sa

Firefighter safety device

A safety device comprising a foothold in association with a mounting assembly, wherein the position of the foothold relative to the mounting assembly is adjustable, thereby allowing the safety device to be used on a variety of sloped roofs. The safety device may further comprises a firefighter securing assembly which provides a means whereby an operator may secure himself to the safety device thereby preventing the operator from falling from the roof in the event the operator loses his balance.




sa

Convertible safety harness

An upper body harness portion for converting a seat-style harness to a full body harness. The upper body harness portion includes a front lower component, a rear lower component, and an upper torso component having elongated first, second and third webbings. The ends of the first and second webbings are detachably securable to opposite sides of the front and rear or side portions of the seat-style harness waist belt, respectively. The third webbing forms a closed loop which, when worn, extends over a wearer's shoulders on opposite sides of the wearer's head. First and second connectors are slidably connected to the third webbing, with the first connector also being slidably connected to the first webbing adjacent the front of a wearer and the second connector being slidably connected to the second webbing adjacent the back of a wearer.




sa

Safety line traveller and support

A traveller for a fall arrest system including a body having a bore and a slot narrower than the bore linking to the bore to the exterior of the body. A load member is connected to the body for pivotal movement relative to the body and suitable for attachment to fall safety equipment. The body has a center of gravity positioned so that when the traveller is supported on a safety line passing through the bore, the body will be urged by gravity to rotate about the safety line towards a position in which the slot has a predetermined orientation relative to the safety line.




sa

Safety barrier netting system

A system for substantially enclosing the periphery of a building top with a netting system which is easily and efficiently movable or reconfigurable during the building construction process comprises a lightweight netting system for extending above a completed work area or floor, a strong lightweight structural support system for the netting, wherein the structural support system is vertically adjustable via slidable engagement with brackets attached to the floors which are already completed, provides enhanced safety for workers and for pedestrians below by preventing passage of workers or debris through the netting and enhances efficiency of construction by providing an easily reconfigurable, inexpensive and lightweight system for providing such enhanced safety.




sa

Collapsible safe ladder

A ladder system is disclosed which allows for stabilizing a ladder on multiple surfaces without the need for a second person or a great deal of setup time. The collapsible ladder system includes a larger ladder section and a smaller ladder strut section which are pivotally connected at a point which is at or below the midpoint of the larger ladder section. The larger ladder section and smaller ladder strut section are connected by a rigid adjustable linkage, or spreader, at a point that is below the pivotable connection. The ladder further includes a means for stability on a variety of surfaces. At the ground contact point, the point where the ladder side rail ends and the ground meet, there are adjustable gripping feet, which can be independently or in combination vertically or angularly adjusted for maximum stability.




sa

Debris passageway for work vehicle cooling package

A debris passage for a cooling box of a work vehicle. Airflow is provided into the cooling box from the exterior environment. A plurality of heat exchangers transfer heat into the airflow. The debris passage is defined between opposing heat exchangers to permit debris to pass from the airflow to the exterior of the cooling box. In one embodiment, the debris passage is underneath an air mover and is substantially vertical.




sa

Linear alternator assembly with four-stroke working cycle and vehicle having same

A linear alternator assembly is provided that includes a block defining a cylinder. The cylinder block has inlet ports at which fluid enters the cylinder, exhaust ports at which fluid is exhausted from the cylinder, and a fuel port. Energizable coils surround the cylinder. A first and a second magnetic or magnetizable piston are contained within the cylinder and are positionable within the cylinder in response to energization of selective ones of the coils and combustion of fuel within the cylinder to selectively establish a four-stroke working cycle having an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke, producing at least one of compressed gas and electrical energy. The four-stroke working cycle may be varied to adapt to changes in power demanded, thereby balancing required output power with efficiency considerations.




sa

Internal combustion engine with intake air heating, and method for operating an internal combustion engine of said type

