pro Knowledge Sharing Process and Innovation Success: Evidence from Public Organisations in Southern Nigeria By Published On :: 2019-06-07 Aim/Purpose: This study investigates the relationship between knowledge sharing process and innovation success with specific emphasis on tacit knowledge. Based on the literature review, we hypothesised that knowledge donating and collecting have a positive relationship with innovation success. Methodology: The hypotheses were empirically tested using the partial least square path modelling with data collected from twelve state-owned public organisations operating in Southern Nigeria. Contribution: The research made distinct empirical contributions to the burgeoning literature on knowledge sharing and innovation from the public sector and developing country context. Findings: Knowledge donating and collecting contribute to innovation success positively and significantly. Knowledge donating effect on innovation success was found to be more significantly positive than the effect of knowledge collecting on innovation success. Recommendations for Practitioners: Public organisations should promote a supportive culture to spur innovation through the frequent share of experiences, information and skills among the various knowledge actors. Public managers should convey the importance of knowledge sharing and its value to knowledge users in clear terms and attend to creating conditions or contexts that encourage people to share knowledge freely and willingly with others. It is apt to improve organisational commitment and support for knowledge sharing activities such as mentorship programs, workshops, conferences, seminars and other related training and development programs in order to provide opportunities for employees to develop innovation competencies from the transfer of tacit knowledge developed over time from experience. To optimise innovation outcomes from knowledge sharing practices, knowledge sharing should be in tandem with the industry or global best practices. Future Research: Future studies should add interviews to provide depth in terms of insights and substance to the questionnaire, and may extend to public organisation with different ownership structure. Full Article
pro Effects of Advocacy Banners after Abandoning Products in Online Shopping Carts By Published On :: 2019-05-02 Aim/Purpose: This study empirically analyzed and examined the effectiveness of the online advocacy banners on customers’ reactions to make replacements with the similar products in their shopping carts. Background: When a product in a shopping cart is removed, it might be put back into the cart again during the same purchase or it may be bought in the future. Otherwise, it might be abandoned and replaced with a similar item based on the customer’s enquiry list or on the recommendation of banners. There is a lack of understanding of this phenomenon in the existing literature, pointing to the need for this study. Methodology: With a database from a Taiwanese e-retailer, data were the tracks of empirical webpage clickstreams. The used data for analyses were particularly that the products were purchased again or replaced with the similar ones upon the advocacy banners being shown when they were removed from customers’ shopping carts. Few pre-defined Apriori rules as well as similarity algorithm, Jaccard index, were applied to derive the effectiveness. Contribution: This study addressed a measurement challenge by leveraging the information from clickstream data – particularly clickstream data behavior. These data are most useful to observe the real-time behavior of consumers on websites and also are applied to studying click-through behavior, but not click-through rates, for web banners. The study develops a new methodology to aid advertisers in evaluating the effectiveness of their banner campaign. Findings: The recommending/advocating titles of “you probably are interested” and “the most viewed” are not significantly effective on saving back customers’ removed products or repurchasing similar items. For the banners entitled “most buy”, “the most viewed” might only show popularity of the items, but is not enough to convince them to buy. At the current stage on the host website, customers may either not trust in the host e-retailer or in such mechanism. Additionally, the advocating/recommending banners only are effective on the same customer visits and their effects fade over time. As time passes, customers’ impressions of these banners may become vague. Recommendations for Practitioners: One managerial implication is more effective adoption of advocacy/recommendation banners on e-retailing websites. Another managerial implication is the evaluation of the advocacy/recommendation banners. By using a data mining technique to find the association between removed products and restored ones in e-shoppers’ shopping carts, the approach and findings of this study, which are important for e-retailing marketers, reflect the connection between the usage of banners and the personalized purchase changes in an individual customer’s shopping cart. Recommendation for Researchers: This study addressed a new measurement which challenges to leverage the information from clickstream data instead of click-through rates – particularly retailing webpages browsing behavior. These data are most useful to observe the real-time behavior of consumers on websites and also are applied to studying click-through behavior. Impact on Society: Personalization has become an important technique that allows businesses to improve both sales and service relationships with their online customers. This personalization gives e-marketers the ability to deliver real effectiveness in the use of banners. Future Research: The effectiveness is time- and case-sensible. Business practitioners and academic researchers are encouraged to apply the mining methodology to longevity studies, specific marketing campaigns of advertising and personal recommendations, and any further recommendation algorithms. Full Article
