est On the distribution, model selection properties and uniqueness of the Lasso estimator in low and high dimensions By projecteuclid.org Published On :: Mon, 17 Feb 2020 22:06 EST Karl Ewald, Ulrike Schneider. Source: Electronic Journal of Statistics, Volume 14, Number 1, 944--969.Abstract: We derive expressions for the finite-sample distribution of the Lasso estimator in the context of a linear regression model in low as well as in high dimensions by exploiting the structure of the optimization problem defining the estimator. In low dimensions, we assume full rank of the regressor matrix and present expressions for the cumulative distribution function as well as the densities of the absolutely continuous parts of the estimator. Our results are presented for the case of normally distributed errors, but do not hinge on this assumption and can easily be generalized. Additionally, we establish an explicit formula for the correspondence between the Lasso and the least-squares estimator. We derive analogous results for the distribution in less explicit form in high dimensions where we make no assumptions on the regressor matrix at all. In this setting, we also investigate the model selection properties of the Lasso and show that possibly only a subset of models might be selected by the estimator, completely independently of the observed response vector. Finally, we present a condition for uniqueness of the estimator that is necessary as well as sufficient. Full Article
est On a Metropolis–Hastings importance sampling estimator By projecteuclid.org Published On :: Mon, 10 Feb 2020 04:01 EST Daniel Rudolf, Björn Sprungk. Source: Electronic Journal of Statistics, Volume 14, Number 1, 857--889.Abstract: A classical approach for approximating expectations of functions w.r.t. partially known distributions is to compute the average of function values along a trajectory of a Metropolis–Hastings (MH) Markov chain. A key part in the MH algorithm is a suitable acceptance/rejection of a proposed state, which ensures the correct stationary distribution of the resulting Markov chain. However, the rejection of proposals causes highly correlated samples. In particular, when a state is rejected it is not taken any further into account. In contrast to that we consider a MH importance sampling estimator which explicitly incorporates all proposed states generated by the MH algorithm. The estimator satisfies a strong law of large numbers as well as a central limit theorem, and, in addition to that, we provide an explicit mean squared error bound. Remarkably, the asymptotic variance of the MH importance sampling estimator does not involve any correlation term in contrast to its classical counterpart. Moreover, although the analyzed estimator uses the same amount of information as the classical MH estimator, it can outperform the latter in scenarios of moderate dimensions as indicated by numerical experiments. Full Article
est Estimation of a semiparametric transformation model: A novel approach based on least squares minimization By projecteuclid.org Published On :: Tue, 04 Feb 2020 22:03 EST Benjamin Colling, Ingrid Van Keilegom. Source: Electronic Journal of Statistics, Volume 14, Number 1, 769--800.Abstract: Consider the following semiparametric transformation model $Lambda_{ heta }(Y)=m(X)+varepsilon $, where $X$ is a $d$-dimensional covariate, $Y$ is a univariate response variable and $varepsilon $ is an error term with zero mean and independent of $X$. We assume that $m$ is an unknown regression function and that ${Lambda _{ heta }: heta inTheta }$ is a parametric family of strictly increasing functions. Our goal is to develop two new estimators of the transformation parameter $ heta $. The main idea of these two estimators is to minimize, with respect to $ heta $, the $L_{2}$-distance between the transformation $Lambda _{ heta }$ and one of its fully nonparametric estimators. We consider in particular the nonparametric estimator based on the least-absolute deviation loss constructed in Colling and Van Keilegom (2019). We establish the consistency and the asymptotic normality of the two proposed estimators of $ heta $. We also carry out a simulation study to illustrate and compare the performance of our new parametric estimators to that of the profile likelihood estimator constructed in Linton et al. (2008). Full Article
est The bias and skewness of M -estimators in regression By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Christopher Withers, Saralees NadarajahSource: Electron. J. Statist., Volume 4, 1--14.Abstract: We consider M estimation of a regression model with a nuisance parameter and a vector of other parameters. The unknown distribution of the residuals is not assumed to be normal or symmetric. Simple and easily estimated formulas are given for the dominant terms of the bias and skewness of the parameter estimates. For the linear model these are proportional to the skewness of the ‘independent’ variables. For a nonlinear model, its linear component plays the role of these independent variables, and a second term must be added proportional to the covariance of its linear and quadratic components. For the least squares estimate with normal errors this term was derived by Box [1]. We also consider the effect of a large number of parameters, and the case of random independent variables. Full Article
est Lower Bounds for Testing Graphical Models: Colorings and Antiferromagnetic Ising Models By Published On :: 2020 We study the identity testing problem in the context of spin systems or undirected graphical models, where it takes the following form: given the parameter specification of the model $M$ and a sampling oracle for the distribution $mu_{M^*}$ of an unknown model $M^*$, can we efficiently determine if the two models $M$ and $M^*$ are the same? We consider identity testing for both soft-constraint and hard-constraint systems. In particular, we prove hardness results in two prototypical cases, the Ising model and proper colorings, and explore whether identity testing is any easier than structure learning. For the ferromagnetic (attractive) Ising model, Daskalakis et al. (2018) presented a polynomial-time algorithm for identity testing. We prove hardness results in the antiferromagnetic (repulsive) setting in the same regime of parameters where structure learning is known to require a super-polynomial number of samples. Specifically, for $n$-vertex graphs of maximum degree $d$, we prove that if $|eta| d = omega(log{n})$ (where $eta$ is the inverse temperature parameter), then there is no polynomial running time identity testing algorithm unless $RP=NP$. In the hard-constraint setting, we present hardness results for identity testing for proper colorings. Our results are based on the presumed hardness of #BIS, the problem of (approximately) counting independent sets in bipartite graphs. Full Article
est Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes By Published On :: 2020 We consider the problem of jointly estimating multiple inverse covariance matrices from high-dimensional data consisting of distinct classes. An $ell_2$-penalized maximum likelihood approach is employed. The suggested approach is flexible and generic, incorporating several other $ell_2$-penalized estimators as special cases. In addition, the approach allows specification of target matrices through which prior knowledge may be incorporated and which can stabilize the estimation procedure in high-dimensional settings. The result is a targeted fused ridge estimator that is of use when the precision matrices of the constituent classes are believed to chiefly share the same structure while potentially differing in a number of locations of interest. It has many applications in (multi)factorial study designs. We focus on the graphical interpretation of precision matrices with the proposed estimator then serving as a basis for integrative or meta-analytic Gaussian graphical modeling. Situations are considered in which the classes are defined by data sets and subtypes of diseases. The performance of the proposed estimator in the graphical modeling setting is assessed through extensive simulation experiments. Its practical usability is illustrated by the differential network modeling of 12 large-scale gene expression data sets of diffuse large B-cell lymphoma subtypes. The estimator and its related procedures are incorporated into the R-package rags2ridges. Full Article
