bl

Residents Perspectives on and Application of Dental Public Health Competencies Using Case-Based Methods

The aims of this study were to qualitatively assess dental public health (DPH) residents’ perspectives on teaching methods for DPH competencies and to develop and implement a case-based simulation to address those competencies, constructed on the basis of the qualitative assessment. Focus group discussions were conducted with 18 DPH residents enrolled in two university-based DPH programs. Topic areas discussed in the two focus groups were perceived value of DPH competencies, ways to acquire new DPH skills/abilities, and additional skills/abilities needed by DPH residents. The focus groups’ responses showed that the residents felt competent in the analytical thinking competencies such as research methodology and critiquing literature. They emphasized the importance of learning leadership skills and reported feeling somewhat uncertain about their mastery of the policy and advocacy and system evaluation competencies. Of the two distinct categories of DPH skills and competencies— analytical/critical thinking and practical competencies—these residents reported that a greater proportion of time needed to be devoted to integrating the practical competencies into their education. Based on the residents’ feedback, the authors developed a structured seminar series taking a case-based approach to simulate real-world DPH problems, using real and semi-hypothetical planning projects to meet the residents’ perceived needs and covering gaps between didactic learning and practice.




bl

Top-Cited Articles from Dental Education Journals, 2009 to 2018: A Bibliometric Analysis

The number of citations an article receives is an important indicator to quantify its influence in its field. The aim of this study was to identify and analyze the characteristics of the 50 top-cited articles addressing dental education published in two journals dedicated to dental education (European Journal of Dental Education and Journal of Dental Education). The Web of Science database was searched to retrieve the 50 most-cited articles from the two journals in December 2018. The top-cited articles were analyzed for journal of publication, number of citations, institution and country of origin, year of publication, study type, keywords, theme and subtheme, and international collaborations. The results showed the 50 top-cited articles were cited between 24 and 146 times each. The majority of these top-cited articles (n=34) were published in the Journal of Dental Education. Half (n=25) of the articles were by authors in the U.S. The most common study types were surveys (n=26) and reviews (n=10). The main themes of these top-cited articles were curriculum and learner characteristics. This bibliometric analysis can serve as a reference for recognizing studies with the most impact in the scholarship of dental education.




bl

Entrustable Professional Activities in Oral Health for Primary Care Providers Based on a Scoping Review

Despite advances in oral health care, inequalities in oral health outcomes persist due to problems in access. With proper training, primary care providers can mitigate this inequality by providing oral health education, screening, and referral to advanced dental treatment. Diverging sets of oral health competencies and guidelines have been released or endorsed by multiple primary care disciplines. The aim of this study was to transform multiple sets of competencies into Entrustable Professional Activities (EPAs) for oral health integration into primary care training. A scoping review of the literature between January 2000 and December 2016 was conducted according to PRISMA methodology to identify all existing sets of competencies. The following primary care disciplines were included in the search: allopathic/osteopathic medical schools and residency programs in family medicine, internal medicine, and pediatrics; physician assistant programs; and nurse practitioner programs. Competencies were compared using the Health Resources and Services Administration Integration of Oral Health and Primary Care Practice competencies as the foundational set and translated into EPAs. The resulting EPAs were tested with a reactor panel. The scoping review produced 1,466 references, of which 114 were selected for full text review. Fourteen competencies were identified as being central to the integration of oral health into primary care. These were converted to seven EPAs for oral health integration into primary care and were mapped onto Accreditation Council for Graduate Medical Education residency competency domains as well to the Association of American Medical Colleges EPAs for graduating medical students. The resulting EPAs delineate the essential, observable work required of primary care providers to ensure that oral health is treated as a critical determinant of overall health.




bl

Repurposed Drugs That Block the Gonococcus-Complement Receptor 3 Interaction Can Prevent and Cure Gonococcal Infection of Primary Human Cervical Epithelial Cells

ABSTRACT

In the absence of a vaccine, multidrug-resistant Neisseria gonorrhoeae has emerged as a major human health threat, and new approaches to treat gonorrhea are urgently needed. N. gonorrhoeae pili are posttranslationally modified by a glycan that terminates in a galactose. The terminal galactose is critical for initial contact with the human cervical mucosa via an interaction with the I-domain of complement receptor 3 (CR3). We have now identified the I-domain galactose-binding epitope and characterized its galactose-specific lectin activity. Using surface plasmon resonance and cellular infection assays, we found that a peptide mimic of this galactose-binding region competitively inhibited the N. gonorrhoeae-CR3 interaction. A compound library was screened for potential drugs that could similarly prohibit the N. gonorrhoeae-CR3 interaction and be repurposed as novel host-targeted therapeutics for multidrug-resistant gonococcal infections in women. Two drugs, methyldopa and carbamazepine, prevented and cured cervical cell infection by multidrug-resistant gonococci by blocking the gonococcal-CR3 I-domain interaction.

IMPORTANCE Novel therapies that avert the problem of Neisseria gonorrhoeae with acquired antibiotic resistance are urgently needed. Gonococcal infection of the human cervix is initiated by an interaction between a galactose modification made to its surface appendages, pili, and the I-domain region of (host) complement receptor 3 (CR3). By targeting this crucial gonococcal–I-domain interaction, it may be possible to prevent cervical infection in females. To this end, we identified the I-domain galactose-binding epitope of CR3 and characterized its galactose lectin activity. Moreover, we identified two drugs, carbamazepine and methyldopa, as effective host-targeted therapies for gonorrhea treatment. At doses below those currently used for their respective existing indications, both carbamazepine and methyldopa were more effective than ceftriaxone in curing cervical infection ex vivo. This host-targeted approach would not be subject to N. gonorrhoeae drug resistance mechanisms. Thus, our data suggest a long-term solution to the growing problem of multidrug-resistant N. gonorrhoeae infections.




bl

Bacterial Transformation Buffers Environmental Fluctuations through the Reversible Integration of Mobile Genetic Elements

ABSTRACT

Horizontal gene transfer (HGT) promotes the spread of genes within bacterial communities. Among the HGT mechanisms, natural transformation stands out as being encoded by the bacterial core genome. Natural transformation is often viewed as a way to acquire new genes and to generate genetic mixing within bacterial populations. Another recently proposed function is the curing of bacterial genomes of their infectious parasitic mobile genetic elements (MGEs). Here, we propose that these seemingly opposing theoretical points of view can be unified. Although costly for bacterial cells, MGEs can carry functions that are at points in time beneficial to bacteria under stressful conditions (e.g., antibiotic resistance genes). Using computational modeling, we show that, in stochastic environments, an intermediate transformation rate maximizes bacterial fitness by allowing the reversible integration of MGEs carrying resistance genes, although these MGEs are costly for host cell replication. Based on this dual function (MGE acquisition and removal), transformation would be a key mechanism for stabilizing the bacterial genome in the long term, and this would explain its striking conservation.

IMPORTANCE Natural transformation is the acquisition, controlled by bacteria, of extracellular DNA and is one of the most common mechanisms of horizontal gene transfer, promoting the spread of resistance genes. However, its evolutionary function remains elusive, and two main roles have been proposed: (i) the new gene acquisition and genetic mixing within bacterial populations and (ii) the removal of infectious parasitic mobile genetic elements (MGEs). While the first one promotes genetic diversification, the other one promotes the removal of foreign DNA and thus genome stability, making these two functions apparently antagonistic. Using a computational model, we show that intermediate transformation rates, commonly observed in bacteria, allow the acquisition then removal of MGEs. The transient acquisition of costly MGEs with resistance genes maximizes bacterial fitness in environments with stochastic stress exposure. Thus, transformation would ensure both a strong dynamic of the bacterial genome in the short term and its long-term stabilization.




bl

Merkel Cell Polyomavirus DNA Replication Induces Senescence in Human Dermal Fibroblasts in a Kap1/Trim28-Dependent Manner

ABSTRACT

Merkel cell polyomavirus (MCPyV) is the only polyomavirus known to be associated with tumorigenesis in humans. Similarly to other polyomaviruses, MCPyV expresses a large tumor antigen (LT-Ag) that, together with a small tumor antigen (sT-Ag), contributes to cellular transformation and that is of critical importance for the initiation of the viral DNA replication. Understanding the cellular protein network regulated by MCPyV early proteins will significantly contribute to our understanding of the natural MCPyV life cycle as well as of the mechanisms by which the virus contributes to cellular transformation. We here describe KRAB-associated protein 1 (Kap1), a chromatin remodeling factor involved in cotranscriptional regulation, as a novel protein interaction partner of MCPyV T antigens sT and LT. Kap1 knockout results in a significant increase in the level of viral DNA replication that is highly suggestive of Kap1 being an important host restriction factor during MCPyV infection. Differently from other DNA viruses, MCPyV gene expression is unaffected in the absence of Kap1 and Kap1 does not associate with the viral genome. Instead, we show that in primary normal human dermal fibroblast (nHDF) cells, MCPyV DNA replication, but not T antigen expression alone, induces ataxia telangiectasia mutated (ATM) kinase-dependent Kap1 S824 phosphorylation, a mechanism that typically facilitates repair of double-strand breaks in heterochromatin by arresting the cells in G2. We show that MCPyV-induced inhibition of cell proliferation is mainly conferred by residues within the origin binding domain and thereby by viral DNA replication. Our data suggest that phosphorylation of Kap1 and subsequent Kap1-dependent G2 arrest/senescence represent host defense mechanisms against MCPyV replication in nHDF cells.