Embodiments for an engine system are provided. One example internal combustion engine having at least one cylinder head and at least two cylinders, in which each cylinder has at least one inlet opening for the supply of combustion air into the cylinder, comprises an intake line leading to each inlet opening, an overall intake line where the intake lines of at least two cylinders merge, such that a distributor junction point is formed, and a heating device arranged in the overall intake line which has at least one strip-like heating element, a first narrow side of a cross section of which faces toward intake combustion air flow, wherein the heating device is arranged adjacent to the distributor junction point at which the intake lines merge to form the overall intake line, a spacing between the heating device and the distributor junction point being smaller than the diameter of a cylinder.




sa

Charge air cooler, and intake manifold including the same

An air intake manifold for an engine includes an air inlet to receive a flow of compressed charge air, and multiple runners to deliver cooled compressed charge air to corresponding combustion cylinders of the engine. A charge air cooler is arranged within the intake manifold between the air inlet and the runners, and includes a first core section and a second core section. The first and second core sections are arranged fluidly in parallel with respect to the flow of compressed charge air, so that the charge air is divided into a first portion that is substantially directed through the first core section to a first subset of the runners, and a second portion that is substantially directed through the second core section to a second subset of the runners.




sa

Charge air cooler, and intake manifold including the same

A charge air cooler includes a housing and a heat exchanger core positioned within the housing. The heat exchanger core includes a first core section, a second core section, and a centrally located section positioned between the first core section and the second core section. The charge air cooler also includes a plurality of coolant circuits. Each coolant circuit extends through at least one of the first and second core sections. The charge air cooler further includes a coolant inlet extending from the centrally located section to deliver coolant to the plurality of coolant circuits, and a coolant outlet extending from the centrally located section to receive coolant from the plurality of coolant circuits. The charge air cooler also includes a fastener extending through the centrally located section of the core to secure the core to the housing.




sa

Valve timing adjusting device, apparatus for manufacturing same and method for manufacturing same

A valve timing adjusting device for and engine includes a sprocket configured to rotate by receiving drive power from a driving shaft, a vane rotor fixed to a driven shaft so as to be rotatable relative to the sprocket, a housing that includes an oil chamber housing the vane rotor and is fixed to one end in a thickness direction of the sprocket, a bolt fixing the sprocket to the housing, and a knock pin inserted into a sprocket hole formed in the sprocket at one end thereof and into a housing hole formed in the housing at the other end thereof to restrict relative relation between the sprocket and the housing. The knock pin abuts against an inner wall of the sprocket hole at one end thereof, and abuts against an inner wall of the housing hole at the other end thereof.




sa

NONVOLATILE MEMORY DEVICE AND METHOD OF PROGRAMMING THE SAME

A nonvolatile memory device is provided as follows. A memory cell array includes a plurality of memory cells. An address decoder provides a first verify voltage to selected memory cells among the plurality of memory cells in a first program loop and provides a second verify voltage to the selected memory cells in a second program loop. A control logic determines the second program loop as a verify voltage offset point in which the first verify voltage is changed to the second verify voltage based on a result of a verify operation of the first program loop.




sa

NONVOLATILE MEMORY CIRCUIT AND MEMORY DEVICE INCLUDING SAME

A nonvolatile memory circuit may include: a cell array including a first region comprising a plurality of first cell groups and a second region comprising a plurality of second cell groups, each of the first and second cell groups having one or more nonvolatile memory cells; and a control unit suitable for controlling the cell array to sequentially output repair addresses of the plurality of cells groups included in a region which is not over used among the first and second regions when one of the first and second regions is over used.




sa

MEMORY CIRCUIT AND STACK TYPE MEMORY SYSTEM INCLUDING THE SAME

A memory circuit may be provided. The memory circuit may include a memory array. The memory circuit may include an input and output path circuit coupled to a probe pad and a bump pad, and may be configured to input and output a signal between an exterior of the memory circuit and the memory array. The memory circuit may include a scanning circuit configured to generate a sensing signal by sensing a signal outputted through the bump pad while performing scanning of at least one of a reference voltage and a test strobe signal.