est Provably robust estimation of modulo 1 samples of a smooth function with applications to phase unwrapping By Published On :: 2020 Consider an unknown smooth function $f: [0,1]^d ightarrow mathbb{R}$, and assume we are given $n$ noisy mod 1 samples of $f$, i.e., $y_i = (f(x_i) + eta_i) mod 1$, for $x_i in [0,1]^d$, where $eta_i$ denotes the noise. Given the samples $(x_i,y_i)_{i=1}^{n}$, our goal is to recover smooth, robust estimates of the clean samples $f(x_i) mod 1$. We formulate a natural approach for solving this problem, which works with angular embeddings of the noisy mod 1 samples over the unit circle, inspired by the angular synchronization framework. This amounts to solving a smoothness regularized least-squares problem -- a quadratically constrained quadratic program (QCQP) -- where the variables are constrained to lie on the unit circle. Our proposed approach is based on solving its relaxation, which is a trust-region sub-problem and hence solvable efficiently. We provide theoretical guarantees demonstrating its robustness to noise for adversarial, as well as random Gaussian and Bernoulli noise models. To the best of our knowledge, these are the first such theoretical results for this problem. We demonstrate the robustness and efficiency of our proposed approach via extensive numerical simulations on synthetic data, along with a simple least-squares based solution for the unwrapping stage, that recovers the original samples of $f$ (up to a global shift). It is shown to perform well at high levels of noise, when taking as input the denoised modulo $1$ samples. Finally, we also consider two other approaches for denoising the modulo 1 samples that leverage tools from Riemannian optimization on manifolds, including a Burer-Monteiro approach for a semidefinite programming relaxation of our formulation. For the two-dimensional version of the problem, which has applications in synthetic aperture radar interferometry (InSAR), we are able to solve instances of real-world data with a million sample points in under 10 seconds, on a personal laptop. Full Article
est Ancestral Gumbel-Top-k Sampling for Sampling Without Replacement By Published On :: 2020 We develop ancestral Gumbel-Top-$k$ sampling: a generic and efficient method for sampling without replacement from discrete-valued Bayesian networks, which includes multivariate discrete distributions, Markov chains and sequence models. The method uses an extension of the Gumbel-Max trick to sample without replacement by finding the top $k$ of perturbed log-probabilities among all possible configurations of a Bayesian network. Despite the exponentially large domain, the algorithm has a complexity linear in the number of variables and sample size $k$. Our algorithm allows to set the number of parallel processors $m$, to trade off the number of iterations versus the total cost (iterations times $m$) of running the algorithm. For $m = 1$ the algorithm has minimum total cost, whereas for $m = k$ the number of iterations is minimized, and the resulting algorithm is known as Stochastic Beam Search. We provide extensions of the algorithm and discuss a number of related algorithms. We analyze the properties of ancestral Gumbel-Top-$k$ sampling and compare against alternatives on randomly generated Bayesian networks with different levels of connectivity. In the context of (deep) sequence models, we show its use as a method to generate diverse but high-quality translations and statistical estimates of translation quality and entropy. Full Article
est Smoothed Nonparametric Derivative Estimation using Weighted Difference Quotients By Published On :: 2020 Derivatives play an important role in bandwidth selection methods (e.g., plug-ins), data analysis and bias-corrected confidence intervals. Therefore, obtaining accurate derivative information is crucial. Although many derivative estimation methods exist, the majority require a fixed design assumption. In this paper, we propose an effective and fully data-driven framework to estimate the first and second order derivative in random design. We establish the asymptotic properties of the proposed derivative estimator, and also propose a fast selection method for the tuning parameters. The performance and flexibility of the method is illustrated via an extensive simulation study. Full Article
est Estimation of a Low-rank Topic-Based Model for Information Cascades By Published On :: 2020 We consider the problem of estimating the latent structure of a social network based on the observed information diffusion events, or cascades, where the observations for a given cascade consist of only the timestamps of infection for infected nodes but not the source of the infection. Most of the existing work on this problem has focused on estimating a diffusion matrix without any structural assumptions on it. In this paper, we propose a novel model based on the intuition that an information is more likely to propagate among two nodes if they are interested in similar topics which are also prominent in the information content. In particular, our model endows each node with an influence vector (which measures how authoritative the node is on each topic) and a receptivity vector (which measures how susceptible the node is for each topic). We show how this node-topic structure can be estimated from the observed cascades, and prove the consistency of the estimator. Experiments on synthetic and real data demonstrate the improved performance and better interpretability of our model compared to existing state-of-the-art methods. Full Article
est Cook commemoration sparks 1970 protest By feedproxy.google.com Published On :: Tue, 28 Apr 2020 04:52:55 +0000 In 1970, celebrations and commemorations were held across the nation for the 200th anniversary of the Endeavour’s visit Full Article
est Reliability estimation in a multicomponent stress-strength model for Burr XII distribution under progressive censoring By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Raj Kamal Maurya, Yogesh Mani Tripathi. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 345--369.Abstract: We consider estimation of the multicomponent stress-strength reliability under progressive Type II censoring under the assumption that stress and strength variables follow Burr XII distributions with a common shape parameter. Maximum likelihood estimates of the reliability are obtained along with asymptotic intervals when common shape parameter may be known or unknown. Bayes estimates are also derived under the squared error loss function using different approximation methods. Further, we obtain exact Bayes and uniformly minimum variance unbiased estimates of the reliability for the case common shape parameter is known. The highest posterior density intervals are also obtained. We perform Monte Carlo simulations to compare the performance of proposed estimates and present a discussion based on this study. Finally, two real data sets are analyzed for illustration purposes. Full Article