IMPORTANCE We here describe Kap1 as a restriction factor in MCPyV infection. We report a novel, indirect mechanism by which Kap1 affects MCPyV replication. In contrast with from other DNA viruses, Kap1 does not associate with the viral genome in MCPyV infection and has no impact on viral gene expression. In MCPyV-infected nHDF cells, Kap1 phosphorylation (pKap1 S824) accumulates because of genomic stress mainly induced by viral DNA replication. In contrast, ectopic expression of LT or LT MCPyV mutants, previously shown to be important for induction of genotoxic stress, does not result in a similar extent of pKap1 accumulation. We show that cells actively replicating MCPyV accumulate pKap1 (in a manner dependent on the presence of ATM) and display a senescence phenotype reflected by G2 arrest. These results are supported by transcriptome analyses showing that LT antigen, in a manner dependent on the presence of Kap1, induces expression of secreted factors, which is known as the senescence-associated secretory phenotype (SASP).




bl

Species-Specific Recognition of Sulfolobales Mediated by UV-Inducible Pili and S-Layer Glycosylation Patterns

ABSTRACT

The UV-inducible pili system of Sulfolobales (Ups) mediates the formation of species-specific cellular aggregates. Within these aggregates, cells exchange DNA to repair DNA double-strand breaks via homologous recombination. Substitution of the Sulfolobus acidocaldarius pilin subunits UpsA and UpsB with their homologs from Sulfolobus tokodaii showed that these subunits facilitate species-specific aggregation. A region of low conservation within the UpsA homologs is primarily important for this specificity. Aggregation assays in the presence of different sugars showed the importance of N-glycosylation in the recognition process. In addition, the N-glycan decorating the S-layer of S. tokodaii is different from the one of S. acidocaldarius. Therefore, each Sulfolobus species seems to have developed a unique UpsA binding pocket and unique N-glycan composition to ensure aggregation and, consequently, also DNA exchange with cells from only the same species, which is essential for DNA repair by homologous recombination.

IMPORTANCE Type IV pili can be found on the cell surface of many archaea and bacteria where they play important roles in different processes. The UV-inducible pili system of Sulfolobales (Ups) pili from the crenarchaeal Sulfolobales species are essential in establishing species-specific mating partners, thereby assisting in genome stability. With this work, we show that different Sulfolobus species have specific regions in their Ups pili subunits, which allow them to interact only with cells from the same species. Additionally, different Sulfolobus species have unique surface-layer N-glycosylation patterns. We propose that the unique features of each species allow the recognition of specific mating partners. This knowledge for the first time gives insights into the molecular basis of archaeal self-recognition.




bl

Gamma Interferon Is Required for Chlamydia Clearance but Is Dispensable for T Cell Homing to the Genital Tract

ABSTRACT

While there is no effective vaccine against Chlamydia trachomatis infection, previous work has demonstrated the importance of C. trachomatis-specific CD4+ T cells (NR1 T cells) in pathogen clearance. Specifically, NR1 T cells have been shown to be protective in mice, and this protection depends on the host’s ability to sense the cytokine gamma interferon (IFN-). However, it is unclear what role NR1 production or sensing of IFN- plays in T cell homing to the genital tract or T cell-mediated protection against C. trachomatis. Using two-photon microscopy and flow cytometry, we found that naive wild-type (WT), IFN-–/–, and IFN-R–/– NR1 T cells specifically home to sections in the genital tract that contain C. trachomatis. We also determined that protection against infection requires production of IFN- from either NR1 T cells or endogenous cells, further highlighting the importance of IFN- in clearing C. trachomatis infection.

IMPORTANCE Chlamydia trachomatis is an important mucosal pathogen that is the leading cause of sexually transmitted bacterial infections in the United States. Despite this, there is no vaccine currently available. In order to develop such a vaccine, it is necessary to understand the components of the immune response that can lead to protection against this pathogen. It is well known that antigen-specific CD4+ T cells are critical for Chlamydia clearance, but the contexts in which they are protective or not protective are unknown. Here, we aimed to characterize the importance of gamma interferon production and sensing by T cells and the effects on the immune response to C. trachomatis. Our work here helps to define the contexts in which antigen-specific T cells can be protective, which is critical to our ability to design an effective and protective vaccine against C. trachomatis.




bl

The Min System Disassembles FtsZ Foci and Inhibits Polar Peptidoglycan Remodeling in Bacillus subtilis

ABSTRACT

A microfluidic system coupled with fluorescence microscopy is a powerful approach for quantitative analysis of bacterial growth. Here, we measure parameters of growth and dynamic localization of the cell division initiation protein FtsZ in Bacillus subtilis. Consistent with previous reports, we found that after division, FtsZ rings remain at the cell poles, and polar FtsZ ring disassembly coincides with rapid Z-ring accumulation at the midcell. In cells mutated for minD, however, the polar FtsZ rings persist indefinitely, suggesting that the primary function of the Min system is in Z-ring disassembly. The inability to recycle FtsZ monomers in the minD mutant results in the simultaneous maintenance of multiple Z-rings that are restricted by competition for newly synthesized FtsZ. Although the parameters of FtsZ dynamics change in the minD mutant, the overall cell division time remains the same, albeit with elongated cells necessary to accumulate a critical threshold amount of FtsZ for promoting medial division. Finally, the minD mutant characteristically produces minicells composed of polar peptidoglycan shown to be inert for remodeling in the wild type. Polar peptidoglycan, however, loses its inert character in the minD mutant, suggesting that the Min system not only is important for recycling FtsZ but also may have a secondary role in the spatiotemporal regulation of peptidoglycan remodeling.

IMPORTANCE Many bacteria grow and divide by binary fission in which a mother cell divides into two identical daughter cells. To produce two equally sized daughters, the division machinery, guided by FtsZ, must dynamically localize to the midcell each cell cycle. Here, we quantitatively analyzed FtsZ dynamics during growth and found that the Min system of Bacillus subtilis is essential to disassemble FtsZ rings after division. Moreover, a failure to efficiently recycle FtsZ results in an increase in cell size. Finally, we show that the Min system has an additional role in inhibiting cell wall turnover and contributes to the "inert" property of cell walls at the poles.




bl

Metabolite Sequestration Enables Rapid Recovery from Fatty Acid Depletion in Escherichia coli

ABSTRACT

Microbes adapt their metabolism to take advantage of nutrients in their environment. Such adaptations control specific metabolic pathways to match energetic demands with nutrient availability. Upon depletion of nutrients, rapid pathway recovery is key to release cellular resources required for survival under the new nutritional conditions. Yet, little is known about the regulatory strategies that microbes employ to accelerate pathway recovery in response to nutrient depletion. Using the fatty acid catabolic pathway in Escherichia coli, here, we show that fast recovery can be achieved by rapid release of a transcriptional regulator from a metabolite-sequestered complex. With a combination of mathematical modeling and experiments, we show that recovery dynamics depend critically on the rate of metabolite consumption and the exposure time to nutrients. We constructed strains with rewired transcriptional regulatory architectures that highlight the metabolic benefits of negative autoregulation over constitutive and positive autoregulation. Our results have wide-ranging implications for our understanding of metabolic adaptations, as well as for guiding the design of gene circuitry for synthetic biology and metabolic engineering.