sa

SIGNAL SHIFTING CIRCUIT, BASE CHIP, AND SEMICONDUCTOR SYSTEM INCLUDING THE SAME

A signal shifting circuit may include a bank selection signal generation unit suitable for generating a bank selection signal synchronized with a first clock in response to a bank address and an internal write signal; and a shifting device suitable for generating a shifted bank selection signal by shifting the bank selection signal by a number of times according to latency information and for advancing a phase of the shifted bank selection signal whenever shifting the bank selection signal once or more so that the shifted bank selection signal is synchronized with a second clock having a phase leading a phase of the first clock.




sa

ADDRESS GENERATION CIRCUIT AND MEMORY DEVICE INCLUDING THE SAME

An address generation circuit may include: a first latch unit suitable for latching an address obtained by inverting a part of an input address; a second latch unit suitable for latching the partly inverted input address of the first latch unit, and suitable for latching an added/subtracted address after a first refresh operation during a target refresh period; a third latch unit suitable for latching the partly inverted input address of the first latch unit during a period other than the target refresh period; and an addition/subtraction unit suitable for generating the added/subtracted address by adding/subtracting a predetermined value to/from the latched address of the second latch unit.




sa

REFRESH CONTROLLER AND MEMORY DEVICE INCLUDING THE SAME

A refresh controller of a memory device may include a timing controller, a refresh counter and an address generator. The timing controller generates a counter refresh signal in response to receiving a refresh command provided from an external device, and generates a hammer refresh signal that is activated periodically. The refresh counter generates a counter refresh address signal in response to the counter refresh signal, such that the counter refresh address signal represents a row address, the refresh counter being configured sequentially change the counter refresh address signal. The address generator generates a hammer refresh address signal in response to the hammer refresh signal, the hammer refresh address signal representing an address of a row of the memory device that is physically adjacent to a row of the memory device corresponding to a hammer address that is accessed intensively.




sa

ELECTRONIC DEVICE AND METHOD FOR DRIVING THE SAME

An electronic device includes a semiconductor memory that includes: a memory cell coupled between a first line and a second line; a first selection block configured to select the first line; a second selection block configured to select the second line; an alternate current supply block configured to supply, during a read operation, an alternate current corresponding to a resistance state of the memory cell; and a sensing block configured to sense, during the read operation, at least one of a cell current flowing through the memory cell and the alternate current.




sa

METHOD FOR FABRICATING SEMICONDUCTOR DEVICE AND METHOD FOR OPERATING THE SAME

A method for fabricating a semiconductor device and a method for operating the semiconductor device are provided. The method for fabricating a semiconductor device includes forming a first electrode layer; forming a material layer, including conductive path components, over the first electrode layer; forming a second electrode layer over the material layer; performing a forming operation, which includes initially creating, in the material layer, a conductive path that electrically connects the first electrode layer to the second electrode layer by applying one of a predetermined voltage and a predetermined current between the first and second electrode layers, the conductive path including the conductive path components; and performing a first heat-treatment process at a predetermined temperature that removes some of the conductive path components from the conductive path, wherein a resistance state of the material layer changes based on the creation or dissolution of the conductive paths.




sa

UPLINK DATA TRANSMISSION METHOD IN WIRELESS COMMUNICATION SYSTEM AND APPARATUS FOR THE SAME

A method for transmitting uplink (UL) data requiring low latency in a wireless communication system according to the present invention, the method performed by a user equipment comprises transmitting contention PUSCH resource block (CPRB) indication information used for identifying a particular UE and/or particular data to an eNB; transmitting UL data to the eNB through CPRB resources of a contention based PUSCH (CP) zone; and receiving a hybrid automatic retransmit request (HARQ) response with respect to the UL data from the eNB through a physical hybrid ARQ indicator channel (PHICH).




