est

A nonparametric spatial test to identify factors that shape a microbiome

Susheela P. Singh, Ana-Maria Staicu, Robert R. Dunn, Noah Fierer, Brian J. Reich.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2341--2362.

Abstract:
The advent of high-throughput sequencing technologies has made data from DNA material readily available, leading to a surge of microbiome-related research establishing links between markers of microbiome health and specific outcomes. However, to harness the power of microbial communities we must understand not only how they affect us, but also how they can be influenced to improve outcomes. This area has been dominated by methods that reduce community composition to summary metrics, which can fail to fully exploit the complexity of community data. Recently, methods have been developed to model the abundance of taxa in a community, but they can be computationally intensive and do not account for spatial effects underlying microbial settlement. These spatial effects are particularly relevant in the microbiome setting because we expect communities that are close together to be more similar than those that are far apart. In this paper, we propose a flexible Bayesian spike-and-slab variable selection model for presence-absence indicators that accounts for spatial dependence and cross-dependence between taxa while reducing dimensionality in both directions. We show by simulation that in the presence of spatial dependence, popular distance-based hypothesis testing methods fail to preserve their advertised size, and the proposed method improves variable selection. Finally, we present an application of our method to an indoor fungal community found within homes across the contiguous United States.




est

A latent discrete Markov random field approach to identifying and classifying historical forest communities based on spatial multivariate tree species counts

Stephen Berg, Jun Zhu, Murray K. Clayton, Monika E. Shea, David J. Mladenoff.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2312--2340.

Abstract:
The Wisconsin Public Land Survey database describes historical forest composition at high spatial resolution and is of interest in ecological studies of forest composition in Wisconsin just prior to significant Euro-American settlement. For such studies it is useful to identify recurring subpopulations of tree species known as communities, but standard clustering approaches for subpopulation identification do not account for dependence between spatially nearby observations. Here, we develop and fit a latent discrete Markov random field model for the purpose of identifying and classifying historical forest communities based on spatially referenced multivariate tree species counts across Wisconsin. We show empirically for the actual dataset and through simulation that our latent Markov random field modeling approach improves prediction and parameter estimation performance. For model fitting we introduce a new stochastic approximation algorithm which enables computationally efficient estimation and classification of large amounts of spatial multivariate count data.




est

Fitting a deeply nested hierarchical model to a large book review dataset using a moment-based estimator

Ningshan Zhang, Kyle Schmaus, Patrick O. Perry.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2260--2288.

Abstract:
We consider a particular instance of a common problem in recommender systems, using a database of book reviews to inform user-targeted recommendations. In our dataset, books are categorized into genres and subgenres. To exploit this nested taxonomy, we use a hierarchical model that enables information pooling across across similar items at many levels within the genre hierarchy. The main challenge in deploying this model is computational. The data sizes are large and fitting the model at scale using off-the-shelf maximum likelihood procedures is prohibitive. To get around this computational bottleneck, we extend a moment-based fitting procedure proposed for fitting single-level hierarchical models to the general case of arbitrarily deep hierarchies. This extension is an order of magnitude faster than standard maximum likelihood procedures. The fitting method can be deployed beyond recommender systems to general contexts with deeply nested hierarchical generalized linear mixed models.




est

Principal nested shape space analysis of molecular dynamics data

Ian L. Dryden, Kwang-Rae Kim, Charles A. Laughton, Huiling Le.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2213--2234.

Abstract:
Molecular dynamics simulations produce huge datasets of temporal sequences of molecules. It is of interest to summarize the shape evolution of the molecules in a succinct, low-dimensional representation. However, Euclidean techniques such as principal components analysis (PCA) can be problematic as the data may lie far from in a flat manifold. Principal nested spheres gives a fundamentally different decomposition of data from the usual Euclidean subspace based PCA [ Biometrika 99 (2012) 551–568]. Subspaces of successively lower dimension are fitted to the data in a backwards manner with the aim of retaining signal and dispensing with noise at each stage. We adapt the methodology to 3D subshape spaces and provide some practical fitting algorithms. The methodology is applied to cluster analysis of peptides, where different states of the molecules can be identified. Also, the temporal transitions between cluster states are explored.




est

Fire seasonality identification with multimodality tests

Jose Ameijeiras-Alonso, Akli Benali, Rosa M. Crujeiras, Alberto Rodríguez-Casal, José M. C. Pereira.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2120--2139.