est Agnostic tests can control the type I and type II errors simultaneously By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Victor Coscrato, Rafael Izbicki, Rafael B. Stern. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 230--250.Abstract: Despite its common practice, statistical hypothesis testing presents challenges in interpretation. For instance, in the standard frequentist framework there is no control of the type II error. As a result, the non-rejection of the null hypothesis $(H_{0})$ cannot reasonably be interpreted as its acceptance. We propose that this dilemma can be overcome by using agnostic hypothesis tests, since they can control the type I and II errors simultaneously. In order to make this idea operational, we show how to obtain agnostic hypothesis in typical models. For instance, we show how to build (unbiased) uniformly most powerful agnostic tests and how to obtain agnostic tests from standard p-values. Also, we present conditions such that the above tests can be made logically coherent. Finally, we present examples of consistent agnostic hypothesis tests. Full Article
est On estimating the location parameter of the selected exponential population under the LINEX loss function By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Mohd Arshad, Omer Abdalghani. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 167--182.Abstract: Suppose that $pi_{1},pi_{2},ldots ,pi_{k}$ be $k(geq2)$ independent exponential populations having unknown location parameters $mu_{1},mu_{2},ldots,mu_{k}$ and known scale parameters $sigma_{1},ldots,sigma_{k}$. Let $mu_{[k]}=max {mu_{1},ldots,mu_{k}}$. For selecting the population associated with $mu_{[k]}$, a class of selection rules (proposed by Arshad and Misra [ Statistical Papers 57 (2016) 605–621]) is considered. We consider the problem of estimating the location parameter $mu_{S}$ of the selected population under the criterion of the LINEX loss function. We consider three natural estimators $delta_{N,1},delta_{N,2}$ and $delta_{N,3}$ of $mu_{S}$, based on the maximum likelihood estimators, uniformly minimum variance unbiased estimator (UMVUE) and minimum risk equivariant estimator (MREE) of $mu_{i}$’s, respectively. The uniformly minimum risk unbiased estimator (UMRUE) and the generalized Bayes estimator of $mu_{S}$ are derived. Under the LINEX loss function, a general result for improving a location-equivariant estimator of $mu_{S}$ is derived. Using this result, estimator better than the natural estimator $delta_{N,1}$ is obtained. We also shown that the estimator $delta_{N,1}$ is dominated by the natural estimator $delta_{N,3}$. Finally, we perform a simulation study to evaluate and compare risk functions among various competing estimators of $mu_{S}$. Full Article
est Multivariate normal approximation of the maximum likelihood estimator via the delta method By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Andreas Anastasiou, Robert E. Gaunt. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 136--149.Abstract: We use the delta method and Stein’s method to derive, under regularity conditions, explicit upper bounds for the distributional distance between the distribution of the maximum likelihood estimator (MLE) of a $d$-dimensional parameter and its asymptotic multivariate normal distribution. Our bounds apply in situations in which the MLE can be written as a function of a sum of i.i.d. $t$-dimensional random vectors. We apply our general bound to establish a bound for the multivariate normal approximation of the MLE of the normal distribution with unknown mean and variance. Full Article
est Bootstrap-based testing inference in beta regressions By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Fábio P. Lima, Francisco Cribari-Neto. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 18--34.Abstract: We address the issue of performing testing inference in small samples in the class of beta regression models. We consider the likelihood ratio test and its standard bootstrap version. We also consider two alternative resampling-based tests. One of them uses the bootstrap test statistic replicates to numerically estimate a Bartlett correction factor that can be applied to the likelihood ratio test statistic. By doing so, we avoid estimation of quantities located in the tail of the likelihood ratio test statistic null distribution. The second alternative resampling-based test uses a fast double bootstrap scheme in which a single second level bootstrapping resample is performed for each first level bootstrap replication. It delivers accurate testing inferences at a computational cost that is considerably smaller than that of a standard double bootstrapping scheme. The Monte Carlo results we provide show that the standard likelihood ratio test tends to be quite liberal in small samples. They also show that the bootstrap tests deliver accurate testing inferences even when the sample size is quite small. An empirical application is also presented and discussed. Full Article
est Subjective Bayesian testing using calibrated prior probabilities By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Dan J. Spitzner. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 861--893.Abstract: This article proposes a calibration scheme for Bayesian testing that coordinates analytically-derived statistical performance considerations with expert opinion. In other words, the scheme is effective and meaningful for incorporating objective elements into subjective Bayesian inference. It explores a novel role for default priors as anchors for calibration rather than substitutes for prior knowledge. Ideas are developed for use with multiplicity adjustments in multiple-model contexts, and to address the issue of prior sensitivity of Bayes factors. Along the way, the performance properties of an existing multiplicity adjustment related to the Poisson distribution are clarified theoretically. Connections of the overall calibration scheme to the Schwarz criterion are also explored. The proposed framework is examined and illustrated on a number of existing data sets related to problems in clinical trials, forensic pattern matching, and log-linear models methodology. Full Article
est Bayesian hypothesis testing: Redux By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Hedibert F. Lopes, Nicholas G. Polson. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 745--755.Abstract: Bayesian hypothesis testing is re-examined from the perspective of an a priori assessment of the test statistic distribution under the alternative. By assessing the distribution of an observable test statistic, rather than prior parameter values, we revisit the seminal paper of Edwards, Lindman and Savage ( Psychol. Rev. 70 (1963) 193–242). There are a number of important take-aways from comparing the Bayesian paradigm via Bayes factors to frequentist ones. We provide examples where evidence for a Bayesian strikingly supports the null, but leads to rejection under a classical test. Finally, we conclude with directions for future research. Full Article
est Keeping the balance—Bridge sampling for marginal likelihood estimation in finite mixture, mixture of experts and Markov mixture models By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Sylvia Frühwirth-Schnatter. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 706--733.Abstract: Finite mixture models and their extensions to Markov mixture and mixture of experts models are very popular in analysing data of various kind. A challenge for these models is choosing the number of components based on marginal likelihoods. The present paper suggests two innovative, generic bridge sampling estimators of the marginal likelihood that are based on constructing balanced importance densities from the conditional densities arising during Gibbs sampling. The full permutation bridge sampling estimator is derived from considering all possible permutations of the mixture labels for a subset of these densities. For the double random permutation bridge sampling estimator, two levels of random permutations are applied, first to permute the labels of the MCMC draws and second to randomly permute the labels of the conditional densities arising during Gibbs sampling. Various applications show very good performance of these estimators in comparison to importance and to reciprocal importance sampling estimators derived from the same importance densities. Full Article