sa

Method, Apparatus, Server, and Systems of Time-Reversal Technology

A time-reversal wireless system comprising a first wireless transceiver of a time-reversal client, one or more second wireless transceiver and/or a time-reversal client with the first wireless transceiver. The first wireless transceiver of the time-reversal client is wirelessly coupled to the one or more second wireless transceiver through a wireless broadband multipath channel associated with a space. The time-reversal client contains the first wireless transceiver. The time-reversal client also contains a processor and a memory configured to obtain a set of channel state information (CSI) in a channel probing phase, and/or to obtain a set of location-specific signatures based on the set of CSI and/or a time reversal operation in a channel probing phase. The set of CSI is captured when one or more probing signal is sent either from the first wireless transceiver to each of the at least one second wireless transceiver, or from each of the at least one second wireless transceiver to the first wireless transceiver, through the wireless broadband multipath channel associated with the space. A channel passband with bandwidth W0 is associated with the wireless broadband multipath channel. A first passband with bandwidth W1 is associated with the first wireless transceiver. The W1 is not larger than W0 such that the first passband is part of the channel passband. One or more second passband is associated with the one or more second wireless transceiver such that a bandwidth W2 associated with each of the one or more second passband is not larger than W1 such that the each of the one or more second passband is part of the first passband. Each of the set of CSI include a channel impulse response, a channel frequency response, and/or another channel state data of the wireless broadband multipath channel.




sa

METHOD FOR TRANSMITTING AND RECEIVING FRAME IN WIRELESS LOCAL AREA NETWORK SYSTEM AND APPARATUS FOR THE SAME

Disclosed are a method for transmitting and receiving a frame in a wireless local area network (WLAN) system and an apparatus for the same. A method for generating interference/non-interference station lists includes receiving a first frame from a second station, acquiring a receiver address of the first frame from the first frame, and setting, based on whether to receive a second frame that is a response to the first frame from a third station indicated by the receiver address within a preset time from a time when the first frame has been received, the third station as an interference station or a non-interference station. Therefore, the performance of a communication system may be improved.




sa

Wireless Access Point with Two Radio Frequency Modules of Same Frequency Band and Signal Interference Reduction Method

Embodiments of the present invention disclose a wireless access point, including: a first radio frequency module, a second radio frequency module, and a processor. A frequency band of the first radio frequency module is the same as that of the second radio frequency module; the first radio frequency module and the second radio frequency module work on different channels; a first transmit power upper limit of the first radio frequency module is greater than a second transmit power upper limit of the second radio frequency module; and the processor is configured to schedule a terminal whose signal strength is greater than a threshold to associate with the wireless access point by using the second radio frequency module. The complexity of hardware design for integrating two radio frequency modules of a same frequency band into one AP may be reduced.




sa

Technologies for streaming device role reversal

Technologies for streaming device role reversal include a source computing device and a destination computing device coupled via a communication channel. The source computing device and destination computing device are each configured to support role reversal. In other words, the source computing device and the destination computing device are each capable of switching between receiving and transmitting digital media content over the established communication channel. The source computing device is configured to initiate the role reversal, pause transmit functionality of the source computing device, and enable receive functionality of the source computing device. The destination computing device is configured to receive a role reversal indication from the source computing device, locally process the content, transmit a content stream to the source computing device, and display the content stream on an output device of the source computing device. Other embodiments are described and claimed herein.




sa

Structure for supporting clothes to be decolorized, method of forming the same and method of using the same

This invention is about a structure for supporting clothes to be decolorized and for aiding in the process of decoloration, to a method of forming the same, and to a method of using the same to decolorize clothes. It includes manufacturing a semi-finished product for supporting clothes and manufacturing the supporting structure as well as a the method of decolorizing clothes using the supporting structure to have various decolorizing textures and styles.