IMPORTANCE Rapid metabolic recovery during nutrient shift is critical to microbial survival, cell fitness, and competition among microbiota, yet little is known about the regulatory mechanisms of rapid metabolic recovery. This work demonstrates a previously unknown mechanism where rapid release of a transcriptional regulator from a metabolite-sequestered complex enables fast recovery to nutrient depletion. The work identified key regulatory architectures and parameters that control the speed of recovery, with wide-ranging implications for the understanding of metabolic adaptations as well as synthetic biology and metabolic engineering.




bl

A Virus Hosted in Malaria-Infected Blood Protects against T Cell-Mediated Inflammatory Diseases by Impairing DC Function in a Type I IFN-Dependent Manner

ABSTRACT

Coinfections shape immunity and influence the development of inflammatory diseases, resulting in detrimental or beneficial outcome. Coinfections with concurrent Plasmodium species can alter malaria clinical evolution, and malaria infection itself can modulate autoimmune reactions. Yet, the underlying mechanisms remain ill defined. Here, we demonstrate that the protective effects of some rodent malaria strains on T cell-mediated inflammatory pathologies are due to an RNA virus cohosted in malaria-parasitized blood. We show that live and extracts of blood parasitized by Plasmodium berghei K173 or Plasmodium yoelii 17X YM, protect against P. berghei ANKA-induced experimental cerebral malaria (ECM) and myelin oligodendrocyte glycoprotein (MOG)/complete Freund’s adjuvant (CFA)-induced experimental autoimmune encephalomyelitis (EAE), and that protection is associated with a strong type I interferon (IFN-I) signature. We detected the presence of the RNA virus lactate dehydrogenase-elevating virus (LDV) in the protective Plasmodium stabilates and we established that LDV infection alone was necessary and sufficient to recapitulate the protective effects on ECM and EAE. In ECM, protection resulted from an IFN-I-mediated reduction in the abundance of splenic conventional dendritic cell and impairment of their ability to produce interleukin (IL)-12p70, leading to a decrease in pathogenic CD4+ Th1 responses. In EAE, LDV infection induced IFN-I-mediated abrogation of IL-23, thereby preventing the differentiation of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing encephalitogenic CD4+ T cells. Our work identifies a virus cohosted in several Plasmodium stabilates across the community and deciphers its major consequences on the host immune system. More generally, our data emphasize the importance of considering contemporaneous infections for the understanding of malaria-associated and autoimmune diseases.

IMPORTANCE Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines: Plasmodium berghei K173 and Plasmodium yoelii 17X YM. We established that the protective effects of these Plasmodium lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases.




bl

Multiplex Genetic Engineering Exploiting Pyrimidine Salvage Pathway-Based Endogenous Counterselectable Markers

ABSTRACT

Selectable markers are indispensable for genetic engineering, yet their number and variety are limited. Most selection procedures for prototrophic cells rely on the introduction of antibiotic resistance genes. New minimally invasive tools are needed to facilitate sophisticated genetic manipulations. Here, we characterized three endogenous genes in the human fungal pathogen Aspergillus fumigatus for their potential as markers for targeted genomic insertions of DNAs of interest (DOIs). Since these genes are involved in uptake and metabolization of pyrimidines, resistance to the toxic effects of prodrugs 5-fluorocytosine and 5-fluorouracil can be used to select successfully integrated DOIs. We show that DOI integration, resulting in the inactivation of these genes, caused no adverse effects with respect to nutrient requirements, stress resistance, or virulence. Beside the individual use of markers for site-directed integration of reporter cassettes, including the 17-kb penicillin biosynthetic cluster, we demonstrate their sequential use by inserting three genes encoding fluorescent proteins into a single strain for simultaneous multicolor localization microscopy. In addition to A. fumigatus, we validated the applicability of this novel toolbox in Penicillium chrysogenum and Fusarium oxysporum. Enabling multiple targeted insertions of DOIs without the necessity for exogenous markers, this technology has the potential to significantly advance genetic engineering.

IMPORTANCE This work reports the discovery of a novel genetic toolbox comprising multiple, endogenous selectable markers for targeted genomic insertions of DNAs of interest (DOIs). Marker genes encode proteins involved in 5-fluorocytosine uptake and pyrimidine salvage activities mediating 5-fluorocytosine deamination as well as 5-fluorouracil phosphoribosylation. The requirement for their genomic replacement by DOIs to confer 5-fluorocytosine or 5-fluorouracil resistance for transformation selection enforces site-specific integrations. Due to the fact that the described markers are endogenously encoded, there is no necessity for the exogenous introduction of commonly employed markers such as auxotrophy-complementing genes or antibiotic resistance cassettes. Importantly, inactivation of the described marker genes had no adverse effects on nutrient requirements, growth, or virulence of the human pathogen Aspergillus fumigatus. Given the limited number and distinct types of selectable markers available for the genetic manipulation of prototrophic strains such as wild-type strains, we anticipate that the proposed methodology will significantly advance genetic as well as metabolic engineering of fungal species.




bl

The WblC/WhiB7 Transcription Factor Controls Intrinsic Resistance to Translation-Targeting Antibiotics by Altering Ribosome Composition

ABSTRACT

Bacteria that encounter antibiotics can efficiently change their physiology to develop resistance. This intrinsic antibiotic resistance is mediated by multiple pathways, including a regulatory system(s) that activates specific genes. In some Streptomyces and Mycobacterium spp., the WblC/WhiB7 transcription factor is required for intrinsic resistance to translation-targeting antibiotics. Wide conservation of WblC/WhiB7 within Actinobacteria indicates a critical role of WblC/WhiB7 in developing resistance to such antibiotics. Here, we identified 312 WblC target genes in Streptomyces coelicolor, a model antibiotic-producing bacterium, using a combined analysis of RNA sequencing and chromatin immunoprecipitation sequencing. Interestingly, WblC controls many genes involved in translation, in addition to previously identified antibiotic resistance genes. Moreover, WblC promotes translation rate during antibiotic stress by altering the ribosome-associated protein composition. Our genome-wide analyses highlight a previously unappreciated antibiotic resistance mechanism that modifies ribosome composition and maintains the translation rate in the presence of sub-MIC levels of antibiotics.

IMPORTANCE The emergence of antibiotic-resistant bacteria is one of the top threats in human health. Therefore, we need to understand how bacteria acquire resistance to antibiotics and continue growth even in the presence of antibiotics. Streptomyces coelicolor, an antibiotic-producing soil bacterium, intrinsically develops resistance to translation-targeting antibiotics. Intrinsic resistance is controlled by the WblC/WhiB7 transcription factor that is highly conserved within Actinobacteria, including Mycobacterium tuberculosis. Here, identification of the WblC/WhiB7 regulon revealed that WblC/WhiB7 controls ribosome maintenance genes and promotes translation in the presence of antibiotics by altering the composition of ribosome-associated proteins. Also, the WblC-mediated ribosomal alteration is indeed required for resistance to translation-targeting antibiotics. This suggests that inactivation of the WblC/WhiB7 regulon could be a potential target to treat antibiotic-resistant mycobacteria.




bl

EspFu-Mediated Actin Assembly Enhances Enteropathogenic Escherichia coli Adherence and Activates Host Cell Inflammatory Signaling Pathways

ABSTRACT

The translocation of effectors into the host cell through type 3 secretion systems (T3SS) is a sophisticated strategy employed by pathogenic bacteria to subvert host responses and facilitate colonization. Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) utilize the Tir and EspFu (also known as TccP) effectors to remodel the host cytoskeleton, culminating in the formation of attaching and effacing (AE) lesions on enterocytes. While some EPEC strains require tyrosine phosphorylation of Tir and recruitment of the host Nck to trigger actin polymerization, EHEC and certain EPEC strains, whose Tir is not phosphorylated, rely on the effector EspFu for efficient actin remodeling. Here, we investigated the role played by Tir-Nck and Tir-EspFu actin polymerization pathways during the infection of epithelial cells, as well as the host transcriptional response to the AE lesion formation induced by EPEC. We found that EspFu-mediated actin assembly promotes bacterial attachment and epithelial colonization more efficiently than Tir-Nck. Moreover, we showed that both actin polymerization mechanisms can activate inflammatory pathways and reverse the anti-inflammatory response induced by EPEC in epithelial cells. However, this activity is remarkably more evident in infections with EspFu-expressing EPEC strains. This study demonstrates the complex interactions between effector-mediated actin remodeling and inflammation. Different strains carry different combinations of these two effectors, highlighting the plasticity of pathogenic E. coli enteric infections.