est Estimation of parameters in the $operatorname{DDRCINAR}(p)$ model By projecteuclid.org Published On :: Mon, 10 Jun 2019 04:04 EDT Xiufang Liu, Dehui Wang. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 638--673.Abstract: This paper discusses a $p$th-order dependence-driven random coefficient integer-valued autoregressive time series model ($operatorname{DDRCINAR}(p)$). Stationarity and ergodicity properties are proved. Conditional least squares, weighted least squares and maximum quasi-likelihood are used to estimate the model parameters. Asymptotic properties of the estimators are presented. The performances of these estimators are investigated and compared via simulations. In certain regions of the parameter space, simulative analysis shows that maximum quasi-likelihood estimators perform better than the estimators of conditional least squares and weighted least squares in terms of the proportion of within-$Omega$ estimates. At last, the model is applied to two real data sets. Full Article
est A rank-based Cramér–von-Mises-type test for two samples By projecteuclid.org Published On :: Mon, 10 Jun 2019 04:04 EDT Jamye Curry, Xin Dang, Hailin Sang. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 425--454.Abstract: We study a rank based univariate two-sample distribution-free test. The test statistic is the difference between the average of between-group rank distances and the average of within-group rank distances. This test statistic is closely related to the two-sample Cramér–von Mises criterion. They are different empirical versions of a same quantity for testing the equality of two population distributions. Although they may be different for finite samples, they share the same expected value, variance and asymptotic properties. The advantage of the new rank based test over the classical one is its ease to generalize to the multivariate case. Rather than using the empirical process approach, we provide a different easier proof, bringing in a different perspective and insight. In particular, we apply the Hájek projection and orthogonal decomposition technique in deriving the asymptotics of the proposed rank based statistic. A numerical study compares power performance of the rank formulation test with other commonly-used nonparametric tests and recommendations on those tests are provided. Lastly, we propose a multivariate extension of the test based on the spatial rank. Full Article
est Failure rate of Birnbaum–Saunders distributions: Shape, change-point, estimation and robustness By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Emilia Athayde, Assis Azevedo, Michelli Barros, Víctor Leiva. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 301--328.Abstract: The Birnbaum–Saunders (BS) distribution has been largely studied and applied. A random variable with BS distribution is a transformation of another random variable with standard normal distribution. Generalized BS distributions are obtained when the normally distributed random variable is replaced by another symmetrically distributed random variable. This allows us to obtain a wide class of positively skewed models with lighter and heavier tails than the BS model. Its failure rate admits several shapes, including the unimodal case, with its change-point being able to be used for different purposes. For example, to establish the reduction in a dose, and then in the cost of the medical treatment. We analyze the failure rates of generalized BS distributions obtained by the logistic, normal and Student-t distributions, considering their shape and change-point, estimating them, evaluating their robustness, assessing their performance by simulations, and applying the results to real data from different areas. Full Article
est Modified information criterion for testing changes in skew normal model By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Khamis K. Said, Wei Ning, Yubin Tian. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 280--300.Abstract: In this paper, we study the change point problem for the skew normal distribution model from the view of model selection problem. The detection procedure based on the modified information criterion (MIC) for change problem is proposed. Such a procedure has advantage in detecting the changes in early and late stage of a data comparing to the one based on the traditional Schwarz information criterion which is well known as Bayesian information criterion (BIC) by considering the complexity of the models. Due to the difficulty in deriving the analytic asymptotic distribution of the test statistic based on the MIC procedure, the bootstrap simulation is provided to obtain the critical values at the different significance levels. Simulations are conducted to illustrate the comparisons of performance between MIC, BIC and likelihood ratio test (LRT). Such an approach is applied on two stock market data sets to indicate the detection procedure. Full Article
est Bayesian robustness to outliers in linear regression and ratio estimation By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Alain Desgagné, Philippe Gagnon. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 205--221.Abstract: Whole robustness is a nice property to have for statistical models. It implies that the impact of outliers gradually vanishes as they approach plus or minus infinity. So far, the Bayesian literature provides results that ensure whole robustness for the location-scale model. In this paper, we make two contributions. First, we generalise the results to attain whole robustness in simple linear regression through the origin, which is a necessary step towards results for general linear regression models. We allow the variance of the error term to depend on the explanatory variable. This flexibility leads to the second contribution: we provide a simple Bayesian approach to robustly estimate finite population means and ratios. The strategy to attain whole robustness is simple since it lies in replacing the traditional normal assumption on the error term by a super heavy-tailed distribution assumption. As a result, users can estimate the parameters as usual, using the posterior distribution. Full Article
est Simple tail index estimation for dependent and heterogeneous data with missing values By projecteuclid.org Published On :: Mon, 14 Jan 2019 04:01 EST Ivana Ilić, Vladica M. Veličković. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 1, 192--203.Abstract: Financial returns are known to be nonnormal and tend to have fat-tailed distribution. Also, the dependence of large values in a stochastic process is an important topic in risk, insurance and finance. In the presence of missing values, we deal with the asymptotic properties of a simple “median” estimator of the tail index based on random variables with the heavy-tailed distribution function and certain dependence among the extremes. Weak consistency and asymptotic normality of the proposed estimator are established. The estimator is a special case of a well-known estimator defined in Bacro and Brito [ Statistics & Decisions 3 (1993) 133–143]. The advantage of the estimator is its robustness against deviations and compared to Hill’s, it is less affected by the fluctuations related to the maximum of the sample or by the presence of outliers. Several examples are analyzed in order to support the proofs. Full Article