sa

BARREL STAVE EDGE SAWING MACHINE

A pair of motor driven circular saws are mounted on opposite sides of a frame supported horizontal barrel stave carrying conveyor with the axes of the saws perpendicular to the direction of conveyor travel and their planes arranged in downwardly converging relation. Spring loaded guide rollers, forming a part of the saw driving motor supports, adjusts the position of the saws in a desired barrel stave edge trimming spaced-apart relation by contact with the respective opposing longitudinal sides of a barrel stave to be trimmed as it is moved by the conveyor between the saws. Lock means actuated by spring loaded pressure rollers overlying the position of the barrel stave when moved by the conveyor maintains the adjusted spaced-apart relation of the saws for the duration of the saw trimming action on each side of each stave moved through the machine by the conveyor.




sa

Compensation circuit for low phase offset for phase-locked loops

A phase-locked loop circuit and method for providing for compensation for an offset. A phase-locked loop circuit comprises a phase detector, a compensation circuit, a loop filter, and a VCO. The phase detector is coupled to receive a first input signal and a second input signal. The phase detector is configured to output one or more of a plurality of output signals indicative of a difference between the first input signal and the second input signal. The compensation circuit is coupled to receive the output signals and to reduce a voltage offset between the output signals. The compensation circuit is further configured to provide a plurality of compensated output signals. The loop filter is coupled to receive the compensated control signals. The loop filter is configured to output a first control signal. The VCO is coupled to receive the first control signal and to output the second input signal based on the first control signal. A method of operating a phase-locked loop circuit comprises receiving and comparing a first input signal and a second input signal and providing output signals indicative of the comparison. The method compensates for a voltage offset between the output signals and provides compensated output signals indicative of the compensation. The method filters the compensated control signals and provides a control signal indicative of the filtration. The method provides the second input signal based on the first control signal. Lower skew between the input and output may be achieved.




sa

Locating beam and robot linear motion unit having the same

A locating beam and a robot linear motion unit having the same, wherein the locating beam comprises a first support beam and a second support beam which are parallel to each other, a crossbeam connected between the first support beam and the second support beam and is vertical to the beams, and a joints between the crossbeam and the beams is provided with a right-angle connecting piece. The robot linear motion unit includes a motion track and a transmission mechanism arranged along the extension direction of the motion track, and the motion track is arranged on a surface of the locating beam. Arranging the crossbeam and right-angle connecting pieces between the first support beam and the second support beam in the locating beam, improves the mechanical structure strength, reduces deflection deformation and twist deformation of the locating beam, and improves the impact resistance of the robot linear motion unit.




sa

Inclination angle compensation systems and methods

An inclination angle compensation system for determining an inclination angle of a machine is disclosed. The inclination angle compensation system may have a non-gravitational acceleration estimator configured to estimate a non-gravitational acceleration of a machine based on an estimated inclination angle and an acceleration output from a forward acceleration sensor. The inclination angle compensation system may also have an inclination angle sensor corrector configured to receive an inclination angle output from an inclination angle sensor, determine an inclination angle sensor acceleration based on the inclination angle output, and calculate a corrected inclination angle of the machine based on the non-gravitational acceleration and the inclination angle sensor acceleration.




sa

Systems and methods for sailboat mast alignment

Systems and methods for sailboat mast alignment are provided. In some embodiments, a system for alignment of a sailboat mast comprises a mounting bracket configured for attachment to the mast, and one or more lasers pivotally connected to the mounting bracket to enable the one or more lasers to be positioned at an index angle relative to the mast on both sides of the mast.




sa

MOUTHPIECE DELIVERY APPARATUS AND METHODS OF USING THE SAME

A mouthpiece delivery apparatus and methods for the using the same are provided. In at least one specific embodiment, the mouthpiece delivery apparatus can include: a mouthpiece that can include a top receiving wall, a bottom receiving wall, a first side wall and a second side wall, where the bottom receiving wall can include a base member and an edge member; an adapter section, where the adapter section is configured to attach to a dispensing apparatus; and a body section, where the body section is attached to the mouthpiece at a first end and attached to the adapter section at a second end.