IMPORTANCE EPEC is among the leading causes of diarrheal disease worldwide. The colonization of the gut mucosa by EPEC results in actin pedestal formation at the site of bacterial attachment. These pedestals are referred to as attaching and effacing (AE) lesions. Here, we exploit the different molecular mechanisms used by EPEC to induce AE lesions on epithelial cells, showing that the effector EspFu is associated with increased bacterial attachment and enhanced epithelial colonization compared to the Tir-Nck pathway. Moreover, we also showed that actin pedestal formation can counterbalance the anti-inflammatory activity induced by EPEC, especially when driven by EspFu. Collectively, our findings provide new insights into virulence mechanisms employed by EPEC to colonize epithelial cells, as well as the host response to this enteric pathogen.




bl

Ehrlichia chaffeensis Uses an Invasin To Suppress Reactive Oxygen Species Generation by Macrophages via CD147-Dependent Inhibition of Vav1 To Block Rac1 Activation

ABSTRACT

The obligatory intracellular pathogen Ehrlichia chaffeensis lacks most factors that could respond to oxidative stress (a host cell defense mechanism). We previously found that the C terminus of Ehrlichia surface invasin, entry-triggering protein of Ehrlichia (EtpE; EtpE-C) directly binds mammalian DNase X, a glycosylphosphatidylinositol-anchored cell surface receptor and that binding is required to induce bacterial entry and simultaneously to block the generation of reactive oxygen species (ROS) by host monocytes and macrophages. However, how the EtpE-C–DNase X complex mediates the ROS blockade was unknown. A mammalian transmembrane glycoprotein CD147 (basigin) binds to the EtpE-DNase X complex and is required for Ehrlichia entry and infection of host cells. Here, we found that bone marrow-derived macrophages (BMDM) from myeloid cell lineage-selective CD147-null mice had significantly reduced Ehrlichia-induced or EtpE-C-induced blockade of ROS generation in response to phorbol myristate acetate. In BMDM from CD147-null mice, nucleofection with CD147 partially restored the Ehrlichia-mediated inhibition of ROS generation. Indeed, CD147-null mice as well as their BMDM were resistant to Ehrlichia infection. Moreover, in human monocytes, anti-CD147 partially abrogated EtpE-C-induced blockade of ROS generation. Both Ehrlichia and EtpE-C could block activation of the small GTPase Rac1 (which in turn activates phagocyte NADPH oxidase) and suppress activation of Vav1, a hematopoietic-specific Rho/Rac guanine nucleotide exchange factor by phorbol myristate acetate. Vav1 suppression by Ehrlichia was CD147 dependent. E. chaffeensis is the first example of pathogens that block Rac1 activation to colonize macrophages. Furthermore, Ehrlichia uses EtpE to hijack the unique host DNase X-CD147-Vav1 signaling to block Rac1 activation.

IMPORTANCE Ehrlichia chaffeensis is an obligatory intracellular bacterium with the capability of causing an emerging infectious disease called human monocytic ehrlichiosis. E. chaffeensis preferentially infects monocytes and macrophages, professional phagocytes, equipped with an arsenal of antimicrobial mechanisms, including rapid reactive oxygen species (ROS) generation upon encountering bacteria. As Ehrlichia isolated from host cells are readily killed upon exposure to ROS, Ehrlichia must have evolved a unique mechanism to safely enter phagocytes. We discovered that binding of the Ehrlichia surface invasin to the host cell surface receptor not only triggers Ehrlichia entry but also blocks ROS generation by the host cells by mobilizing a novel intracellular signaling pathway. Knowledge of the mechanisms by which ROS production is inhibited may lead to the development of therapeutics for ehrlichiosis as well as other ROS-related pathologies.




bl

Building local connections could help reduce violent encounters between police, black men

Finding common ground and building trust between local stakeholders could help prevent violent encounters between police and young black men, new research finds.




bl

Expanding the public health team: a cross-sector workforce

I’ve been talking a lot lately about the importance of working across sectors for public health — of not going it alone to tackle the imposing challenges before us. The ideal public health team is broad and includes not only public health professionals representing the essential services, but also professionals from other disciplines, the general public and students of all stripes.




bl

US public health meets COVID-19 head-on: Pandemic squeezes long-underfunded public health system

Forty miles from the state capital, Jackson County, West Virginia, is home to about 29,000 people and 25 hospital beds. Like much of the state, the rural county is reeling from the opioid epidemic.




bl

Long-acting, Injectable Buprenorphine: Great Promise, but Significant Barriers to Use

To the Editor—A 30-day injectable form of buprenorphine branded as SublocadeTM (Buprenorphine XR SQ) was approved by the FDA in 2017. This medication is administered by a health care professional subcutaneously in the abdomen to treat opioid use disorder. This long-acting delivery system holds great promise for many patients who have barriers to taking daily transmucosal buprenorphine-containing medications such as those with poor adherence to a daily medication. It is beneficial for those who have difficulty safely storing their medications, including patients who have children in the home, unstable housing, or live with others who have a use disorder. This product is also an option for patients who prefer mono-product buprenorphine. As Buprenorphine XR SQ is administered directly by a health care professional, it does not contain the abuse-deterrent naloxone that some patients feel causes side effects.

There are two ways to acquire Buprenorphine XR SQ: 1) order product from the distributor (buy and bill); or 2) dispensed from a specialty pharmacy for a specific patient (specialty pharmacy) [1]. For the buy and bill option, the health care setting must be certified through the Risk Evaluation and Mitigation Strategy (REMS) program and adhere to dispensing regulations [2]. We found this challenging to implement in the outpatient setting, thus we pursued the specialty pharmacy option. It ultimately took us nearly one year to complete the process.

The following are the barriers we faced with our first attempt. As a controlled substance, the medication must be stored in a refrigerated lockbox. Before...




bl

It's Time for Private Sector Business to Come to the Health Care Table

With rising costs and below-average outcomes, North Carolina's health care value proposition is upside down. It's time for employers to lead transformative change.




bl

The Calcium Sensor CBL2 and Its Interacting Kinase CIPK6 Are Involved in Plant Sugar Homeostasis via Interacting with Tonoplast Sugar Transporter TST2

Calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK)-mediated calcium signaling has been widely reported to function in plant development and various stress responses, particularly in ion homeostasis. Sugars are the most important primary metabolites, and thus sugar homeostasis requires precise regulation. Here, we describe a CBL2-CIPK6-Tonoplast-Localized Sugar Transporter2 (TST2) molecular module in cotton (Gossypium hirsutum) that regulates plant sugar homeostasis, in particular Glc homeostasis. GhCIPK6 is recruited to the tonoplast by GhCBL2 and interacts with the tonoplast-localized sugar transporter GhTST2. Overexpression of either GhCBL2, GhCIPK6, or GhTST2 was sufficient to promote sugar accumulation in transgenic cotton, whereas RNAi-mediated knockdown of GhCIPK6 expression or CRISPR-Cas9-mediated knockout of GhTST2 resulted in significantly decreased Glc content. Moreover, mutation of GhCBL2 or GhTST2 in GhCIPK6-overexpressing cotton reinstated sugar contents comparable to wild-type plants. Heterologous expression of GhCIPK6 in Arabidopsis (Arabidopsis thaliana) also promoted Glc accumulation, whereas mutation of AtTST1/2 in GhCIPK6-overexpressing Arabidopsis similarly reinstated wild-type sugar contents, thus indicating conservation of CBL2-CIPK6-TST2-mediated sugar homeostasis among different plant species. Our characterization of the molecular players behind plant sugar homeostasis may be exploited to improve sugar contents and abiotic stress resistance in plants.




bl

Transcription Factors BLH2 and BLH4 Regulate Demethylesterification of Homogalacturonan in Seed Mucilage

The polysaccharide pectin is a major component of the plant cell wall. The pectic glycan homogalacturonan (HG) is a proportionally small but important component of a specialized seed cell wall called mucilage. HG is synthesized in a highly methylesterified form, and, following secretion, is de-methylesterified by pectin methylesterases (PMEs). The degree of methylesterification of HG determines the structural and functional properties of pectin, but how methylesterification is regulated remains largely unknown. Here, we identified two BEL1-Like homeodomain (BLH) transcription factors, BLH2 and BLH4, as positive regulators of HG de-methylesterification in Arabidopsis (Arabidopsis thaliana) seed coat mucilage. BLH2 and BLH4 were significantly expressed in mucilage secretory cells during seed mucilage production. BLH2 and BLH4 single mutants exhibited no obvious mucilage phenotype, but the blh2 blh4 double mutant displayed significantly reduced mucilage adherence to the seed. Reduced mucilage adherence in blh2 blh4 was caused by decreased PME activity in the seed coat, which increased the degree of methylesterification of HG in mucilage. The expression of several PME metabolism-related genes, including PME58, PECTIN METHYLESTERASE INHIBITOR6, SEEDSTICK, and MYB52 was significantly altered in blh2 blh4 seeds. BLH2 and BLH4 directly activated PME58 expression by binding to its TGACAGGT cis-element. Moreover, pme58 mutants exhibited reduced mucilage adherence similar to that of blh2 blh4, and the blh2 blh4 pme58 triple mutant exhibited no additional mucilage adherence defects. Furthermore, overexpression of PME58 in blh2 blh4 rescued the mucilage adherence defect. Together, these results demonstrate that BLH2 and BLH4 redundantly regulate de-methylesterification of HG in seed mucilage by directly activating PME58.