Abstract:
Understanding the role of vegetation fires in the Earth system is an important environmental problem. Although fire occurrence is influenced by natural factors, human activity related to land use and management has altered the temporal patterns of fire in several regions of the world. Hence, for a better insight into fires regimes it is of special interest to analyze where human activity has altered fire seasonality. For doing so, multimodality tests are a useful tool for determining the number of annual fire peaks. The periodicity of fires and their complex distributional features motivate the use of nonparametric circular statistics. The unsatisfactory performance of previous circular nonparametric proposals for testing multimodality justifies the introduction of a new approach, considering an adapted version of the excess mass statistic, jointly with a bootstrap calibration algorithm. A systematic application of the test on the Russia–Kazakhstan area is presented in order to determine how many fire peaks can be identified in this region. A False Discovery Rate correction, accounting for the spatial dependence of the data, is also required.




est

Robust elastic net estimators for variable selection and identification of proteomic biomarkers

Gabriela V. Cohen Freue, David Kepplinger, Matías Salibián-Barrera, Ezequiel Smucler.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2065--2090.

Abstract:
In large-scale quantitative proteomic studies, scientists measure the abundance of thousands of proteins from the human proteome in search of novel biomarkers for a given disease. Penalized regression estimators can be used to identify potential biomarkers among a large set of molecular features measured. Yet, the performance and statistical properties of these estimators depend on the loss and penalty functions used to define them. Motivated by a real plasma proteomic biomarkers study, we propose a new class of penalized robust estimators based on the elastic net penalty, which can be tuned to keep groups of correlated variables together in the selected model and maintain robustness against possible outliers. We also propose an efficient algorithm to compute our robust penalized estimators and derive a data-driven method to select the penalty term. Our robust penalized estimators have very good robustness properties and are also consistent under certain regularity conditions. Numerical results show that our robust estimators compare favorably to other robust penalized estimators. Using our proposed methodology for the analysis of the proteomics data, we identify new potentially relevant biomarkers of cardiac allograft vasculopathy that are not found with nonrobust alternatives. The selected model is validated in a new set of 52 test samples and achieves an area under the receiver operating characteristic (AUC) of 0.85.




est

Estimating abundance from multiple sampling capture-recapture data via a multi-state multi-period stopover model

Hannah Worthington, Rachel McCrea, Ruth King, Richard Griffiths.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2043--2064.

Abstract:
Capture-recapture studies often involve collecting data on numerous capture occasions over a relatively short period of time. For many study species this process is repeated, for example, annually, resulting in capture information spanning multiple sampling periods. To account for the different temporal scales, the robust design class of models have traditionally been applied providing a framework in which to analyse all of the available capture data in a single likelihood expression. However, these models typically require strong constraints, either the assumption of closure within a sampling period (the closed robust design) or conditioning on the number of individuals captured within a sampling period (the open robust design). For real datasets these assumptions may not be appropriate. We develop a general modelling structure that requires neither assumption by explicitly modelling the movement of individuals into the population both within and between the sampling periods, which in turn permits the estimation of abundance within a single consistent framework. The flexibility of the novel model structure is further demonstrated by including the computationally challenging case of multi-state data where there is individual time-varying discrete covariate information. We derive an efficient likelihood expression for the new multi-state multi-period stopover model using the hidden Markov model framework. We demonstrate the significant improvement in parameter estimation using our new modelling approach in terms of both the multi-period and multi-state components through both a simulation study and a real dataset relating to the protected species of great crested newts, Triturus cristatus .




est

Estimating the rate constant from biosensor data via an adaptive variational Bayesian approach

Ye Zhang, Zhigang Yao, Patrik Forssén, Torgny Fornstedt.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2011--2042.

Abstract:
The means to obtain the rate constants of a chemical reaction is a fundamental open problem in both science and the industry. Traditional techniques for finding rate constants require either chemical modifications of the reactants or indirect measurements. The rate constant map method is a modern technique to study binding equilibrium and kinetics in chemical reactions. Finding a rate constant map from biosensor data is an ill-posed inverse problem that is usually solved by regularization. In this work, rather than finding a deterministic regularized rate constant map that does not provide uncertainty quantification of the solution, we develop an adaptive variational Bayesian approach to estimate the distribution of the rate constant map, from which some intrinsic properties of a chemical reaction can be explored, including information about rate constants. Our new approach is more realistic than the existing approaches used for biosensors and allows us to estimate the dynamics of the interactions, which are usually hidden in a deterministic approximate solution. We verify the performance of the new proposed method by numerical simulations, and compare it with the Markov chain Monte Carlo algorithm. The results illustrate that the variational method can reliably capture the posterior distribution in a computationally efficient way. Finally, the developed method is also tested on the real biosensor data (parathyroid hormone), where we provide two novel analysis tools—the thresholding contour map and the high order moment map—to estimate the number of interactions as well as their rate constants.