sa

DOUBLE CLUTCH ASSEMBLY AND DEVICE FOR ASSISTING ACTUATOR OF THE SAME

The present disclosure provides a double clutch assembly and a device for assisting an actuator of the double clutch. The device applies an assistance force to the actuator upon an operation of the actuator. In particular, the double clutch assembly includes first and second actuators which engage or disengage first and second clutches, respectively. The device includes: an elastic member to apply an elastic force; a first transfer portion to transfer the elastic force of the elastic member to the first actuator; and a second transfer portion to transfer the elastic force of the elastic member to the second actuator.




sa

DEVICE FOR ACTUATING A CLUTCH-CONTROLLED TRANSFER CASE HAVING A TWO-STAGE INTERMEDIATE GEARING AND CLUTCH-CONTROLLED TRANSFER CASE THAT HAS A TWO-STAGE INTERMEDIATE GEARING AND THAT IS EQUIPPED WITH SAID DEVICE

The invention relates to a device for actuating a clutch-controlled transfer case having a two-stage intermediate gearing and a clutch-controlled transfer case that has a two-stage intermediate gearing and that is equipped with such a device. The device comprises: a rotatably driven selector shaft,a drive for rotating the selector shaft,a clutch cam disk, which can be rotated about a clutch cam disk axis by means of the selector shaft, andat least one scissor lever, wherein: one end (06) of at least one scissor lever is guided in a gate provided on the clutch cam disk,the gate has a curved path for each scissor lever, in which curved path the end of the scissor lever associated with the curved path is guided,the curved path winds around the clutch cam disk axis by at least 360°,the curved path has at least one helical segment having a continuously increasing or decreasing distance from the clutch cam disk axis, along which segment one end of a scissor lever guided therein experiences a continuously increasing or decreasing change in deflection with respect to the clutch cam disk axis during a rotation of the clutch cam disk with increasing angle of rotation, andthe clutch cam disk is disposed in such a way that the clutch cam disk can be rotated with respect to the selector shaft between two stops by an angle-of-rotation range such that, by means of rotation of the selector shaft within the angle-of-rotation range situated between said stops, shifting back and forth between the shifting stages of the intermediate gearing occurs, and, by means of rotation of the selector shaft beyond the angle-of-rotation range, the end of the at least one scissor lever experiences a deflection for actuating the clutch while a selected shifting stage is maintained.




sa

Cationic microfibrillated plant fibre and manufacturing method for same

The present invention provides a novel cationized microfibrillated plant fiber and a method for manufacturing the same. A cationic microfibrillated plant fiber that is cationically modified with a quaternary-ammonium-group-containing compound, and that has an average diameter of 4 to 200 nm.




sa

Thiophene azo dyes and laundry care compositions containing the same

This application relates to thiophene azo dyes for use as hueing agents, laundry care compositions comprising such thiophene azo dyes, processes for making such thiophene azo dyes, and laundry care compositions and methods of using the same. The thiophene azo dyes contain a formally charged moiety and are generally comprised of at least two components: at least one chromophore component and at least one polymeric component. Suitable chromophore components generally fluoresce blue, red, violet, or purple color when exposed to ultraviolet light, or they may absorb light to reflect these same shades. These thiophene azo dyes are advantageous in providing a hueing effect, for example, a whitening effect to fabrics, while not building up over time and causing undesirable blue discoloration to the treated fabrics. The thiophene azo dyes are also generally stable to bleaching agents used in laundry care compositions.




sa

Cellulose nanofiber, production method of same and cellulose nanofiber dispersion

The cellulose nanofiber production method of the present invention comprises an oxidation treatment step for oxidizing native cellulose in a neutral or acidic reaction solution containing an N-oxyl compound and an oxidizing agent that oxidizes aldehyde groups, and a dispersion step for dispersing the native cellulose in a medium following the oxidation treatment step. According to the production method of the present invention, a cellulose nanofiber is provided that has long fibers and demonstrates high strength.