bl

CBL2-CIPK6-TST2-Mediated Regulation of Sugar Homeostasis




bl

Obstructive sleep apnoea treatment and blood pressure: which phenotypes predict a response? A systematic review and meta-analysis

The treatment for obstructive sleep apnoea (OSA) with continuous positive airway pressure (CPAP) or mandibular advancement devices (MADs) is associated with blood pressure (BP) reduction; however, the overall effect is modest. The aim of this systematic review and meta-analysis of randomised controlled trials (RCTs) comparing the effect of such treatments on BP was to identify subgroups of patients who respond best to treatment.

The article search was performed in three different databases with specific search terms and selection criteria. From 2289 articles, we included 68 RCTs that compared CPAP or MADs with either passive or active treatment. When all the studies were pooled together, CPAP and MADs were associated with a mean BP reduction of –2.09 (95% CI –2.78– –1.40) mmHg for systolic BP and –1.92 (95% CI –2.40– –1.43) mmHg for diastolic BP and –1.27 (95% CI –2.34– –0.20) mmHg for systolic BP and –1.11 (95% CI –1.82– –0.41) mmHg for diastolic BP, respectively. The subgroups of patients who showed a greater response were those aged <60 years (systolic BP –2.93 mmHg), with uncontrolled BP at baseline (systolic BP –4.14 mmHg) and with severe oxygen desaturations (minimum arterial oxygen saturation measured by pulse oximetry <77%) at baseline (24-h systolic BP –7.57 mmHg).

Although this meta-analysis shows that the expected reduction of BP by CPAP/MADs is modest, it identifies specific characteristics that may predict a pronounced benefit from CPAP in terms of BP control. These findings should be interpreted with caution; however, they are particularly important in identifying potential phenotypes associated with BP reduction in patients treated for OSA.




bl

GRASP55 Is Dispensable for Normal Hematopoiesis but Necessary for Myc-Dependent Leukemic Growth [IMMUNE SYSTEM DEVELOPMENT]

Key Points

  • Golgi morphology and Grasp55 expression are regulated during hematopoiesis.

  • Hematopoiesis is not affected in Grasp55-deficient mice.

  • Grasp55 regulates Myc-transformed leukemic cell survival.




    bl

    IRAK-M Regulates Monocyte Trafficking to the Lungs in Response to Bleomycin Challenge [IMMUNE REGULATION]

    Key Points

  • TLR signaling pathway regulates expression of monocyte chemoattractant CCR2.

  • IRAK-M is an important regulator of monocyte trafficking to the lung in fibrosis.




    bl

    Genome Topology Control of Antigen Receptor Gene Assembly [BRIEF REVIEWS]

    The past decade has increased our understanding of how genome topology controls RAG endonuclease-mediated assembly of lymphocyte AgR genes. New technologies have illuminated how the large IgH, Ig, TCRα/, and TCRβ loci fold into compact structures that place their numerous V gene segments in similar three-dimensional proximity to their distal recombination center composed of RAG-bound (D)J gene segments. Many studies have shown that CTCF and cohesin protein–mediated chromosome looping have fundamental roles in lymphocyte lineage- and developmental stage–specific locus compaction as well as broad usage of V segments. CTCF/cohesin–dependent loops have also been shown to direct and restrict RAG activity within chromosome domains. We summarize recent work in elucidating molecular mechanisms that govern three-dimensional chromosome organization and in investigating how these dynamic mechanisms control V(D)J recombination. We also introduce remaining questions for how CTCF/cohesin–dependent and –independent genome architectural mechanisms might regulate compaction and recombination of AgR loci.




    bl

    An EBNA3A-Mutated Epstein-Barr Virus Retains the Capacity for Lymphomagenesis in a Cord Blood-Humanized Mouse Model [Transformation and Oncogenesis]

    Epstein-Barr virus (EBV) causes B cell lymphomas and transforms B cells in vitro. The EBV protein EBNA3A collaborates with EBNA3C to repress p16 expression and is required for efficient transformation in vitro. An EBNA3A deletion mutant EBV strain was recently reported to establish latency in humanized mice but not cause tumors. Here, we compare the phenotypes of an EBNA3A mutant EBV (3A) and wild-type (WT) EBV in a cord blood-humanized (CBH) mouse model. The hypomorphic 3A mutant, in which a stop codon is inserted downstream from the first ATG and the open reading frame is disrupted by a 1-bp insertion, expresses very small amounts of EBNA3A using an alternative ATG at residue 15. 3A caused B cell lymphomas at rates similar to their induction by WT EBV but with delayed onset. 3A and WT tumors expressed equivalent levels of EBNA2 and p16, but 3A tumors in some cases had reduced LMP1. Like the WT EBV tumors, 3A lymphomas were oligoclonal/monoclonal, with typically one dominant IGHV gene being expressed. Transcriptome sequencing (RNA-seq) analysis revealed small but consistent gene expression differences involving multiple cellular genes in the WT EBV- versus 3A-infected tumors and increased expression of genes associated with T cells, suggesting increased T cell infiltration of tumors. Consistent with an impact of EBNA3A on immune function, we found that the expression of CLEC2D, a receptor that has previously been shown to influence responses of T and NK cells, was markedly diminished in cells infected with EBNA3A mutant virus. Together, these studies suggest that EBNA3A contributes to efficient EBV-induced lymphomagenesis in CBH mice.

    IMPORTANCE The EBV protein EBNA3A is expressed in latently infected B cells and is important for efficient EBV-induced transformation of B cells in vitro. In this study, we used a cord blood-humanized mouse model to compare the phenotypes of an EBNA3A hypomorph mutant virus (3A) and wild-type EBV. The 3A virus caused lymphomas with delayed onset compared to the onset of those caused by WT EBV, although the tumors occurred at a similar rate. The WT EBV and EBNA3A mutant tumors expressed similar levels of the EBV protein EBNA2 and cellular protein p16, but in some cases, 3A tumors had less LMP1. Our analysis suggested that 3A-infected tumors have elevated T cell infiltrates and decreased expression of the CLEC2D receptor, which may point to potential novel roles of EBNA3A in T cell and NK cell responses to EBV-infected tumors.




    bl

    Crystal Structure of African Swine Fever Virus pS273R Protease and Implications for Inhibitor Design [Structure and Assembly]

    African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the "core domain" and the N-terminal "arm domain." The "arm domain" contains the residues from M1 to N83, and the "core domain" contains the residues from N84 to A273. A structure analysis reveals that the "core domain" shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the "arm domain" is unique to ASFV. Further, experiments indicated that the "arm domain" plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen.

    IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique "arm domain" has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development.




    bl

    Establishment of a Reverse Genetics System for Influenza D Virus [Genome Replication and Regulation of Viral Gene Expression]

    Influenza D virus (IDV) was initially isolated in the United States in 2011. IDV is distributed worldwide and is one of the causative agents of the bovine respiratory disease complex (BRDC), which causes high morbidity and mortality in feedlot cattle. The molecular mechanisms of IDV pathogenicity are still unknown. Reverse genetics systems are vital tools not only for studying the biology of viruses, but also for use in applications such as recombinant vaccine viruses. Here, we report the establishment of a plasmid-based reverse genetics system for IDV. We first verified that the 3'-terminal nucleotide of each 7-segmented genomic RNA contained uracil (U), contrary to previous reports, and we were then able to successfully generate recombinant IDV by cotransfecting 7 plasmids containing these genomic RNAs along with 4 plasmids expressing polymerase proteins and nucleoprotein into human rectal tumor 18G (HRT-18G) cells. The recombinant virus had a growth deficit compared to the wild-type virus, and we determined the reason for this growth difference by examining the genomic RNA content of the viral particles. We found that the recombinant virus incorporated an unbalanced ratio of viral RNA segments into particles compared to that of the wild-type virus, and thus we adjusted the amount of each plasmid used in transfection to obtain a recombinant virus with the same replicative capacity as the wild-type virus. Our work here in establishing a reverse genetics system for IDV will have a broad range of applications, including uses in studies focused on better understanding IDV replication and pathogenicity, as well as in those contributing to the development of BRDC countermeasures.