est An estimation method for latent traits and population parameters in Nominal Response Model By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Caio L. N. Azevedo, Dalton F. AndradeSource: Braz. J. Probab. Stat., Volume 24, Number 3, 415--433.Abstract: The nominal response model (NRM) was proposed by Bock [ Psychometrika 37 (1972) 29–51] in order to improve the latent trait (ability) estimation in multiple choice tests with nominal items. When the item parameters are known, expectation a posteriori or maximum a posteriori methods are commonly employed to estimate the latent traits, considering a standard symmetric normal distribution as the latent traits prior density. However, when this item set is presented to a new group of examinees, it is not only necessary to estimate their latent traits but also the population parameters of this group. This article has two main purposes: first, to develop a Monte Carlo Markov Chain algorithm to estimate both latent traits and population parameters concurrently. This algorithm comprises the Metropolis–Hastings within Gibbs sampling algorithm (MHWGS) proposed by Patz and Junker [ Journal of Educational and Behavioral Statistics 24 (1999b) 346–366]. Second, to compare, in the latent trait recovering, the performance of this method with three other methods: maximum likelihood, expectation a posteriori and maximum a posteriori. The comparisons were performed by varying the total number of items (NI), the number of categories and the values of the mean and the variance of the latent trait distribution. The results showed that MHWGS outperforms the other methods concerning the latent traits estimation as well as it recoveries properly the population parameters. Furthermore, we found that NI accounts for the highest percentage of the variability in the accuracy of latent trait estimation. Full Article
est Flexible, boundary adapted, nonparametric methods for the estimation of univariate piecewise-smooth functions By projecteuclid.org Published On :: Tue, 04 Feb 2020 04:00 EST Umberto Amato, Anestis Antoniadis, Italia De Feis. Source: Statistics Surveys, Volume 14, 32--70.Abstract: We present and compare some nonparametric estimation methods (wavelet and/or spline-based) designed to recover a one-dimensional piecewise-smooth regression function in both a fixed equidistant or not equidistant design regression model and a random design model. Wavelet methods are known to be very competitive in terms of denoising and compression, due to the simultaneous localization property of a function in time and frequency. However, boundary assumptions, such as periodicity or symmetry, generate bias and artificial wiggles which degrade overall accuracy. Simple methods have been proposed in the literature for reducing the bias at the boundaries. We introduce new ones based on adaptive combinations of two estimators. The underlying idea is to combine a highly accurate method for non-regular functions, e.g., wavelets, with one well behaved at boundaries, e.g., Splines or Local Polynomial. We provide some asymptotic optimal results supporting our approach. All the methods can handle data with a random design. We also sketch some generalization to the multidimensional setting. To study the performance of the proposed approaches we have conducted an extensive set of simulations on synthetic data. An interesting regression analysis of two real data applications using these procedures unambiguously demonstrates their effectiveness. Full Article
est Estimating the size of a hidden finite set: Large-sample behavior of estimators By projecteuclid.org Published On :: Fri, 03 Jan 2020 22:02 EST Si Cheng, Daniel J. Eck, Forrest W. Crawford. Source: Statistics Surveys, Volume 14, 1--31.Abstract: A finite set is “hidden” if its elements are not directly enumerable or if its size cannot be ascertained via a deterministic query. In public health, epidemiology, demography, ecology and intelligence analysis, researchers have developed a wide variety of indirect statistical approaches, under different models for sampling and observation, for estimating the size of a hidden set. Some methods make use of random sampling with known or estimable sampling probabilities, and others make structural assumptions about relationships (e.g. ordering or network information) between the elements that comprise the hidden set. In this review, we describe models and methods for learning about the size of a hidden finite set, with special attention to asymptotic properties of estimators. We study the properties of these methods under two asymptotic regimes, “infill” in which the number of fixed-size samples increases, but the population size remains constant, and “outfill” in which the sample size and population size grow together. Statistical properties under these two regimes can be dramatically different. Full Article
est Pitfalls of significance testing and $p$-value variability: An econometrics perspective By projecteuclid.org Published On :: Wed, 03 Oct 2018 22:00 EDT Norbert Hirschauer, Sven Grüner, Oliver Mußhoff, Claudia Becker. Source: Statistics Surveys, Volume 12, 136--172.Abstract: Data on how many scientific findings are reproducible are generally bleak and a wealth of papers have warned against misuses of the $p$-value and resulting false findings in recent years. This paper discusses the question of what we can(not) learn from the $p$-value, which is still widely considered as the gold standard of statistical validity. We aim to provide a non-technical and easily accessible resource for statistical practitioners who wish to spot and avoid misinterpretations and misuses of statistical significance tests. For this purpose, we first classify and describe the most widely discussed (“classical”) pitfalls of significance testing, and review published work on these misuses with a focus on regression-based “confirmatory” study. This includes a description of the single-study bias and a simulation-based illustration of how proper meta-analysis compares to misleading significance counts (“vote counting”). Going beyond the classical pitfalls, we also use simulation to provide intuition that relying on the statistical estimate “$p$-value” as a measure of evidence without considering its sample-to-sample variability falls short of the mark even within an otherwise appropriate interpretation. We conclude with a discussion of the exigencies of informed approaches to statistical inference and corresponding institutional reforms. Full Article
est Basic models and questions in statistical network analysis By projecteuclid.org Published On :: Thu, 07 Sep 2017 22:02 EDT Miklós Z. Rácz, Sébastien Bubeck. Source: Statistics Surveys, Volume 11, 1--47.Abstract: Extracting information from large graphs has become an important statistical problem since network data is now common in various fields. In this minicourse we will investigate the most natural statistical questions for three canonical probabilistic models of networks: (i) community detection in the stochastic block model, (ii) finding the embedding of a random geometric graph, and (iii) finding the original vertex in a preferential attachment tree. Along the way we will cover many interesting topics in probability theory such as Pólya urns, large deviation theory, concentration of measure in high dimension, entropic central limit theorems, and more. Full Article