sa

Photoresist composition and method of forming a black matrix using the same

A photoresist composition includes a binder resin combined with a black dye, a monomer, a photo-polymerization initiator and a remainder of a solvent.




sa

Optical brighteners and compositions comprising the same

Novel compounds based on distyryl-biphenyl are provided. The compounds conform to the general structure The compounds are useful as optical brighteners. Compositions, such as laundry care compositions, containing such compounds are also provided.




sa

Bluing composition and method for treating textile articles using the same

A bluing composition concentrate comprises an aqueous medium and at least one colorant that exhibits a blue or violet shade when deposited onto a textile material. The concentrate can be used to produce a bluing composition, and the bluing composition can be used to treat textile materials in such a way as to decrease the visually-perceived yellow coloration of textile articles that can occur with repeated use and laundering.




sa

SIGNAL TRANSFER CIRCUIT AND CIRCUIT FOR GENERATING HIT SIGNAL INCLUDING THE SAME

A signal transfer circuit may include a pass gate coupled between first and second nodes; and a control unit suitable for controlling the pass gate to prevent a current flowing from the second node to the first node during turn-on of the pass gate.




sa

Sampling circuit and sampling method

A sampling circuit for sampling an input voltage and generating an output voltage, comprising six switches, a capacitor and a voltage buffer. The first switch has a control terminal and makes the output voltage equal to the input voltage when switching on. The second switch is coupled to a first terminal of the capacitor and a first level. The third switch is coupled to a second terminal of the capacitor and a second level. The fourth switch is coupled to the first terminal of the capacitor and the control terminal. The fifth switch is coupled to the control terminal and the second level. The voltage buffer has large input impedance, and has an input receiving the input voltage, an output providing a voltage equal or close to the input voltage. The sixth switch is coupled to the second terminal of the capacitor and the output of the voltage buffer.




sa

CLOCK GENERATION CIRCUIT AND SEMICONDUCTOR APPARATUS AND ELECTRONIC SYSTEM USING THE SAME

A clock generation circuit may include a reference clock generator configured to generate a pair of first reference clocks in an offset code generation mode, a correction code generator configured to generate a reference correction code according to a duty detection signal based on a phase difference between the pair of first reference clocks, and an offset code generator configured to generate an offset code based on the reference correction code and a preset reference code.




sa

CLOCK SELECTION CIRCUIT AND POWER SUPPLY DEVICE EQUIPPED WITH THE SAME

To provide a clock selection circuit capable of reducing clock omission generated when switching from a state of being synchronized with a first clock to a second clock. The clock selection circuit is equipped with a clock detection circuit which detects a first clock to output a detected signal, a switch which outputs the first clock when the detected signal is at a first level and outputs a second clock when the detected signal is at a second level different from the first level, and a one-shot circuit which outputs a one-shot pulse in response to switching of the detected signal from the first level to the second level. The output of the switch and the output of the one-shot circuit are added to be outputted as an output clock.




sa

SEPARATOR FOR RECHARGEABLE BATTERY AND RECHARGEABLE BATTERY INCLUDING THE SAME

A separator for a rechargeable battery and a rechargeable lithium battery, the separator including a porous substrate; and a heat-resistant porous layer on at least one surface of the porous substrate, wherein the heat-resistant porous layer includes a filler and a copolymer including a structural unit of vinylidenefluoride, a structural unit of hexafluoropropylene, and a structural unit of a carboxyl-containing monomer, the structural unit of hexafluoropropylene is present in an amount of about 4 wt % to about 10 wt %, based on a total weight of the copolymer, and the structural unit of a carboxyl-containing monomer is present in an amount of about 1 wt % to about 7 wt %, based on the total weight of the copolymer.