pro Prosumers’ Engagement in Business Process Innovation – The Case of Poland and the UK By Published On :: 2019-04-26 Aim/Purpose: The main purpose of this paper is to identify prosumers’ engagement in business process innovation through knowledge sharing. Background: In the increasingly competitive knowledge-based economy, companies must seek innovative methods of doing business, quickly react to consumer demand, and provide superior value to consumers. Simultaneously, contemporary consumers, named “prosumers”, want to be active co-creators of value and satisfy their consumption needs through collaboration with companies for co-creation, co-design, co-production, co-promotion, co-pricing, co-distribution, co-consumption, and co-maintenance. Consequently, consumer involvement in development and improvement of products and business process must be widely analyzed in various contexts. Methodology: The research is a questionnaire survey study of 388 prosumers in Poland and 76 in the UK. Contribution The contribution of this research is twofold. First, it identifies how prosumers can be engaged in business processes through knowledge sharing. Second, it investigates the differences between Poland- and UK-based prosumers in engagement in business process. Findings: The study found that prosumers are engaged in knowledge sharing at each stage of the business process innovation framework. However, there are differences in the types of processes that draw on prosumers’ engagement. Prosumers in Poland are found to engage mostly in the business process of developing and managing products, whereas prosumers in the UK engage mostly in the business process of managing customer services. Recommendations for Practitioners: This study provides practitioners with guidelines for engaging prosumers and their knowledge sharing to improve process innovation. Companies gain new insight from these findings about prosumers’ knowledge sharing for process innovation, which may help them make better decisions about which projects and activities they can engage with prosumers for future knowledge sharing and creating prospective innovations. Recommendations for Researchers: Researchers may use this methodology and do similar analysis with different samples in Poland, the UK, and other countries, for many additional comparisons between different groups and countries. Moreover, a different methodology may be used for identifying prosumers’ engagement and knowledge sharing for processes improvement. Future Research: This study examined prosumers’ engagement from the prosumers’ standpoint. Therefore prosumers’ engagement from the company perspective should be explored in future research. Full Article
pro Improving Webpage Access Predictions Based on Sequence Prediction and PageRank Algorithm By Published On :: 2019-01-20 Aim/Purpose: In this article, we provide a better solution to Webpage access prediction. In particularly, our core proposed approach is to increase accuracy and efficiency by reducing the sequence space with integration of PageRank into CPT+. Background: The problem of predicting the next page on a web site has become significant because of the non-stop growth of Internet in terms of the volume of contents and the mass of users. The webpage prediction is complex because we should consider multiple kinds of information such as the webpage name, the contents of the webpage, the user profile, the time between webpage visits, differences among users, and the time spent on a page or on each part of the page. Therefore, webpage access prediction draws substantial effort of the web mining research community in order to obtain valuable information and improve user experience as well. Methodology: CPT+ is a complex prediction algorithm that dramatically offers more accurate predictions than other state-of-the-art models. The integration of the importance of every particular page on a website (i.e., the PageRank) regarding to its associations with other pages into CPT+ model can improve the performance of the existing model. Contribution: In this paper, we propose an approach to reduce prediction space while improving accuracy through combining CPT+ and PageRank algorithms. Experimental results on several real datasets indicate the space reduced by up to between 15% and 30%. As a result, the run-time is quicker. Furthermore, the prediction accuracy is improved. It is convenient that researchers go on using CPT+ to predict Webpage access. Findings: Our experimental results indicate that PageRank algorithm is a good solution to improve CPT+ prediction. An amount of though approximately 15 % to 30% of redundant data is removed from datasets while improving the accuracy. Recommendations for Practitioners: The result of the article could be used in developing relevant applications such as Webpage and product recommendation systems. Recommendation for Researchers: The paper provides a prediction model that integrates CPT+ and PageRank algorithms to tackle the problem of complexity and accuracy. The model has been experimented against several real datasets in order to show its performance. Impact on Society: Given an improving model to predict Webpage access using in several fields such as e-learning, product recommendation, link prediction, and user behavior prediction, the society can enjoy a better experience and more efficient environment while surfing the Web. Future Research: We intend to further improve the accuracy of webpage access prediction by using the combination of CPT+ and other algorithms. Full Article