est Semi-parametric estimation for conditional independence multivariate finite mixture models By projecteuclid.org Published On :: Fri, 06 Feb 2015 08:39 EST Didier Chauveau, David R. Hunter, Michael Levine. Source: Statistics Surveys, Volume 9, 1--31.Abstract: The conditional independence assumption for nonparametric multivariate finite mixture models, a weaker form of the well-known conditional independence assumption for random effects models for longitudinal data, is the subject of an increasing number of theoretical and algorithmic developments in the statistical literature. After presenting a survey of this literature, including an in-depth discussion of the all-important identifiability results, this article describes and extends an algorithm for estimation of the parameters in these models. The algorithm works for any number of components in three or more dimensions. It possesses a descent property and can be easily adapted to situations where the data are grouped in blocks of conditionally independent variables. We discuss how to adapt this algorithm to various location-scale models that link component densities, and we even adapt it to a particular class of univariate mixture problems in which the components are assumed symmetric. We give a bandwidth selection procedure for our algorithm. Finally, we demonstrate the effectiveness of our algorithm using a simulation study and two psychometric datasets. Full Article
est Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Michael P. Fay, Michael A. ProschanSource: Statist. Surv., Volume 4, 1--39.Abstract: In a mathematical approach to hypothesis tests, we start with a clearly defined set of hypotheses and choose the test with the best properties for those hypotheses. In practice, we often start with less precise hypotheses. For example, often a researcher wants to know which of two groups generally has the larger responses, and either a t-test or a Wilcoxon-Mann-Whitney (WMW) test could be acceptable. Although both t-tests and WMW tests are usually associated with quite different hypotheses, the decision rule and p-value from either test could be associated with many different sets of assumptions, which we call perspectives. It is useful to have many of the different perspectives to which a decision rule may be applied collected in one place, since each perspective allows a different interpretation of the associated p-value. Here we collect many such perspectives for the two-sample t-test, the WMW test and other related tests. We discuss validity and consistency under each perspective and discuss recommendations between the tests in light of these many different perspectives. Finally, we briefly discuss a decision rule for testing genetic neutrality where knowledge of the many perspectives is vital to the proper interpretation of the decision rule. Full Article
est Was one of your ancestors a whaler? By feedproxy.google.com Published On :: Mon, 31 Jul 2017 06:25:29 +0000 Whaling – along with wool production – was one of the first primary industries after the establishment of New South Wa Full Article
est Was your ancestor a doctor? By feedproxy.google.com Published On :: Mon, 31 Jul 2017 22:58:54 +0000 A register of medical practitioners was first required to be kept in 1838 in New South Wales and was published in the G Full Article
est Strong Converse for Testing Against Independence over a Noisy channel. (arXiv:2004.00775v2 [cs.IT] UPDATED) By arxiv.org Published On :: A distributed binary hypothesis testing (HT) problem over a noisy (discrete and memoryless) channel studied previously by the authors is investigated from the perspective of the strong converse property. It was shown by Ahlswede and Csisz'{a}r that a strong converse holds in the above setting when the channel is rate-limited and noiseless. Motivated by this observation, we show that the strong converse continues to hold in the noisy channel setting for a special case of HT known as testing against independence (TAI), under the assumption that the channel transition matrix has non-zero elements. The proof utilizes the blowing up lemma and the recent change of measure technique of Tyagi and Watanabe as the key tools. Full Article
est Restricting the Flow: Information Bottlenecks for Attribution. (arXiv:2001.00396v3 [stat.ML] UPDATED) By arxiv.org Published On :: Attribution methods provide insights into the decision-making of machine learning models like artificial neural networks. For a given input sample, they assign a relevance score to each individual input variable, such as the pixels of an image. In this work we adapt the information bottleneck concept for attribution. By adding noise to intermediate feature maps we restrict the flow of information and can quantify (in bits) how much information image regions provide. We compare our method against ten baselines using three different metrics on VGG-16 and ResNet-50, and find that our methods outperform all baselines in five out of six settings. The method's information-theoretic foundation provides an absolute frame of reference for attribution values (bits) and a guarantee that regions scored close to zero are not necessary for the network's decision. For reviews: https://openreview.net/forum?id=S1xWh1rYwB For code: https://github.com/BioroboticsLab/IBA Full Article
est $V$-statistics and Variance Estimation. (arXiv:1912.01089v2 [stat.ML] UPDATED) By arxiv.org Published On :: This paper develops a general framework for analyzing asymptotics of $V$-statistics. Previous literature on limiting distribution mainly focuses on the cases when $n o infty$ with fixed kernel size $k$. Under some regularity conditions, we demonstrate asymptotic normality when $k$ grows with $n$ by utilizing existing results for $U$-statistics. The key in our approach lies in a mathematical reduction to $U$-statistics by designing an equivalent kernel for $V$-statistics. We also provide a unified treatment on variance estimation for both $U$- and $V$-statistics by observing connections to existing methods and proposing an empirically more accurate estimator. Ensemble methods such as random forests, where multiple base learners are trained and aggregated for prediction purposes, serve as a running example throughout the paper because they are a natural and flexible application of $V$-statistics. Full Article
est Bayesian factor models for multivariate categorical data obtained from questionnaires. (arXiv:1910.04283v2 [stat.AP] UPDATED) By arxiv.org Published On :: Factor analysis is a flexible technique for assessment of multivariate dependence and codependence. Besides being an exploratory tool used to reduce the dimensionality of multivariate data, it allows estimation of common factors that often have an interesting theoretical interpretation in real problems. However, standard factor analysis is only applicable when the variables are scaled, which is often inappropriate, for example, in data obtained from questionnaires in the field of psychology,where the variables are often categorical. In this framework, we propose a factor model for the analysis of multivariate ordered and non-ordered polychotomous data. The inference procedure is done under the Bayesian approach via Markov chain Monte Carlo methods. Two Monte-Carlo simulation studies are presented to investigate the performance of this approach in terms of estimation bias, precision and assessment of the number of factors. We also illustrate the proposed method to analyze participants' responses to the Motivational State Questionnaire dataset, developed to study emotions in laboratory and field settings. Full Article
est Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model. (arXiv:1909.06155v2 [math.PR] UPDATED) By arxiv.org Published On :: We study the problem of parameter estimation for a non-ergodic Gaussian Vasicek-type model defined as $dX_t=(mu+ heta X_t)dt+dG_t, tgeq0$ with unknown parameters $ heta>0$ and $muinR$, where $G$ is a Gaussian process. We provide least square-type estimators $widetilde{ heta}_T$ and $widetilde{mu}_T$ respectively for the drift parameters $ heta$ and $mu$ based on continuous-time observations ${X_t, tin[0,T]}$ as $T ightarrowinfty$. Our aim is to derive some sufficient conditions on the driving Gaussian process $G$ in order to ensure that $widetilde{ heta}_T$ and $widetilde{mu}_T$ are strongly consistent, the limit distribution of $widetilde{ heta}_T$ is a Cauchy-type distribution and $widetilde{mu}_T$ is asymptotically normal. We apply our result to fractional Vasicek, subfractional Vasicek and bifractional Vasicek processes. In addition, this work extends the result of cite{EEO} studied in the case where $mu=0$. Full Article