    IMPORTANCE The bovine respiratory disease complex (BRDC) causes high mortality and morbidity in cattle, causing economic losses worldwide. Influenza D virus (IDV) is considered to be a causative agent of the BRDC. Here, we developed a reverse genetics system that allows for the generation of IDV from cloned cDNAs and the introduction of mutations into the IDV genome. This reverse genetics system will become a powerful tool for use in studies related to understanding the molecular mechanisms of viral replication and pathogenicity and will also lead to the development of new countermeasures against the BRDC.




    bl

    A New Gorilla Adenoviral Vector with Natural Lung Tropism Avoids Liver Toxicity and Is Amenable to Capsid Engineering and Vector Retargeting [Gene Delivery]

    Human adenoviruses have many attractive features for gene therapy applications. However, the high prevalence of preexisting immunity against these viruses in general populations worldwide has greatly limited their clinical utility. In addition, the most commonly used human adenovirus, human adenovirus subgroup C serotype 5 (HAd5), when systemically administered, triggers systemic inflammation and toxicity, with the liver being the most severely affected organ. Here, we evaluated the utility and safety of a new low-seroprevalence gorilla adenovirus (GAd; GC46) as a gene transfer vector in mice. Biodistribution studies revealed that systemically administered GAd had a selective and robust lung endothelial cell (EC) tropism with minimal vector expression throughout many other organs and tissues. Administration of a high dose of GAd accomplished extensive transgene expression in the lung yet elicited no detectable inflammatory histopathology in this organ. Furthermore, GAd, unlike HAd5, did not exhibit hepatotropism or induce liver inflammatory toxicity in mice, demonstrating the exceptional safety profile of the vector vis-à-vis systemic utility. We further demonstrated that the GAd capsid fiber shared the flexibility of the HAd5 equivalent for permitting genetic modification; GAd with the pan-EC-targeting ligand myeloid cell-binding peptide (MBP) incorporated in the capsid displayed a reduced lung tropism and efficiently retargeted gene expression to vascular beds in other organs.

    IMPORTANCE In the aggregate, our mouse studies suggest that GAd is a promising gene therapy vector that utilizes lung ECs as a source of therapeutic payload production and a highly desirable toxicity profile. Further genetic engineering of the GAd capsid holds the promise of in vivo vector tropism modification and targeting.




    bl

    Single-cell O2 exchange imaging shows that cytoplasmic diffusion is a dominant barrier to efficient gas transport in red blood cells [Physiology]

    Disorders of oxygen transport are commonly attributed to inadequate carrying capacity (anemia) but may also relate to inefficient gas exchange by red blood cells (RBCs), a process that is poorly characterized yet assumed to be rapid. Without direct measurements of gas exchange at the single-cell level, the barriers to O2...




    bl

    Metal ions confinement defines the architecture of G-quartet, G-quadruplex fibrils and their assembly into nematic tactoids [Chemistry]

    G-quadruplex, assembled from a square array of guanine (G) molecules, is an important structure with crucial biological roles in vivo but also a versatile template for ordered functional materials. Although the understanding of G-quadruplex structures is the focus of numerous studies, little is known regarding the control of G-quartet stacking...




    bl

    PCARE and WASF3 regulate ciliary F-actin assembly that is required for the initiation of photoreceptor outer segment disk formation [Genetics]

    The outer segments (OS) of rod and cone photoreceptor cells are specialized sensory cilia that contain hundreds of opsin-loaded stacked membrane disks that enable phototransduction. The biogenesis of these disks is initiated at the OS base, but the driving force has been debated. Here, we studied the function of the...




    bl

    NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein [Research Article]

    Proteasomes are essential protease complexes that maintain cellular homeostasis, and aberrant proteasomal activity supports cancer development. The regulatory mechanisms and biological function of the ubiquitin-26S proteasome have been studied extensively, while those of the ubiquitin-independent 20S proteasome system remain obscure. Here, we show that the cap ’n’ collar (CNC) family transcription factor NRF3 specifically enhances 20S proteasome assembly in cancer cells and that 20S proteasomes contribute to colorectal cancer development through ubiquitin-independent proteolysis of the tumor suppressor p53 and retinoblastoma (Rb) proteins. The NRF3 gene is highly expressed in many cancer tissues and cell lines and is important for cancer cell growth. In cancer cells, NRF3 upregulates the assembly of the 20S proteasome by directly inducing the gene expression of the 20S proteasome maturation protein POMP. Interestingly, NRF3 knockdown not only increases p53 and Rb protein levels but also increases p53 activities for tumor suppression, including cell cycle arrest and induction of apoptosis. Furthermore, protein stability and cell viability assays using two distinct proteasome inhibitor anticancer drugs, the 20S proteasome inhibitor bortezomib and the ubiquitin-activating enzyme E1 inhibitor TAK-243, show that the upregulation of the NRF3-POMP axis leads to ubiquitin-independent proteolysis of p53 and Rb and to impaired sensitivity to bortezomib but not TAK-243. More importantly, the NRF3-POMP axis supports tumorigenesis and metastasis, with higher NRF3/POMP expression levels correlating with poor prognoses in patients with colorectal or rectal adenocarcinoma. These results suggest that the NRF3-POMP-20S proteasome assembly axis is significant for cancer development via ubiquitin-independent proteolysis of tumor suppressor proteins.




    bl

    Response to 'What makes the blood go around? [CORRESPONDENCE]

    William Joyce and Tobias Wang




    bl

    What makes the blood go around? [CORRESPONDENCE]

    Rafael Dalmau




    bl

    Neev, a novel long non-coding RNA, is expressed in chaetoblasts during regeneration of Eisenia fetida [RESEARCH ARTICLE]

    Surendra Singh Patel, Sanyami Zunjarrao, and Beena Pillai

    Eisenia fetida, the common vermicomposting earthworm, shows robust regeneration of posterior segments removed by amputation. During the period of regeneration, the newly formed tissue initially contains only undifferentiated cells but subsequently differentiates into a variety of cell types including muscle, nerve and vasculature. Transcriptomics analysis, reported previously, provided a number of candidate non-coding RNAs that were induced during regeneration. We found that one such long non-coding RNA (lncRNA) is expressed in the skin, only at the base of newly formed chaetae. The spatial organization and precise arrangement of the regenerating chaetae and the cells expressing the lncRNA on the ventral side clearly support a model wherein the regenerating tissue contains a zone of growth and cell division at the tip and a zone of differentiation at the site of amputation. The temporal expression pattern of the lncRNA, named Neev, closely resembled the pattern of chitin synthase genes, implicated in chaetae formation. We found that the lncRNA has 49 sites for binding a set of four microRNAs (miRNAs) while the chitin synthase 8 mRNA has 478 sites. The over-representation of shared miRNA sites suggests that lncRNA Neev may act as a miRNA sponge to transiently de-repress chitin synthase 8 during formation of new chaetae in the regenerating segments of Eisenia fetida.




    bl

    Variation in outer blubber lipid concentration does not reflect morphological body condition in humpback whales [RESEARCH ARTICLE]

    Fredrik Christiansen, Kate R. Sprogis, Jasmin Gross, Juliana Castrillon, Hunter A. Warick, Eva Leunissen, and Susan Bengtson Nash

    An animal's body condition provides valuable information for ecophysiological studies, and is an important measure of fitness in population monitoring and conservation. While both the external body shape of an animal and its internal tissues (i.e. fat content) can be used as a measure of body condition, the relationship between the two is not always linear. We compared the morphological body condition (external metric obtained through aerial photogrammetry) of migrating humpback whales (Megaptera novaeangliae) with their outer blubber lipid concentration (internal metric obtained through blubber biopsy sampling) off the coast of south-west Australia early and late in the breeding season (spanning ~4.5 months). The external body condition index of juvenile and adult humpback whales decreased by 26.9 (from 18.8% to –8.1%) and 12.0 percentage points (from 8.6% to –3.4%), respectively, between the early and late phase. In contrast, we found no intra-seasonal change in blubber lipid concentration, and no difference between reproductive classes (juveniles, adults and lactating females); however, the small sample size prevented us from effectively testing these effects. Importantly, however, in the 33 animals for which paired metrics were obtained, we found no correlation between the morphometric body condition index and the blubber lipid concentration of individual whales. The lack of a linear relationship suggests that changes in outer blubber lipid concentration do not reflect external changes in body shape, thus limiting the utility of outer blubber lipid reserves for individual body condition evaluation. The wider spectrum of change in body morphometry captured with aerial photogrammetry supports the use of body morphometry as a reliable and well-tested method.