pro A Multicluster Approach to Selecting Initial Sets for Clustering of Categorical Data By Published On :: 2020-10-04 Aim/Purpose: This article proposes a methodology for selecting the initial sets for clustering categorical data. The main idea is to combine all the different values of every single criterion or attribute, to form the first proposal of the so-called multiclusters, obtaining in this way the maximum number of clusters for the whole dataset. The multiclusters thus obtained, are themselves clustered in a second step, according to the desired final number of clusters. Background: Popular cluster methods for categorical data, such as the well-known K-Modes, usually select the initial sets by means of some random process. This fact introduces some randomness in the final results of the algorithms. We explore a different application of the clustering methodology for categorical data that overcomes the instability problems and ultimately provides a greater clustering efficiency. Methodology: For assessing the performance of the proposed algorithm and its comparison with K-Modes, we apply both of them to categorical databases where the response variable is known but not used in the analysis. In our examples, that response variable can be identified to the real clusters or classes to which the observations belong. With every data set, we perform a two-step analysis. In the first step we perform the clustering analysis on data where the response variable (the real clusters) has been omitted, and in the second step we use that omitted information to check the efficiency of the clustering algorithm (by comparing the real clusters to those given by the algorithm). Contribution: Simplicity, efficiency and stability are the main advantages of the multicluster method. Findings: The experimental results attained with real databases show that the multicluster algorithm has greater precision and a better grouping effect than the classical K-modes algorithm. Recommendations for Practitioners: The method can be useful for those researchers working with small and medium size datasets, allowing them to detect the underlying structure of the data in an intuitive and reasonable way. Recommendation for Researchers: The proposed algorithm is slower than K-Modes, since it devotes a lot of time to the calculation of the initial combinations of attributes. The reduction of the computing time is therefore an important research topic. Future Research: We are concerned with the scalability of the algorithm to large and complex data sets, as well as the application to mixed data sets with both quantitative and qualitative attributes. Full Article
pro Critical Success Factors for Implementing Business Intelligence Projects (A BI Implementation Methodology Perspective) By Published On :: 2020-08-27 Aim/Purpose: The purpose of this paper is to identify Critical Success Factors (CSFs) for Business Intelligence (BI) implementation projects by studying the existing BI project implementation methodologies and to compare these methodologies based on the identified CSFs. Background: The implementation of BI project has become one of the most important technological and organizational innovations in modern organizations. The BI project implementation methodology provides a framework for demonstrating knowledge, ideas and structural techniques. It is defined as a set of instructions and rules for implementing BI projects. Identifying CSFs of BI implementation project can help the project team to concentrate on solving prior issues and needed resources. Methodology: Firstly, the literature review was conducted to find the existing BI project implementation methodologies. Secondly, the content of the 13 BI project implementation methodologies was analyzed by using thematic analysis method. Thirdly, for examining the validation of the 20 identified CSFs, two questionnaires were distributed among BI experts. The gathered data of the first questionnaire was analyzed by content validity ratio (CVR) and 11 of 20 CSFs were accepted as a result. The gathered data of the second questionnaire was analyzed by fuzzy Delphi method and the results were the same as CVR. Finally, 13 raised BI project implementation methodologies were compared based on the 11 validated CSFs. Contribution: This paper contributes to the current theory and practice by identifying a complete list of CSFs for BI projects implementation; comparison of existing BI project implementation methodologies; determining the completeness degree of existing BI project implementation methodologies and introducing more complete ones; and finding the new CSF “Expert assessment of business readiness for successful implementation of BI project” that was not expressed in previous studies. Findings: The CSFs that should be considered in a BI project implementation include: “Obvious BI strategy and vision”, “Business requirements definition”, “Business readiness assessment”, “BI performance assessment”, “Establishing BI alignment with business goals”, “Management support”, “IT support for BI”, “Creating data resources and source data quality”, “Installation and integration BI programs”, “BI system testing”, and “BI system support and maintenance”. Also, all the 13 BI project implementation methodologies can be divided into four groups based on their completeness degree. Recommendations for Practitioners: The results can be used to plan BI project implementation and help improve the way of BI project implementation in the organizations. It can be used to reduce the failure rate of BI implementation projects. Furthermore, the 11 identified CSFs can give a better understanding of the BI project implementation methodologies. Recommendation for Researchers: The results of this research helped researchers and practitioners in the field of business intelligence to better understand the methodology and approaches available for the implementation and deployment of BI systems and thus use them. Some methodologies are more complete than other studied methodologies. Therefore, organizations that intend to implement BI in their organization can select these methodologies according to their goals. Thus, Findings of the study can lead to reduce the failure rate of implementation projects. Future Research: Future researchers may add other BI project implementation methodologies and repeat this research. Also, they can divide CSFs into three categories including required before BI project implementation, required during BI project implementation and required after BI project implementation. Moreover, researchers can rank the BI project implementation CSFs. As well, Critical Failure Factors (CFFs) need to be explored by studying the failed implementations of BI projects. The identified CSFs probably affect each other. So, studying the relationship between them can be a topic for future research. Full Article