est

Oblique random survival forests

Byron C. Jaeger, D. Leann Long, Dustin M. Long, Mario Sims, Jeff M. Szychowski, Yuan-I Min, Leslie A. Mcclure, George Howard, Noah Simon.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1847--1883.

Abstract:
We introduce and evaluate the oblique random survival forest (ORSF). The ORSF is an ensemble method for right-censored survival data that uses linear combinations of input variables to recursively partition a set of training data. Regularized Cox proportional hazard models are used to identify linear combinations of input variables in each recursive partitioning step. Benchmark results using simulated and real data indicate that the ORSF’s predicted risk function has high prognostic value in comparison to random survival forests, conditional inference forests, regression and boosting. In an application to data from the Jackson Heart Study, we demonstrate variable and partial dependence using the ORSF and highlight characteristics of its ten-year predicted risk function for atherosclerotic cardiovascular disease events (ASCVD; stroke, coronary heart disease). We present visualizations comparing variable and partial effect estimation according to the ORSF, the conditional inference forest, and the Pooled Cohort Risk equations. The obliqueRSF R package, which provides functions to fit the ORSF and create variable and partial dependence plots, is available on the comprehensive R archive network (CRAN).




est

Wavelet spectral testing: Application to nonstationary circadian rhythms

Jessica K. Hargreaves, Marina I. Knight, Jon W. Pitchford, Rachael J. Oakenfull, Sangeeta Chawla, Jack Munns, Seth J. Davis.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1817--1846.

Abstract:
Rhythmic data are ubiquitous in the life sciences. Biologists need reliable statistical tests to identify whether a particular experimental treatment has caused a significant change in a rhythmic signal. When these signals display nonstationary behaviour, as is common in many biological systems, the established methodologies may be misleading. Therefore, there is a real need for new methodology that enables the formal comparison of nonstationary processes. As circadian behaviour is best understood in the spectral domain, here we develop novel hypothesis testing procedures in the (wavelet) spectral domain, embedding replicate information when available. The data are modelled as realisations of locally stationary wavelet processes, allowing us to define and rigorously estimate their evolutionary wavelet spectra. Motivated by three complementary applications in circadian biology, our new methodology allows the identification of three specific types of spectral difference. We demonstrate the advantages of our methodology over alternative approaches, by means of a comprehensive simulation study and real data applications, using both published and newly generated circadian datasets. In contrast to the current standard methodologies, our method successfully identifies differences within the motivating circadian datasets, and facilitates wider ranging analyses of rhythmic biological data in general.




est

Sequential decision model for inference and prediction on nonuniform hypergraphs with application to knot matching from computational forestry

Seong-Hwan Jun, Samuel W. K. Wong, James V. Zidek, Alexandre Bouchard-Côté.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1678--1707.

Abstract:
In this paper, we consider the knot-matching problem arising in computational forestry. The knot-matching problem is an important problem that needs to be solved to advance the state of the art in automatic strength prediction of lumber. We show that this problem can be formulated as a quadripartite matching problem and develop a sequential decision model that admits efficient parameter estimation along with a sequential Monte Carlo sampler on graph matching that can be utilized for rapid sampling of graph matching. We demonstrate the effectiveness of our methods on 30 manually annotated boards and present findings from various simulation studies to provide further evidence supporting the efficacy of our methods.




est

Distributional regression forests for probabilistic precipitation forecasting in complex terrain

Lisa Schlosser, Torsten Hothorn, Reto Stauffer, Achim Zeileis.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1564--1589.