    bl

    Learning of bimodal vs. unimodal signals in restrained bumble bees [RESEARCH ARTICLE]

    Andre J. Riveros, Anne S. Leonard, Wulfila Gronenberg, and Daniel R. Papaj

    Similar to animal communication displays, flowers emit complex signals that attract pollinators. Signal complexity could lead to higher cognitive load, impairing performance, or might benefit pollinators by facilitating learning, memory and decision-making. Here, we evaluate learning and memory in foragers of the bumble bee Bombus impatiens trained to simple (unimodal) vs. complex signals (bimodal) under restrained conditions. Use of a proboscis extension response protocol enabled us to control the timing and duration of stimuli presented during absolute and differential learning tasks. Overall, we observed broad variation in the performance under the two conditions, with bees trained to compound bimodal signals learning and remembering as well as, better, or more poorly than bees trained to unimodal signals. Interestingly, the outcome of training was affected by the specific colour-odour combination. Among unimodal stimuli, the performance with odour stimuli was higher than with colour stimuli, suggesting that olfactory signals played a more significant role in the compound bimodal condition. This was supported by the fact that after 24 h, most bimodal-treatment bees responded to odour but not visual stimuli. We did not observe differences in latency of response, suggesting that signal composition affected decision accuracy, not speed. We conclude that restrained bumble bee workers exhibit broad variation of responses to bimodal stimuli and that components of the bimodal signal may not be used equivalently. The analysis of bee performance under restrained conditions enables accurately control the multimodal stimuli provided to individuals and to study the interaction of individual components within a compound.




    bl

    Retinal slip compensation of pitch-constrained blue-bottle flies flying in a flight mill [SHORT COMMUNICATION]

    Shih-Jung Hsu and Bo Cheng

    In the presence of wind or background image motion, flies are able to maintain a constant retinal slip velocity via regulating flight speed to the extent permitted by their locomotor capacity. Here we investigated the retinal slip compensation of tethered blue-bottle flies (Calliphora vomitoria) flying semi-freely along an annular corridor in a magnetically levitated flight mill enclosed by two motorized cylindrical walls. We perturbed the flies’ retinal slip via spinning the cylindrical walls, generating bilaterally averaged retinal slip perturbations from -0.3 to 0.3 m·s–1 (or -116.4 to 116.4 deg.·s–1) When the perturbation was less than ~0.1 m·s–1 (38.4 deg.·s–1), the flies successfully compensated the perturbations and maintained a retinal slip velocity by adjusting their airspeed up to 20%. However, with greater retinal slip perturbation, the flies’ compensation became saturated, as the flies’ airspeed plateaued, indicating that they were unable to further maintain a constant retinal slip velocity. The compensation gain, i.e., the ratio of airspeed compensation and retinal slip perturbation, depended on the spatial frequency of the grating patterns, being the largest at 12 m–1 (0.04 deg.–1).




    bl

    Muscleblind-like 2 controls the hypoxia response of cancer cells [ARTICLE]

    Hypoxia is a hallmark of solid cancers, supporting proliferation, angiogenesis, and escape from apoptosis. There is still limited understanding of how cancer cells adapt to hypoxic conditions and survive. We analyzed transcriptome changes of human lung and breast cancer cells under chronic hypoxia. Hypoxia induced highly concordant changes in transcript abundance, but divergent splicing responses, underlining the cell type-specificity of alternative splicing programs. While RNA-binding proteins were predominantly reduced, hypoxia specifically induced muscleblind-like protein 2 (MBNL2). Strikingly, MBNL2 induction was critical for hypoxia adaptation by controlling the transcript abundance of hypoxia response genes, such as vascular endothelial growth factor A (VEGFA). MBNL2 depletion reduced the proliferation and migration of cancer cells, demonstrating an important role of MBNL2 as cancer driver. Hypoxia control is specific for MBNL2 and not shared by its paralog MBNL1. Thus, our study revealed MBNL2 as central mediator of cancer cell responses to hypoxia, regulating the expression and alternative splicing of hypoxia-induced genes.




    bl

    Establishment of 5'-3' interactions in mRNA independent of a continuous ribose-phosphate backbone [ARTICLE]

    Functions of eukaryotic mRNAs are characterized by intramolecular interactions between their ends. We have addressed the question whether 5' and 3' ends meet by diffusion-controlled encounter "through solution" or by a mechanism involving the RNA backbone. For this purpose, we used a translation system derived from Drosophila embryos that displays two types of 5'–3' interactions: Cap-dependent translation initiation is stimulated by the poly(A) tail and inhibited by Smaug recognition elements (SREs) in the 3' UTR. Chimeric RNAs were made consisting of one RNA molecule carrying a luciferase coding sequence and a second molecule containing SREs and a poly(A) tail; the two were connected via a protein linker. The poly(A) tail stimulated translation of such chimeras even when disruption of the RNA backbone was combined with an inversion of the 5'–3' polarity between the open reading frame and poly(A) segment. Stimulation by the poly(A) tail also decreased with increasing RNA length. Both observations suggest that contacts between the poly(A) tail and the 5' end are established through solution, independently of the RNA backbone. In the same chimeric constructs, SRE-dependent inhibition of translation was also insensitive to disruption of the RNA backbone. Thus, tracking of the backbone is not involved in the repression of cap-dependent initiation. However, SRE-dependent repression was insensitive to mRNA length, suggesting that the contact between the SREs in the 3' UTR and the 5' end of the RNA might be established in a manner that differs from the contact between the poly(A) tail and the cap.




    bl

    PIWI-piRNA pathway-mediated transposable element repression in Hydra somatic stem cells [REPORT]

    Transposable elements (TEs) can damage genomes, thus organisms use a variety of mechanisms to repress TE expression. The PIWI–piRNA pathway is a small RNA pathway that represses TE expression in the germline of animals. Here we explore the function of the pathway in the somatic stem cells of Hydra, a long-lived freshwater cnidarian. Hydra have three stem cell populations, all of which express PIWI proteins; endodermal and ectodermal epithelial stem cells (ESCs) are somatic, whereas the interstitial stem cells have germline competence. To study somatic function of the pathway, we isolated piRNAs from Hydra that lack the interstitial lineage and found that these somatic piRNAs map predominantly to TE transcripts and display the conserved sequence signatures typical of germline piRNAs. Three lines of evidence suggest that the PIWI–piRNA pathway represses TEs in Hydra ESCs. First, epithelial knockdown of the Hydra piwi gene hywi resulted in up-regulation of TE expression. Second, degradome sequencing revealed evidence of PIWI-mediated cleavage of TE RNAs in epithelial cells using the ping-pong mechanism. Finally, we demonstrated a direct association between Hywi protein and TE transcripts in epithelial cells using RNA immunoprecipitation. Altogether, our data reveal that the PIWI–piRNA pathway represses TE expression in the somatic cell lineages of Hydra, which we propose contributes to the extreme longevity of the organism. Furthermore, our results, in combination with others, suggest that somatic TE repression is an ancestral function of the PIWI–piRNA pathway.




    bl

    Post-Breast Cancer Radiotherapy Bronchiolitis Obliterans Organizing Pneumonia

    BACKGROUND:Radiotherapy for breast cancer has been implicated in the development of bronchiolitis obliterans organizing pneumonia (BOOP). Patients may be asymptomatic or may have pulmonary and constitutional symptoms that are moderate or severe. Postradiotherapy BOOP usually develops during the 12 months after completion of radiotherapy and is characterized by ground-glass opacities in the radiation-exposed lung and frequently in the non-irradiated lung.METHODS:An updated literature search and review was performed to update the systematic review we conducted in 2014. Ten new publications were identified: 2 Japanese epidemiological studies, 1 Japanese case series study, 6 case reports, and 1 review article.RESULTS:The incidence of postradiotherapy BOOP was 1.4% in both Japanese epidemiological studies. Risk factors included increasing age, cigarette smoking, and increasing central lung distance. The case reports included 7 women who had breast cancer postradiation BOOP and 1 woman who had an ataxia telangiectasia mutated (ATM) gene mutation, which may increase radiation sensitivity.CONCLUSION:Postradiotherapy BOOP in women with breast cancer occurs at a rate of 1.0–3.0% and may occur in women with immune system dysfunction and genetic mutations.