pro The Effect of Rational Based Beliefs and Awareness on Employee Compliance with Information Security Procedures: A Case Study of a Financial Corporation in Israel By Published On :: 2020-07-02 Aim/Purpose: This paper examines the behavior of financial firm employees with regard to information security procedures instituted within their organization. Furthermore, the effect of information security awareness and its importance within a firm is explored. Background: The study focuses on employees’ attitude toward compliance with information security policies (ISP), combined with various norms and personal abilities. Methodology: A self-reported questionnaire was distributed among 202 employees of a large financial Corporation Contribution: As far as we know, this is the first paper to thoroughly explore employees’ awareness of information system procedures, among financial organizations in Israel, and also the first to develop operative recommendations for these organizations aimed at increasing ISP compliance behavior. The main contribution of this study is that it investigates compliance with information security practices among employees of a defined financial corporation operating under rigid regulatory governance, confidentiality and privacy of data, and stringent requirements for compliance with information security procedures. Findings: Our results indicate that employees’ attitudes, normative beliefs and personal capabilities to comply with firm’s ISP, have positive effects on the firm’s ISP compliance. Also, employees’ general awareness of IS, as well as awareness to ISP within the firm, positively affect employees’ ISP compliance. Recommendations for Practitioners: This study can help information security managers identify the motivating factors for employee behavior to maintain information security procedures, properly channel information security resources, and manage appropriate information security behavior. Recommendation for Researchers: Researchers can see that corporate rewards and sanctions have significant effects on employee security behavior, but other motivational factors also reinforce the ISP’s compliance behavior. Distinguishing between types of corporations and organizations is essential to understanding employee compliance with information security procedures. Impact on Society: This study offers another level of understanding of employee behavior with regard to information security in organizations and comprises a significant contribution to the growing knowledge in this area. The research results form an important basis for IS policymakers, culture designers, managers, and those directly responsible for IS in the organization. Future Research: Future work should sample employees from another type of corporation from other fields and should apply qualitative analysis to explore other aspects of behavioral patterns related to the subject matter. Full Article
pro Students’ Continuance Intention to Use Moodle: An Expectation-Confirmation Model Approach By Published On :: 2021-08-08 Aim/Purpose: This study aims at investigating the factors that influence students’ continuous intention to use Moodle, as an exemplar of learning management systems (LMSs), in the post-adoption phase. Background: Higher education institutions (HEIs) have invested heavily in learning management systems (LMSs), such as Moodle and BlackBoard, as these systems enhance students’ learning and improve their interactions with the educational systems. While most studies on LMSs have focused on the pre-adoption or acceptance phases of this technology, the determinant factors that influence students’ continuance intention to use LMSs have received less attention in the information systems (IS) literature. Methodology: The theoretical model for this study was primarily drawn from the expectation-confirmation model (ECM). A total of 387 Kuwaiti students, from a private American University in the State of Kuwait, participated in this study. Partial least squares (PLS) was employed to analyze the data. Contribution: This study contributes to the existing scientific knowledge in different ways. First, this study extends the expectation confirmation model (ECM) by integrating factors that are important to students’ continuous intention to use LMSs, including system interactivity, effort expectancy, attitude, computer anxiety, self-efficacy, subjective norms, and facilitating conditions. Second, this study adds on a Kuwaiti literature context by focusing on the continuous intention to use LMSs, which is, to the best of our knowledge, the first study that extends and empirically assesses the applicability of the ECM in the LMSs context in a developing country – Kuwait. Third, this study conceptually and empirically differentiates between satisfaction and attitude, as two separate affect constructs, which were taken as interchangeable factors in ECM, and were disregarded by a large number of prior ECM studies concerned with continuous use intention. Finally, this study aims to assist HEIs, faculty