Abstract:
To obtain a probabilistic model for a dependent variable based on some set of explanatory variables, a distributional approach is often adopted where the parameters of the distribution are linked to regressors. In many classical models this only captures the location of the distribution but over the last decade there has been increasing interest in distributional regression approaches modeling all parameters including location, scale and shape. Notably, so-called nonhomogeneous Gaussian regression (NGR) models both mean and variance of a Gaussian response and is particularly popular in weather forecasting. Moreover, generalized additive models for location, scale and shape (GAMLSS) provide a framework where each distribution parameter is modeled separately capturing smooth linear or nonlinear effects. However, when variable selection is required and/or there are nonsmooth dependencies or interactions (especially unknown or of high-order), it is challenging to establish a good GAMLSS. A natural alternative in these situations would be the application of regression trees or random forests but, so far, no general distributional framework is available for these. Therefore, a framework for distributional regression trees and forests is proposed that blends regression trees and random forests with classical distributions from the GAMLSS framework as well as their censored or truncated counterparts. To illustrate these novel approaches in practice, they are employed to obtain probabilistic precipitation forecasts at numerous sites in a mountainous region (Tyrol, Austria) based on a large number of numerical weather prediction quantities. It is shown that the novel distributional regression forests automatically select variables and interactions, performing on par or often even better than GAMLSS specified either through prior meteorological knowledge or a computationally more demanding boosting approach.




est

The classification permutation test: A flexible approach to testing for covariate imbalance in observational studies

Johann Gagnon-Bartsch, Yotam Shem-Tov.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1464--1483.

Abstract:
The gold standard for identifying causal relationships is a randomized controlled experiment. In many applications in the social sciences and medicine, the researcher does not control the assignment mechanism and instead may rely upon natural experiments or matching methods as a substitute to experimental randomization. The standard testable implication of random assignment is covariate balance between the treated and control units. Covariate balance is commonly used to validate the claim of as good as random assignment. We propose a new nonparametric test of covariate balance. Our Classification Permutation Test (CPT) is based on a combination of classification methods (e.g., random forests) with Fisherian permutation inference. We revisit four real data examples and present Monte Carlo power simulations to demonstrate the applicability of the CPT relative to other nonparametric tests of equality of multivariate distributions.




est

On Sobolev tests of uniformity on the circle with an extension to the sphere

Sreenivasa Rao Jammalamadaka, Simos Meintanis, Thomas Verdebout.

Source: Bernoulli, Volume 26, Number 3, 2226--2252.

Abstract:
Circular and spherical data arise in many applications, especially in biology, Earth sciences and astronomy. In dealing with such data, one of the preliminary steps before any further inference, is to test if such data is isotropic, that is, uniformly distributed around the circle or the sphere. In view of its importance, there is a considerable literature on the topic. In the present work, we provide new tests of uniformity on the circle based on original asymptotic results. Our tests are motivated by the shape of locally and asymptotically maximin tests of uniformity against generalized von Mises distributions. We show that they are uniformly consistent. Empirical power comparisons with several competing procedures are presented via simulations. The new tests detect particularly well multimodal alternatives such as mixtures of von Mises distributions. A practically-oriented combination of the new tests with already existing Sobolev tests is proposed. An extension to testing uniformity on the sphere, along with some simulations, is included. The procedures are illustrated on a real dataset.




est

On estimation of nonsmooth functionals of sparse normal means

O. Collier, L. Comminges, A.B. Tsybakov.

Source: Bernoulli, Volume 26, Number 3, 1989--2020.

Abstract:
We study the problem of estimation of $N_{gamma }( heta )=sum_{i=1}^{d}| heta _{i}|^{gamma }$ for $gamma >0$ and of the $ell _{gamma }$-norm of $ heta $ for $gamma ge 1$ based on the observations $y_{i}= heta _{i}+varepsilon xi _{i}$, $i=1,ldots,d$, where $ heta =( heta _{1},dots , heta _{d})$ are unknown parameters, $varepsilon >0$ is known, and $xi _{i}$ are i.i.d. standard normal random variables. We find the non-asymptotic minimax rate for estimation of these functionals on the class of $s$-sparse vectors $ heta $ and we propose estimators achieving this rate.




est

On the best constant in the martingale version of Fefferman’s inequality

Adam Osękowski.

Source: Bernoulli, Volume 26, Number 3, 1912--1926.

Abstract:
Let $X=(X_{t})_{tgeq 0}in H^{1}$ and $Y=(Y_{t})_{tgeq 0}in{mathrm{BMO}} $ be arbitrary continuous-path martingales. The paper contains the proof of the inequality egin{equation*}mathbb{E}int _{0}^{infty }iglvert dlangle X,Y angle_{t}igrvert leq sqrt{2}Vert XVert _{H^{1}}Vert YVert _{mathrm{BMO}_{2}},end{equation*} and the constant $sqrt{2}$ is shown to be the best possible. The proof rests on the construction of a certain special function, enjoying appropriate size and concavity conditions.




est

Kernel and wavelet density estimators on manifolds and more general metric spaces

Galatia Cleanthous, Athanasios G. Georgiadis, Gerard Kerkyacharian, Pencho Petrushev, Dominique Picard.