sa

POSITIVE ELECTRODE ACTIVE MATERIAL FOR SODIUM SECONDARY BATTERY, AND METHOD FOR PREPARING SAME

The present invention relates to a positive electrode active material for a sodium secondary battery, and a method for preparing the same. The positive electrode active material for the sodium secondary battery according to the present invention is structurally more stable by replacing a part of the transition metal with Li, and accordingly, the thermal stability and life characteristics of the sodium battery including the positive electrode active material are greatly improved.




sa

REVERSIBLE FUEL CELL OXYGEN ELECTRODE, REVERSIBLE FUEL CELL INCLUDING THE SAME, AND METHOD FOR PREPARING THE SAME

Disclosed are a reversible fuel cell oxygen electrode in which IrO2 is electrodeposited and formed on a porous carbon material and platinum is applied thereon to form a porous platinum layer, a reversible fuel cell including the same, and a method for preparing the same. According to the corresponding reversible fuel cell oxygen electrode, as the loading amounts of IrO2 and platinum used in the reversible fuel cell oxygen electrode can be lowered, it is possible to exhibit excellent reversible fuel cell performances (excellent fuel cell performance and water electrolysis performance) by improving the mass transport of water and oxygen while being capable of reducing the loading amounts of IrO2 and platinum. Further, it is possible to exhibit a good activity of a catalyst when the present disclosure is applied to a reversible fuel cell oxygen electrode and to reduce corrosion of carbon.




sa

ANODE FOR MOLTEN CARBONATE FUEL CELL HAVING IMPROVED CREEP PROPERTY, METHOD FOR PREPARING THE SAME, AND MOLTEN CARBONATE FUEL CELL USING THE ANODE

Disclosed is an anode for a molten carbonate fuel cell (MCFC) having improved creep property by adding an additive for imparting creep resistance to nickel-aluminum alloy and nickel as materials for an anode. Improved sintering property, creep property and increased mechanical strength of a molten carbonate fuel cell may be obtained accordingly.




sa

POSITIVE ELECTRODE ACTIVE MATERIAL FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERIES, PRODUCTION METHOD THEREOF, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY INCLUDING SAID MATERIAL

Provided is a positive electrode active material that can be used to fabricate a nonaqueous electrolyte secondary battery having excellent output characteristics not only in an environment at normal temperature but also in all temperature environments from extremely low to high temperatures. A positive electrode active material for nonaqueous electrolyte secondary batteries, the positive electrode active material includes a boron compound and lithium-nickel-cobalt-manganese composite oxide of general formula (1) having a layered hexagonal crystal structure. The lithium-nickel-cobalt-manganese composite oxide includes secondary particles composed of agglomerated primary particles. The boron compound is present on at least part of the surface of the primary particles, and contains lithium. Li1+sNixCoyMnzMotMwO2 (1)




sa

SOLID ELECTROLYTE AND LITHIUM BATTERY INCLUDING THE SAME

A solid electrolyte for an all-solid secondary battery, the solid electrolyte including: Li, S, P, an M1 element, and an M2 element, wherein the M1 element is at least one element selected from Na, K, Rb, Sc, Fr, and the M2 element is at least one element selected from F, Cl, Br, I, molar amounts of lithium and the M1 element satisfy 0




sa

ELECTROLYTE SOLUTION COMPRISING SULFUR DIOXIDE-BASED IONIC LIQUID ELECTROLYTE, AND SODIUM-SULFUR DIOXIDE SECONDARY BATTERY HAVING SAME

The described technology relates to an electrolyte solution comprising a sulfur dioxide-based ionic liquid electrolyte, and a sodium-sulfur dioxide (Na—SO2) secondary battery having same, one purpose of the described technology being to enhance the storage characteristics of sulfur dioxide gas in an electrolyte solution. The sodium-sulfur dioxide secondary battery includes a negative electrode which is formed from an inorganic material and which contains sodium. The battery also includes a positive electrode which is formed from a carbon material and a sulfur dioxide-based inorganic electrolyte solution. Here, the electrolyte solution contains a sulfur dioxide-based ionic liquid electrolyte prepared by injecting SO2 gas in an ionic liquid.