members, and systems’ developers in understanding the main factors that influence students’ continuance use intention of LMSs. Findings: While subjective norms were not significant, the results mainly showed that students’ continuous intention to use Moodle is significantly influenced by performance expectancy, effort expectancy, attitude, satisfaction, self-efficacy and facilitating conditions. The study’s results also confirmed that satisfaction and attitude are two conceptually and empirically different constructs, conflicting with the views that these constructs can be taken as interchangeable factors in the ECM. Recommendations for Practitioners: This study offers several useful practical implications. First, given the significant influence of system interactivity on performance expectancy and satisfaction, faculty members should modify their teaching approach by enabling communication and interaction among instructors, students, and peers using the LMS. Second, given the significant influence of performance expectancy, satisfaction, and attitude on continuous intention to use the LMS, HEIs should conduct training programs for students on the effective use of the LMS. This would increase students’ awareness regarding the usefulness of the LMS, enhance their attitude towards the LMS, and improve their satisfaction with the system. Third, given the significant role of effort expectancy in influencing performance expectancy, attitude, and students’ continuous intention to use Moodle, developers and system programmers should design the LMS with easy to use, high quality, and customizable user interface. This, in turn, will not only motivate students’ performance expectancy, but will also influence their attitude and continuous intention to use the system. Recommendation for Researchers: This study conceptually and empirically differentiates between satisfaction and attitude, as two separate affect constructs, which were taken as interchangeable factors in ECM and were disregarded by a large number of prior ECM studies concerned with continuous use intention. Hence, it is recommended that researchers include these two constructs in their research models when investigating continuous intention to use a technology. Impact on Society: This study could be used in other countries to compare and verify the results. Additionally, the research model of this study could also be used to investigate other LMSs, such as Blackboard. Future Research: This study focused on how different factors affected students’ continuous intention to use Moodle but did not consider all determinants of successful system, such as system quality, information quality, and instructional as well as course content quality. Thus, future research should devote attention to the effects of these quality characteristics of LMS. Full Article
pro A Decision Support System and Warehouse Operations Design for Pricing Products and Minimizing Product Returns in a Food Plant By Published On :: 2021-01-28 Aim/Purpose: The first goal is to develop a decision support system for pricing and production amounts for a firm facing high levels of product returns. The second goal is to improve the management of the product returns process. Background: This study was conducted at a food importer and manufacturer in Israel facing a very high rate of product returns, much of which is eventually discarded. The firm’s products are commonly considered to be a low-cost generic alternative and are therefore popular among low-income families. Methodology: A decision support module was added to the plant’s business information system. The module is based on a supply chain pricing model and uses the sales data to infer future demand’s distribution. Ergonomic models were used to improve the design of the returns warehouse and the handling of the returns. Contribution: The decision support system allows to improve the plant’s pricing and quantity planning. Consequently, it reduced the size of product returns. The new design of the returns process is expected to improve worker’s productivity, reduces losses and results in safer outcomes. This study also demonstrates a successful integration and of a theoretical economical model into an information system. Findings: The results show the promise of incorporating pricing supply chain models into informing systems to achieve a practical business task. We were able to construct actual demand distributions from the data and offer actual pricing recommendations that reduce the number of returns while increasing potential profits. We were able to identify key deficiencies in the returns operations and added a module to the decisions support system that improves the returns management and links it with the sales and pricing modules. Finally, we produced a better warehouse design that supports efficient and ergonomic product returns handling. Recommendations for Practitioners: This work can be replicated for different suppliers, manufacturers and retailers that suffer from product returns. They will benefit from the reduction in returns, as well as the decrease in the losses associated with these returns. Recommendation for Researchers: It is worthwhile to research whether decision support systems can be applied to other aspects of the organizations’ operations. Impact on Society: Product returns is a lose-lose situation for producers, retailers and customers. Moreover, mismanagement of these returns is harmful for the environment and may result in the case of foods, in health hazards. Reducing returns and improving the handling improves sustainability and is beneficial for society. Future Research: The decision support system’s underlying pricing model assumes a specific business setting. This can be extended using other pricing models and applying them in a similar fashion to the current application. Full Article