Source: Bernoulli, Volume 26, Number 3, 1832--1862.

Abstract:
We consider the problem of estimating the density of observations taking values in classical or nonclassical spaces such as manifolds and more general metric spaces. Our setting is quite general but also sufficiently rich in allowing the development of smooth functional calculus with well localized spectral kernels, Besov regularity spaces, and wavelet type systems. Kernel and both linear and nonlinear wavelet density estimators are introduced and studied. Convergence rates for these estimators are established and discussed.




est

Local differential privacy: Elbow effect in optimal density estimation and adaptation over Besov ellipsoids

Cristina Butucea, Amandine Dubois, Martin Kroll, Adrien Saumard.

Source: Bernoulli, Volume 26, Number 3, 1727--1764.

Abstract:
We address the problem of non-parametric density estimation under the additional constraint that only privatised data are allowed to be published and available for inference. For this purpose, we adopt a recent generalisation of classical minimax theory to the framework of local $alpha$-differential privacy and provide a lower bound on the rate of convergence over Besov spaces $mathcal{B}^{s}_{pq}$ under mean integrated $mathbb{L}^{r}$-risk. This lower bound is deteriorated compared to the standard setup without privacy, and reveals a twofold elbow effect. In order to fulfill the privacy requirement, we suggest adding suitably scaled Laplace noise to empirical wavelet coefficients. Upper bounds within (at most) a logarithmic factor are derived under the assumption that $alpha$ stays bounded as $n$ increases: A linear but non-adaptive wavelet estimator is shown to attain the lower bound whenever $pgeq r$ but provides a slower rate of convergence otherwise. An adaptive non-linear wavelet estimator with appropriately chosen smoothing parameters and thresholding is shown to attain the lower bound within a logarithmic factor for all cases.




est

Estimating the number of connected components in a graph via subgraph sampling

Jason M. Klusowski, Yihong Wu.

Source: Bernoulli, Volume 26, Number 3, 1635--1664.

Abstract:
Learning properties of large graphs from samples has been an important problem in statistical network analysis since the early work of Goodman ( Ann. Math. Stat. 20 (1949) 572–579) and Frank ( Scand. J. Stat. 5 (1978) 177–188). We revisit a problem formulated by Frank ( Scand. J. Stat. 5 (1978) 177–188) of estimating the number of connected components in a large graph based on the subgraph sampling model, in which we randomly sample a subset of the vertices and observe the induced subgraph. The key question is whether accurate estimation is achievable in the sublinear regime where only a vanishing fraction of the vertices are sampled. We show that it is impossible if the parent graph is allowed to contain high-degree vertices or long induced cycles. For the class of chordal graphs, where induced cycles of length four or above are forbidden, we characterize the optimal sample complexity within constant factors and construct linear-time estimators that provably achieve these bounds. This significantly expands the scope of previous results which have focused on unbiased estimators and special classes of graphs such as forests or cliques. Both the construction and the analysis of the proposed methodology rely on combinatorial properties of chordal graphs and identities of induced subgraph counts. They, in turn, also play a key role in proving minimax lower bounds based on construction of random instances of graphs with matching structures of small subgraphs.




est

Efficient estimation in single index models through smoothing splines

Arun K. Kuchibhotla, Rohit K. Patra.

Source: Bernoulli, Volume 26, Number 2, 1587--1618.

Abstract:
We consider estimation and inference in a single index regression model with an unknown but smooth link function. In contrast to the standard approach of using kernels or regression splines, we use smoothing splines to estimate the smooth link function. We develop a method to compute the penalized least squares estimators (PLSEs) of the parametric and the nonparametric components given independent and identically distributed (i.i.d.) data. We prove the consistency and find the rates of convergence of the estimators. We establish asymptotic normality under mild assumption and prove asymptotic efficiency of the parametric component under homoscedastic errors. A finite sample simulation corroborates our asymptotic theory. We also analyze a car mileage data set and a Ozone concentration data set. The identifiability and existence of the PLSEs are also investigated.




est

Consistent structure estimation of exponential-family random graph models with block structure

Michael Schweinberger.

