLC-MS/MS based glycomics method, which included normal healthy pediatric (1–10 years, n = 21) and adult (21–50 years, n = 22) individuals. A total of 116 N-glycan compositions were identified, and 46 of them could be reproducibly quantified. We performed quantitative comparisons of the 46 glycan compositions between different age and sex groups. The results showed significant quantitative changes between the pediatric and adult cohorts. The pediatric urinary N-glycome was found to contain a higher level of high-mannose (HM), asialylated/afucosylated glycans (excluding HM), neutral fucosylated and agalactosylated glycans, and a lower level of trisialylated glycans compared with the adult. We further analyzed gender-associated glycan changes in the pediatric and adult group, respectively. In the pediatric group, there was almost no difference of glycan levels between males and females. In adult, the majority of glycans were more abundant in males than females, except the high-mannose and tetrasialylated glycans. These findings highlight the importance to consider age-matching and adult sex-matching for urinary glycan studies. The identified normal pediatric and adult urinary glycomes can serve as a baseline reference for comparisons to other disease states affected by glycosylation.




of

High-speed Analysis of Large Sample Sets - How Can This Key Aspect of the Omics Be Achieved? [Perspective]

High-speed analysis of large (prote)omics sample sets at the rate of thousands or millions of samples per day on a single platform has been a challenge since the beginning of proteomics. For many years, ESI-based MS methods have dominated proteomics because of their high sensitivity and great depth in analyzing complex proteomes. However, despite improvements in speed, ESI-based MS methods are fundamentally limited by their sample introduction, which excludes off-line sample preparation/fractionation because of the time required to switch between individual samples/sample fractions, and therefore being dependent on the speed of on-line sample preparation methods such as liquid chromatography. Laser-based ionization methods have the advantage of moving from one sample to the next without these limitations, being mainly restricted by the speed of modern sample stages, i.e. 10 ms or less between samples. This speed matches the data acquisition speed of modern high-performing mass spectrometers whereas the pulse repetition rate of the lasers (>1 kHz) provides a sufficient number of desorption/ionization events for successful ion signal detection from each sample at the above speed of the sample stages. Other advantages of laser-based ionization methods include the generally higher tolerance to sample additives and contamination compared with ESI MS, and the contact-less and pulsed nature of the laser used for desorption, reducing the risk of cross-contamination. Furthermore, new developments in MALDI have expanded its analytical capabilities, now being able to fully exploit high-performing hybrid mass analyzers and their strengths in sensitivity and MS/MS analysis by generating an ESI-like stable yield of multiply charged analyte ions. Thus, these new developments and the intrinsically high speed of laser-based methods now provide a good basis for tackling extreme sample analysis speed in the omics.




of

Serum Protein Profiling Reveals a Landscape of Inflammation and Immune Signaling in Early-stage COVID-19 Infection [Report]

Coronavirus disease 2019 (COVID-19) is a highly contagious infection and threating the human lives in the world. The elevation of cytokines in blood is crucial to induce cytokine storm and immunosuppression in the transition of severity in COVID-19 patients. However, the comprehensive changes of serum proteins in COVID-19 patients throughout the SARS-CoV-2 infection is unknown. In this work, we developed a high-density antibody microarray and performed an in-depth proteomics analysis of serum samples collected from early COVID-19 (n = 15) and influenza (n = 13) patients. We identified a large set of differentially expressed proteins (n = 132) that participate in a landscape of inflammation and immune signaling related to the SARS-CoV-2 infection. Furthermore, the significant correlations of neutrophil and lymphocyte with the CCL2 and CXCL10 mediated cytokine signaling pathways was identified. These information are valuable for the understanding of COVID-19 pathogenesis, identification of biomarkers and development of the optimal anti-inflammation therapy.