pro The View of IT-Consuming Firms on the Key Digital Service Capabilities of IT-Producing Firms By Published On :: 2022-12-08 Aim/Purpose: This study focuses on the connection between IT-producing firms’ digital service capabilities and the digital service performance of IT-consuming firms, especially online shop operators. Background: The acquisition and integration of knowledge regarding digital service capabilities and performance can increase the level at which employees assimilate information, organize with IT-consuming firms, and cooperate with them to develop the delivery of services and customize services to fill their needs. Exploring capabilities that may enable this process is a prerequisite for all businesses offering digital services and, thus, an engrossing and ongoing interest of practitioners and scholars. However, there is a lack of research on the relationship between IT-producing firms’ digital service capabilities and the digital service performance of IT-consuming firms in the business-to-business (B2B) context. Methodology: The study builds on a survey conducted among small firms that have an online shop in use and are located in Finland. Contribution: The study offers empirical evidence for the capabilities valued by IT-consuming firms, providing a model for IT-producing firms to use when deciding on a future focus. The study was executed in a B2B setting from the viewpoint of online shop operators, presenting a novel understanding of influential digital service capabilities. Findings: Adaptability, determined by capabilities related to utilizing information gained via the integration of a digital product into other digital tools (e.g., marketing, personalization, and analytics), statistically significantly affects all three aspects of an IT-consuming firm’s digital service performance (financial, operational, and sales). Another product capability, availability, which includes aspects such as security, different aspects of functioning, and mobile adaptation, affects one aspect of digital performance, namely operational. The results also suggest that the role of service process-related capabilities in determining service comprehensiveness significantly influences two aspects of IT-consuming firms’ digital service performance: financial (negative effect) and operational (positive effect). The results show that the capabilities associated with the relationship between the producing firm and the consuming firm do not affect IT-consuming firms’ performance to the same extent. Recommendations for Practitioners: The study results suggest that IT-producing firms should concentrate on leveraging service comprehensiveness, as there has been a shift in the B2B context from merely selling a digital product and associated services. It seems that usability-related issues are now taken for granted, and the emphasis is on features that support the use of information to create value. Recommendation for Researchers: The results contribute to the capabilities literature by showing that the shift in focus from technical product-related capabilities to relationship-related capabilities is not yet evident among small online store operators. Impact on Society: In addition to offering tools with different integration possibilities, supporting IT-consuming firms in making the most of the possibilities would be very helpful. Future Research: The comprehension of the relationship between digital service capabilities and digital service performance would benefit from future research that takes into account additional control variables. The theoretical model of this study can be further studied by using other performance measures, such as market performance, as dependent variables. Full Article
pro Predicting Key Predictors of Project Desertion in Blockchain: Experts’ Verification Using One-Sample T-Test By Published On :: 2022-10-04 Aim/Purpose: The aim of this study was to identify the critical predictors affecting project desertion in Blockchain projects. Background: Blockchain is one of the innovations that disrupt a broad range of industries and has attracted the interest of software developers. However, despite being an open-source software (OSS) project, the maintenance of the project ultimately relies on small core developers, and it is still uncertain whether the technology will continue to attract a sufficient number of developers. Methodology: The study utilized a systematic literature review (SLR) and an expert review method. The SLR identified 21 primary studies related to project desertion published in Scopus databases from the year 2010 to 2020. Then, Blockchain experts were asked to rank the importance of the identified predictors of project desertion in Blockchain. Contribution: A theoretical framework was constructed based on Social Cognitive Theory (SCT) constructs; personal, behavior, and environmental predictors and related theories. Findings: The findings indicate that the 12 predictors affecting Blockchain project desertion identified through SLR were important and significant. Recommendations for Practitioners: The framework proposed in this paper can be used by the Blockchain development community as a basis to identify developers who might have the tendency to abandon a Blockchain project. Recommendation for Researchers: The results show that some predictors, such as code testing tasks, contributed code decoupling, system integration and expert heterogeneity that are not covered in the existing developer turnover models can be integrated into future research efforts. Impact on Society: This study highlights how an individual’s design choices could determine the success or failure of IS projects. It could direct Blockchain crypto-currency investors and cyber-security managers to pay attention to the developer’s behavior while ensuring secure investments, especially for crypto-currencies projects. Future Research: Future research may employ additional methods, such as a meta-analysis, to provide a comprehensive picture of the main predictors that can predict project desertion in Blockchain. Full Article