Source: Bernoulli, Volume 26, Number 2, 1205--1233.

Abstract:
We consider the challenging problem of statistical inference for exponential-family random graph models based on a single observation of a random graph with complex dependence. To facilitate statistical inference, we consider random graphs with additional structure in the form of block structure. We have shown elsewhere that when the block structure is known, it facilitates consistency results for $M$-estimators of canonical and curved exponential-family random graph models with complex dependence, such as transitivity. In practice, the block structure is known in some applications (e.g., multilevel networks), but is unknown in others. When the block structure is unknown, the first and foremost question is whether it can be recovered with high probability based on a single observation of a random graph with complex dependence. The main consistency results of the paper show that it is possible to do so under weak dependence and smoothness conditions. These results confirm that exponential-family random graph models with block structure constitute a promising direction of statistical network analysis.




est

A Bayesian nonparametric approach to log-concave density estimation

Ester Mariucci, Kolyan Ray, Botond Szabó.

Source: Bernoulli, Volume 26, Number 2, 1070--1097.

Abstract:
The estimation of a log-concave density on $mathbb{R}$ is a canonical problem in the area of shape-constrained nonparametric inference. We present a Bayesian nonparametric approach to this problem based on an exponentiated Dirichlet process mixture prior and show that the posterior distribution converges to the log-concave truth at the (near-) minimax rate in Hellinger distance. Our proof proceeds by establishing a general contraction result based on the log-concave maximum likelihood estimator that prevents the need for further metric entropy calculations. We further present computationally more feasible approximations and both an empirical and hierarchical Bayes approach. All priors are illustrated numerically via simulations.




est

Robust estimation of mixing measures in finite mixture models

Nhat Ho, XuanLong Nguyen, Ya’acov Ritov.

Source: Bernoulli, Volume 26, Number 2, 828--857.

Abstract:
In finite mixture models, apart from underlying mixing measure, true kernel density function of each subpopulation in the data is, in many scenarios, unknown. Perhaps the most popular approach is to choose some kernel functions that we empirically believe our data are generated from and use these kernels to fit our models. Nevertheless, as long as the chosen kernel and the true kernel are different, statistical inference of mixing measure under this setting will be highly unstable. To overcome this challenge, we propose flexible and efficient robust estimators of the mixing measure in these models, which are inspired by the idea of minimum Hellinger distance estimator, model selection criteria, and superefficiency phenomenon. We demonstrate that our estimators consistently recover the true number of components and achieve the optimal convergence rates of parameter estimation under both the well- and misspecified kernel settings for any fixed bandwidth. These desirable asymptotic properties are illustrated via careful simulation studies with both synthetic and real data.




est

Robust modifications of U-statistics and applications to covariance estimation problems

Stanislav Minsker, Xiaohan Wei.

Source: Bernoulli, Volume 26, Number 1, 694--727.

Abstract:
Let $Y$ be a $d$-dimensional random vector with unknown mean $mu $ and covariance matrix $Sigma $. This paper is motivated by the problem of designing an estimator of $Sigma $ that admits exponential deviation bounds in the operator norm under minimal assumptions on the underlying distribution, such as existence of only 4th moments of the coordinates of $Y$. To address this problem, we propose robust modifications of the operator-valued U-statistics, obtain non-asymptotic guarantees for their performance, and demonstrate the implications of these results to the covariance estimation problem under various structural assumptions.




est

Consistent semiparametric estimators for recurrent event times models with application to virtual age models

Eric Beutner, Laurent Bordes, Laurent Doyen.

Source: Bernoulli, Volume 26, Number 1, 557--586.

Abstract:
Virtual age models are very useful to analyse recurrent events. Among the strengths of these models is their ability to account for treatment (or intervention) effects after an event occurrence. Despite their flexibility for modeling recurrent events, the number of applications is limited. This seems to be a result of the fact that in the semiparametric setting all the existing results assume the virtual age function that describes the treatment (or intervention) effects to be known. This shortcoming can be overcome by considering semiparametric virtual age models with parametrically specified virtual age functions. Yet, fitting such a model is a difficult task. Indeed, it has recently been shown that for these models the standard profile likelihood method fails to lead to consistent estimators. Here we show that consistent estimators can be constructed by smoothing the profile log-likelihood function appropriately. We show that our general result can be applied to most of the relevant virtual age models of the literature. Our approach shows that empirical process techniques may be a worthwhile alternative to martingale methods for studying asymptotic properties of these inference methods. A simulation study is provided to illustrate our consistency results together with an application to real data.




est

Prediction and estimation consistency of sparse multi-class penalized optimal scoring

Irina Gaynanova.