est An n-dimensional Rosenbrock Distribution for MCMC Testing. (arXiv:1903.09556v4 [stat.CO] UPDATED) By arxiv.org Published On :: The Rosenbrock function is an ubiquitous benchmark problem for numerical optimisation, and variants have been proposed to test the performance of Markov Chain Monte Carlo algorithms. In this work we discuss the two-dimensional Rosenbrock density, its current $n$-dimensional extensions, and their advantages and limitations. We then propose a new extension to arbitrary dimensions called the Hybrid Rosenbrock distribution, which is composed of conditional normal kernels arranged in such a way that preserves the key features of the original kernel. Moreover, due to its structure, the Hybrid Rosenbrock distribution is analytically tractable and possesses several desirable properties, which make it an excellent test model for computational algorithms. Full Article
est Semiparametric Optimal Estimation With Nonignorable Nonresponse Data. (arXiv:1612.09207v3 [stat.ME] UPDATED) By arxiv.org Published On :: When the response mechanism is believed to be not missing at random (NMAR), a valid analysis requires stronger assumptions on the response mechanism than standard statistical methods would otherwise require. Semiparametric estimators have been developed under the model assumptions on the response mechanism. In this paper, a new statistical test is proposed to guarantee model identifiability without using any instrumental variable. Furthermore, we develop optimal semiparametric estimation for parameters such as the population mean. Specifically, we propose two semiparametric optimal estimators that do not require any model assumptions other than the response mechanism. Asymptotic properties of the proposed estimators are discussed. An extensive simulation study is presented to compare with some existing methods. We present an application of our method using Korean Labor and Income Panel Survey data. Full Article
est Deep Learning on Point Clouds for False Positive Reduction at Nodule Detection in Chest CT Scans. (arXiv:2005.03654v1 [eess.IV]) By arxiv.org Published On :: The paper focuses on a novel approach for false-positive reduction (FPR) of nodule candidates in Computer-aided detection (CADe) system after suspicious lesions proposing stage. Unlike common decisions in medical image analysis, the proposed approach considers input data not as 2d or 3d image, but as a point cloud and uses deep learning models for point clouds. We found out that models for point clouds require less memory and are faster on both training and inference than traditional CNN 3D, achieves better performance and does not impose restrictions on the size of the input image, thereby the size of the nodule candidate. We propose an algorithm for transforming 3d CT scan data to point cloud. In some cases, the volume of the nodule candidate can be much smaller than the surrounding context, for example, in the case of subpleural localization of the nodule. Therefore, we developed an algorithm for sampling points from a point cloud constructed from a 3D image of the candidate region. The algorithm guarantees to capture both context and candidate information as part of the point cloud of the nodule candidate. An experiment with creating a dataset from an open LIDC-IDRI database for a feature of the FPR task was accurately designed, set up and described in detail. The data augmentation technique was applied to avoid overfitting and as an upsampling method. Experiments are conducted with PointNet, PointNet++ and DGCNN. We show that the proposed approach outperforms baseline CNN 3D models and demonstrates 85.98 FROC versus 77.26 FROC for baseline models. Full Article
est Phase Transitions of the Maximum Likelihood Estimates in the Tensor Curie-Weiss Model. (arXiv:2005.03631v1 [math.ST]) By arxiv.org Published On :: The $p$-tensor Curie-Weiss model is a two-parameter discrete exponential family for modeling dependent binary data, where the sufficient statistic has a linear term and a term with degree $p geq 2$. This is a special case of the tensor Ising model and the natural generalization of the matrix Curie-Weiss model, which provides a convenient mathematical abstraction for capturing, not just pairwise, but higher-order dependencies. In this paper we provide a complete description of the limiting properties of the maximum likelihood (ML) estimates of the natural parameters, given a single sample from the $p$-tensor Curie-Weiss model, for $p geq 3$, complementing the well-known results in the matrix ($p=2$) case (Comets and Gidas (1991)). Our results unearth various new phase transitions and surprising limit theorems, such as the existence of a 'critical' curve in the parameter space, where the limiting distribution of the ML estimates is a mixture with both continuous and discrete components. The number of mixture components is either two or three, depending on, among other things, the sign of one of the parameters and the parity of $p$. Another interesting revelation is the existence of certain 'special' points in the parameter space where the ML estimates exhibit a superefficiency phenomenon, converging to a non-Gaussian limiting distribution at rate $N^{frac{3}{4}}$. We discuss how these results can be used to construct confidence intervals for the model parameters and, as a byproduct of our analysis, obtain limit theorems for the sample mean, which provide key insights into the statistical properties of the model. Full Article
est Nonparametric Estimation of the Fisher Information and Its Applications. (arXiv:2005.03622v1 [cs.IT]) By arxiv.org Published On :: This paper considers the problem of estimation of the Fisher information for location from a random sample of size $n$. First, an estimator proposed by Bhattacharya is revisited and improved convergence rates are derived. Second, a new estimator, termed a clipped estimator, is proposed. Superior upper bounds on the rates of convergence can be shown for the new estimator compared to the Bhattacharya estimator, albeit with different regularity conditions. Third, both of the estimators are evaluated for the practically relevant case of a random variable contaminated by Gaussian noise. Moreover, using Brown's identity, which relates the Fisher information and the minimum mean squared error (MMSE) in Gaussian noise, two corresponding consistent estimators for the MMSE are proposed. Simulation examples for the Bhattacharya estimator and the clipped estimator as well as the MMSE estimators are presented. The examples demonstrate that the clipped estimator can significantly reduce the required sample size to guarantee a specific confidence interval compared to the Bhattacharya estimator. Full Article
est Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. (arXiv:2005.03596v1 [cs.LG]) By arxiv.org Published On :: We introduce an optimized physics-informed neural network (PINN) trained to solve the problem of identifying and characterizing a surface breaking crack in a metal plate. PINNs are neural networks that can combine data and physics in the learning process by adding the residuals of a system of Partial Differential Equations to the loss function. Our PINN is supervised with realistic ultrasonic surface acoustic wave data acquired at a frequency of 5 MHz. The ultrasonic surface wave data is represented as a surface deformation on the top surface of a metal plate, measured by using the method of laser vibrometry. The PINN is physically informed by the acoustic wave equation and its convergence is sped up using adaptive activation functions. The adaptive activation function uses a scalable hyperparameter in the activation function, which is optimized to achieve best performance of the network as it changes dynamically the topology of the loss function involved in the optimization process. The usage of adaptive activation function significantly improves the convergence, notably observed in the current study. We use PINNs to estimate the speed of sound of the metal plate, which we do with an error of 1\%, and then, by allowing the speed of sound to be space dependent, we identify and characterize the crack as the positions where the speed of sound has decreased. Our study also shows the effect of sub-sampling of the data on the sensitivity of sound speed estimates. More broadly, the resulting model shows a promising deep neural network model for ill-posed inverse problems. Full Article
est Estimating customer impatience in a service system with balking. (arXiv:2005.03576v1 [math.PR]) By arxiv.org Published On :: This paper studies a service system in which arriving customers are provided with information about the delay they will experience. Based on this information they decide to wait for service or to leave the system. The main objective is to estimate the customers' patience-level distribution and the corresponding potential arrival rate, using knowledge of the actual workload process only. We cast the system as a queueing model, so as to evaluate the corresponding likelihood function. Estimating the unknown parameters relying on a maximum likelihood procedure, we prove strong consistency and derive the asymptotic distribution of the estimation error. Several applications and extensions of the method are discussed. In particular, we indicate how our method generalizes to a multi-server setting. The performance of our approach is assessed through a series of numerical experiments. By fitting parameters of hyperexponential and generalized-hyperexponential distributions our method provides a robust estimation framework for any continuous patience-level distribution. Full Article
est Diffusion Copulas: Identification and Estimation. (arXiv:2005.03513v1 [econ.EM]) By arxiv.org Published On :: We propose a new semiparametric approach for modelling nonlinear univariate diffusions, where the observed process is a nonparametric transformation of an underlying parametric diffusion (UPD). This modelling strategy yields a general class of semiparametric Markov diffusion models with parametric dynamic copulas and nonparametric marginal distributions. We provide primitive conditions for the identification of the UPD parameters together with the unknown transformations from discrete samples. Likelihood-based estimators of both parametric and nonparametric components are developed and we analyze the asymptotic properties of these. Kernel-based drift and diffusion estimators are also proposed and shown to be normally distributed in large samples. A simulation study investigates the finite sample performance of our estimators in the context of modelling US short-term interest rates. We also present a simple application of the proposed method for modelling the CBOE volatility index data. Full Article
est Robust location estimators in regression models with covariates and responses missing at random. (arXiv:2005.03511v1 [stat.ME]) By arxiv.org Published On :: This paper deals with robust marginal estimation under a general regression model when missing data occur in the response and also in some of covariates. The target is a marginal location parameter which is given through an $M-$functional. To obtain robust Fisher--consistent estimators, properly defined marginal distribution function estimators are considered. These estimators avoid the bias due to missing values by assuming a missing at random condition. Three methods are considered to estimate the marginal distribution function which allows to obtain the $M-$location of interest: the well-known inverse probability weighting, a convolution--based method that makes use of the regression model and an augmented inverse probability weighting procedure that prevents against misspecification. The robust proposed estimators and the classical ones are compared through a numerical study under different missing models including clean and contaminated samples. We illustrate the estimators behaviour under a nonlinear model. A real data set is also analysed. Full Article
est Transfer Learning for sEMG-based Hand Gesture Classification using Deep Learning in a Master-Slave Architecture. (arXiv:2005.03460v1 [eess.SP]) By arxiv.org Published On :: Recent advancements in diagnostic learning and development of gesture-based human machine interfaces have driven surface electromyography (sEMG) towards significant importance. Analysis of hand gestures requires an accurate assessment of sEMG signals. The proposed work presents a novel sequential master-slave architecture consisting of deep neural networks (DNNs) for classification of signs from the Indian sign language using signals recorded from multiple sEMG channels. The performance of the master-slave network is augmented by leveraging additional synthetic feature data generated by long short term memory networks. Performance of the proposed network is compared to that of a conventional DNN prior to and after the addition of synthetic data. Up to 14% improvement is observed in the conventional DNN and up to 9% improvement in master-slave network on addition of synthetic data with an average accuracy value of 93.5% asserting the suitability of the proposed approach. Full Article
est Distributional Robustness of K-class Estimators and the PULSE. (arXiv:2005.03353v1 [econ.EM]) By arxiv.org Published On :: In causal settings, such as instrumental variable settings, it is well known that estimators based on ordinary least squares (OLS) can yield biased and non-consistent estimates of the causal parameters. This is partially overcome by two-stage least squares (TSLS) estimators. These are, under weak assumptions, consistent but do not have desirable finite sample properties: in many models, for example, they do not have finite moments. The set of K-class estimators can be seen as a non-linear interpolation between OLS and TSLS and are known to have improved finite sample properties. Recently, in causal discovery, invariance properties such as the moment criterion which TSLS estimators leverage have been exploited for causal structure learning: e.g., in cases, where the causal parameter is not identifiable, some structure of the non-zero components may be identified, and coverage guarantees are available. Subsequently, anchor regression has been proposed to trade-off invariance and predictability. The resulting estimator is shown to have optimal predictive performance under bounded shift interventions. In this paper, we show that the concepts of anchor regression and K-class estimators are closely related. Establishing this connection comes with two benefits: (1) It enables us to prove robustness properties for existing K-class estimators when considering distributional shifts. And, (2), we propose a novel estimator in instrumental variable settings by minimizing the mean squared prediction error subject to the constraint that the estimator lies in an asymptotically valid confidence region of the causal parameter. We call this estimator PULSE (p-uncorrelated least squares estimator) and show that it can be computed efficiently, even though the underlying optimization problem is non-convex. We further prove that it is consistent. Full Article