    bl

    An Interrater Reliability Study of Pulmonary Function Assessment With a Portable Spirometer

    BACKGROUND:In this study, we aimed to validate the agreement between pulmonary function measurements obtained with a portable spirometer and measurements obtained with conventional spirometry in Chinese pediatric and adult populations.METHODS:Pulmonary function testing was performed to evaluate subjects enrolled at Shanghai Zhongshan Hospital (n = 104) and Shanghai Children's Medical Center (n = 103). The portable spirometers and conventional devices were applied to each subject with a 20-min quiescent period between each measurement. Pulmonary function parameters of FVC, FEV1, peak expiratory flow, maximum expiratory flow at 25%, 50%, and 75% of FVC (MEF25, MEF50, and MEF75, respectively), and FEV1/FVC% were compared with intraclass correlation and Bland-Altman methods.RESULTS:A satisfactory concordance of pulmonary function was observed between spirometry measurements obtained with portable versus conventional spirometers. Intraclass correlation indicated excellent reliability (>0.75) for all pulmonary function indicators in pediatric and adult subjects. Significant positive correlations of all variables measured with different spirometers were observed (all P < .001). No significant bias was observed in either group, although limits of agreement varied. Funnel effects were observed for peak expiratory flow in pediatric subjects and for FVC, FEV1, MEF50, and MEF25 in adult subjects.CONCLUSIONS:The portable spirometer is an alternative to the conventional device for the measurement of pulmonary function. Compared with the conventional device, the portable spirometer is expected to provide convenient, operational, and financial advantages.




    bl

    A flexible network of vimentin intermediate filaments promotes migration of amoeboid cancer cells through confined environments [Cell Biology]

    Tumor cells can spread to distant sites through their ability to switch between mesenchymal and amoeboid (bleb-based) migration. Because of this difference, inhibitors of metastasis must account for each migration mode. However, the role of vimentin in amoeboid migration has not been determined. Because amoeboid leader bleb–based migration (LBBM) occurs in confined spaces and vimentin is known to strongly influence cell-mechanical properties, we hypothesized that a flexible vimentin network is required for fast amoeboid migration. To this end, here we determined the precise role of the vimentin intermediate filament system in regulating the migration of amoeboid human cancer cells. Vimentin is a classic marker of epithelial-to-mesenchymal transition and is therefore an ideal target for a metastasis inhibitor. Using a previously developed polydimethylsiloxane slab–based approach to confine cells, RNAi-based vimentin silencing, vimentin overexpression, pharmacological treatments, and measurements of cell stiffness, we found that RNAi-mediated depletion of vimentin increases LBBM by ∼50% compared with control cells and that vimentin overexpression and simvastatin-induced vimentin bundling inhibit fast amoeboid migration and proliferation. Importantly, these effects were independent of changes in actomyosin contractility. Our results indicate that a flexible vimentin intermediate filament network promotes LBBM of amoeboid cancer cells in confined environments and that vimentin bundling perturbs cell-mechanical properties and inhibits the invasive properties of cancer cells.




    bl

    Chemical roadblocking of DNA transcription for nascent RNA display [RNA]

    Site-specific arrest of RNA polymerases (RNAPs) is fundamental to several technologies that assess RNA structure and function. Current in vitro transcription “roadblocking” approaches inhibit transcription elongation by blocking RNAP with a protein bound to the DNA template. One limitation of protein-mediated transcription roadblocking is that it requires inclusion of a protein factor extrinsic to the minimal in vitro transcription reaction. In this work, we developed a chemical approach for halting transcription by Escherichia coli RNAP. We first established a sequence-independent method for site-specific incorporation of chemical lesions into dsDNA templates by sequential PCR and translesion synthesis. We then show that interrupting the transcribed DNA strand with an internal desthiobiotin-triethylene glycol modification or 1,N6-etheno-2'-deoxyadenosine base efficiently and stably halts Escherichia coli RNAP transcription. By encoding an intrinsic stall site within the template DNA, our chemical transcription roadblocking approach enables display of nascent RNA molecules from RNAP in a minimal in vitro transcription reaction.




    bl

    Randomized, Placebo-Controlled, Double-Blind Phase 2 Trial Comparing the Reactogenicity and Immunogenicity of a Single Standard Dose to Those of a High Dose of CVD 103-HgR Live Attenuated Oral Cholera Vaccine, with Shanchol Inactivated Oral Vaccine as an

    Reactive immunization with a single-dose cholera vaccine that could rapidly (within days) protect immunologically naive individuals during virgin soil epidemics, when cholera reaches immunologically naive populations that have not experienced cholera for decades, would facilitate cholera control. One dose of attenuated Vibrio cholerae O1 classical Inaba vaccine CVD 103-HgR (Vaxchora) containing ≥2 x 108 CFU induces vibriocidal antibody seroconversion (a correlate of protection) in >90% of U.S. adults. A previous CVD 103-HgR commercial formulation required ≥2 x 109 CFU to elicit high levels of seroconversion in populations in developing countries. We compared the vibriocidal responses of Malians (individuals 18 to 45 years old) randomized to ingest a single ≥2 x 108-CFU standard dose (n = 50) or a ≥2 x 109-CFU high dose (n = 50) of PaxVax CVD 103-HgR with buffer or two doses (n = 50) of Shanchol inactivated cholera vaccine (the immunologic comparator). To maintain blinding, participants were dosed twice 2 weeks apart; CVD 103-HgR recipients ingested placebo 2 weeks before or after ingesting vaccine. Seroconversion (a ≥4-fold vibriocidal titer rise) between the baseline and 14 days after CVD 103-HgR ingestion and following the first and second doses of Shanchol were the main outcomes measured. By day 14 postvaccination, the rates of seroconversion after ingestion of a single standard dose and a high dose of CVD 103-HgR were 71.7% (33/46 participants) and 83.3% (40/48 participants), respectively. The rate of seroconversion following the first dose of Shanchol, 56.0% (28/50 participants), was significantly lower than that following the high dose of CVD 103-HgR (P = 0.003). The vibriocidal geometric mean titer (GMT) of the high dose of CVD 103-HgR exceeded the GMT of the standard dose at day 14 (214 versus 95, P = 0.045) and was ~2-fold higher than the GMT on day 7 and day 14 following the first Shanchol dose (P > 0.05). High-dose CVD 103-HgR is recommended for accelerated evaluation in developing countries to assess its efficacy and practicality in field situations. (This study has been registered at ClinicalTrials.gov under registration no. NCT02145377.)




    bl

    Stable Chromosomal Expression of Shigella flexneri 2a and 3a O-Antigens in the Live Salmonella Oral Vaccine Vector Ty21a [Vaccines]

    We have been exploring the use of the live attenuated Salmonella enterica serovar Typhi Ty21a vaccine strain as a versatile oral vaccine vector for the expression and delivery of multiple foreign antigens, including Shigella O-antigens. In this study, we separately cloned genes necessary for the biosynthesis of the Shigella flexneri serotype 2a and 3a O-antigens, which have been shown to provide broad cross-protection to multiple disease-predominant S. flexneri serotypes. The cloned S. flexneri 2a rfb operon, along with bgt and gtrII, contained on the SfII bacteriophage, was sufficient in Ty21a to express the heterologous S. flexneri 2a O-antigen containing the 3,4 antigenic determinants. Further, this rfb operon, along with gtrA, gtrB, and gtrX contained on the Sfx bacteriophage and oac contained on the Sf6 bacteriophage, was sufficient to express S. flexneri 3a O-antigen containing the 6, 7, and 8 antigenic determinants. Ty21a, with these plasmid-carried or chromosomally inserted genes, demonstrated simultaneous and stable expression of homologous S. Typhi O-antigen plus the heterologous S. flexneri O-antigen. Candidate Ty21a vaccine strains expressing heterologous S. flexneri 2a or 3a lipopolysaccharide (LPS) elicited significant serum antibody responses against both homologous S. Typhi and heterologous Shigella LPS and protected mice against virulent S. flexneri 2a or 3a challenges. These new S. flexneri 2a and 3a O-antigen-expressing Ty21a vaccine strains, together with our previously constructed Ty21a strains expressing Shigella sonnei or Shigella dysenteriae 1 O-antigens, have the potential to be used together for simultaneous protection against the predominant causes of shigellosis worldwide as well as against typhoid fever.