Source: Bernoulli, Volume 26, Number 1, 286--322.

Abstract:
Sparse linear discriminant analysis via penalized optimal scoring is a successful tool for classification in high-dimensional settings. While the variable selection consistency of sparse optimal scoring has been established, the corresponding prediction and estimation consistency results have been lacking. We bridge this gap by providing probabilistic bounds on out-of-sample prediction error and estimation error of multi-class penalized optimal scoring allowing for diverging number of classes.




est

Estimation of the linear fractional stable motion

Stepan Mazur, Dmitry Otryakhin, Mark Podolskij.

Source: Bernoulli, Volume 26, Number 1, 226--252.

Abstract:
In this paper, we investigate the parametric inference for the linear fractional stable motion in high and low frequency setting. The symmetric linear fractional stable motion is a three-parameter family, which constitutes a natural non-Gaussian analogue of the scaled fractional Brownian motion. It is fully characterised by the scaling parameter $sigma>0$, the self-similarity parameter $Hin(0,1)$ and the stability index $alphain(0,2)$ of the driving stable motion. The parametric estimation of the model is inspired by the limit theory for stationary increments Lévy moving average processes that has been recently studied in ( Ann. Probab. 45 (2017) 4477–4528). More specifically, we combine (negative) power variation statistics and empirical characteristic functions to obtain consistent estimates of $(sigma,alpha,H)$. We present the law of large numbers and some fully feasible weak limit theorems.




est

A new method for obtaining sharp compound Poisson approximation error estimates for sums of locally dependent random variables

Michael V. Boutsikas, Eutichia Vaggelatou

Source: Bernoulli, Volume 16, Number 2, 301--330.

Abstract:
Let X 1 , X 2 , …, X n be a sequence of independent or locally dependent random variables taking values in ℤ + . In this paper, we derive sharp bounds, via a new probabilistic method, for the total variation distance between the distribution of the sum ∑ i =1 n X i and an appropriate Poisson or compound Poisson distribution. These bounds include a factor which depends on the smoothness of the approximating Poisson or compound Poisson distribution. This “smoothness factor” is of order O( σ −2 ), according to a heuristic argument, where σ 2 denotes the variance of the approximating distribution. In this way, we offer sharp error estimates for a large range of values of the parameters. Finally, specific examples concerning appearances of rare runs in sequences of Bernoulli trials are presented by way of illustration.




est

Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm.

Fuhlbohm (Family)




est

From Westphalia to South Australia : the story of Franz Heinrich Ernst Siekmann / by Peter Brinkworth.

Siekmann, Francis Heinrich Ernst, 1830-1917.




est

By the richest of God's grace / Anna Penney.

Penney, Anna -- Travels.




est

Discover Protestant nonconformity in England and Wales / Paul Blake.

Dissenters, Religious -- Great Britain.




est

No turning back : stories of our ancestors / by David Gambling.

Gambling (Family)




est

Daws : the ancestors of Revell Daws.

Daws, Revell.




est

Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm.

Fuhlbohm (Family)




est

From alms house to first nation : a story of my ancestors in South Australia : a Sherwell family story / by Pamela Coad (nee Sherwell).

Sherwell (Family)




est

How States, Assessment Companies Can Work Together Amid Coronavirus Testing Cancellations

Scott Marion, who consults states on testing, talks about why it's important for vendors and public officials to work cooperatively in renegotiating contracts amid assessment cancellations caused by COVID-19.

The post How States, Assessment Companies Can Work Together Amid Coronavirus Testing Cancellations appeared first on Market Brief.




est

Willie Neville Majoribank Chester manuscript collection, 5 November 1915 - 22 December 1918




est

Item 07: A Journal of ye [the] Proceedings of his Majesty's Sloop Swallow, Captain Phillip [Philip] Carteret Commander, Commencing ye [the] 23 of July 1766 and ended [4 July 1767]




est

Item 08: A Logg [Log] Book of the proceedings on Board His Majesty's Ship Swallow, Captain Philip Carteret Commander Commencing from the 20th August 1766 and Ending [21st May 1768]




est

Item 13: Swallow 1767, A journal of the proceedings on Board His Majesty's Sloop Swallow, commencing the 1st of March 1767 and Ended the 7th of July 1767




est

U.S. chief justice puts hold on disclosure of Russia investigation materials

U.S. Chief Justice John Roberts on Friday put a temporary hold on the disclosure to a Democratic-led House of Representatives committee of grand jury material redacted from former Special Counsel Robert Mueller's report on Russian interference in the 2016 election. The U.S. Court of Appeals for the District of Columbia Circuit ruled in March that the materials had to be disclosed to the House Judiciary Committee and refused to put that decision on hold. The appeals court said the materials had to be handed over by May 11 if the Supreme Court did not intervene.





est

A person was struck and killed by a Southwest plane as it landed on the runway at Austin international airport

Austin-Bergstrom International Airport said it was "aware of an individual that was struck and killed on runway 17-R by a landing aircraft."





est

Pence staffer who tested positive for coronavirus is Stephen Miller's wife

The staffer of Vice President Mike Pence who tested positive for coronavirus is apparently his press secretary and the wife of White House senior adviser Stephen Miller.Reports emerged on Friday that a member of Pence's staff had tested positive for COVID-19, creating a delay in his flight to Iowa amid concern over who may have been exposed. Later in the day, Trump said the staffer is a "press person" named Katie.Politico reported he was referring to Katie Miller, Pence's press secretary and the wife of Stephen Miller. This report noted this raises the risk that "a large swath of the West Wing's senior aides may also have been exposed." She confirmed her positive diagnosis to NBC News, saying she does not have symptoms.Trump spilled the beans to reporters, saying Katie Miller "hasn't come into contact with me" but has "spent some time with the vice president." This news comes one day after a personal valet to Trump tested positive for COVID-19, which reportedly made the president "lava level mad." Pence and Trump are being tested for COVID-19 every day.Asked Friday if he's concerned about the potential spread of coronavirus in the White House, Trump said "I'm not worried, no," adding that "we've taken very strong precautions."More stories from theweek.com Outed CIA agent Valerie Plame is running for Congress, and her launch video looks like a spy movie trailer 7 scathing cartoons about America's rush to reopen Trump says he couldn't have exposed WWII vets to COVID-19 because the wind was blowing the wrong way





est

Cruz gets his hair cut at salon whose owner was jailed for defying Texas coronavirus restrictions

After his haircut, Sen. Ted Cruz said, "It was ridiculous to see somebody sentenced to seven days in jail for cutting hair."





est

Brazil's Amazon: Surge in deforestation as military prepares to deploy

The military is preparing to deploy to the region to try to stop illegal logging and mining.





est

Pence press secretary tests positive for coronavirus

The news comes shortly after a valet who served meals to President Trump also tested positive for the virus.





est

Neighbor of father and son arrested in Ahmaud Arbery killing is also under investigation

The ongoing investigation of the fatal shooting in Brunswick, Georgia, will also look at a neighbor of suspects Gregory and Travis McMichael who recorded video of the incident, authorities said.





est

Bayesian Estimation Under Informative Sampling with Unattenuated Dependence

Matthew R. Williams, Terrance D. Savitsky.

Source: Bayesian Analysis, Volume 15, Number 1, 57--77.

Abstract:
An informative sampling design leads to unit inclusion probabilities that are correlated with the response variable of interest. However, multistage sampling designs may also induce higher order dependencies, which are ignored in the literature when establishing consistency of estimators for survey data under a condition requiring asymptotic independence among the unit inclusion probabilities. This paper constructs new theoretical conditions that guarantee that the pseudo-posterior, which uses sampling weights based on first order inclusion probabilities to exponentiate the likelihood, is consistent not only for survey designs which have asymptotic factorization, but also for survey designs that induce residual or unattenuated dependence among sampled units. The use of the survey-weighted pseudo-posterior, together with our relaxed requirements for the survey design, establish a wide variety of analysis models that can be applied to a broad class of survey data sets. Using the complex sampling design of the National Survey on Drug Use and Health, we demonstrate our new theoretical result on multistage designs characterized by a cluster sampling step that expresses within-cluster dependence. We explore the impact of multistage designs and order based sampling.




est

Latent Nested Nonparametric Priors (with Discussion)

Federico Camerlenghi, David B. Dunson, Antonio Lijoi, Igor Prünster, Abel Rodríguez.

Source: Bayesian Analysis, Volume 14, Number 4, 1303--1356.

Abstract:
Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalizing to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop a Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by-product. The results and their inferential implications are showcased on synthetic and real data.