pro Adoption of Telecommuting in the Banking Industry: A Technology Acceptance Model Approach By Published On :: 2022-09-29 Aim/Purpose: Currently, the world faces unprecedented challenges due to COVID-19, particularly concerning individuals’ health and livelihood and organizations and industrial performance. Indeed, the pandemic has caused rapid intensifying socio-economic effects. For instance, organizations are shifting from traditional working patterns toward telecommuting. By adopting remote working, organizations might mitigate the impact of COVID-19 on their workforce, explicitly concerning their safety, wellbeing, mobility, work-life balance, and self-efficiency. From this perceptive, this study examines the factors that influence employees’ behavioral intention to adopt telecommuting in the banking industry. Background: The study’s relevance stems from the fact that telecommuting and its benefits have been assumed rather than demonstrated in the banking sector. However, the pandemic has driven the implementation of remote working, thereby revealing possible advantages of working from home in the banking industry. The study investigated the effect of COVID-19 in driving organizations to shift from traditional working patterns toward telecommuting. Thereby, the study investigates the banking sector employees’ behavioral intention to adopt telecommuting. Methodology: The study employed a survey-based questionnaire, which entails gathering data from employees of twelve banks in Jordan, as the banking sector in Jordan was the first to transform from traditional working to telecommuting. The sample for this research was 675 respondents; convenience sampling was employed as a sampling technique. Subsequently, the data were analyzed with the partial least square structural equation modeling (PLS-SEM) to statistically test the research model. Contribution: Firstly, this study provides a deep examination and understanding of facilitators of telecommuting in a single comprehensive model. Secondly, the study pro-vides a deeper insight into the factors affecting behavioral intention towards telecommuting from the employees’ perspective in the banking sector. Finally, this study is the first to examine telecommuting in the emerging market of Jordan. Thereby, this study provides critical recommendations for managers to facilitate the implementation of telecommuting. Findings: Using the Technology Acceptance Model (TAM), this study highlights significant relationships between telecommuting systems, quality, organizational support, and the perceived usefulness and ease of use in telecommuting. Employees who perceive telecommuting systems to be easy and receive supervision and training for using these systems are likely to adopt this work scheme. The results present critical theoretical and managerial implications regarding employees’ behavioral intentions toward telecommuting. Recommendations for Practitioners: This study suggests the importance of work-life balance for employees when telecommuting. Working from home while managing household duties can create complications for employees, particularly parents. Therefore, flexibility in terms of working hours is needed to increase employees’ acceptance of telecommuting as they will have more control over their life. These increase employees’ perceived self-efficacy with telecommuting, which smooths the transition toward remote working in the future. In addition, training will allow employees to solve technical issues that can arise from using online systems. Recommendation for Researchers: This study focused on the context of the banking sector. The sensitivity of data and transactions in this sector may influence employers’ and employees’ willingness to work remotely. In addition, the job descriptions of employees in banks moderate specific factors outlined in this model, including work-life balance. For instance, executive managers may have a higher overload in banks in contrast to front-line employees. Thus, future studies should explore different contexts, including manufacturing and consultation, to understand the industry’s effect on remote working. Similarly, future research should concentrate on the influence of job descriptions on employees’ intentions toward telecommuting. Impact on Society: The COVID-19 pandemic created a sudden shift towards telecommuting, which made employees struggle to adopt new work schemes. Therefore, managers had to provide training for their employees to be well prepared and increase their acceptance of telecommuting. Furthermore, telecommuting has a positive effect on work-life balance, it provides employees with the flexibility to organize their daily schedule into more activities. Along the same line, the study highlighted the correlation between work-life balance and telecommuting. Such a relationship provides further evidence for the need to understand employees’ lifestyles in facilitating the adoption of telecommuting. Moreover, the study extends the stream of literature by outlining critical factors affecting employees’ acceptance of telecommuting. Future Research: Future studies should explore different contexts, including manufacturing and consultation, to understand the industry’s effect on remote working. Similarly, future research should concentrate on the influence of job descriptions on employees’ intentions toward telecommuting. Furthermore, the research team conducted the study by surveying 12 banks. Future research recommends surveying the whole banking industry to add more validation to the model. Full Article
pro Automatic Generation of Temporal Data Provenance From Biodiversity Information Systems By Published On :: 2022-07-26 Aim/Purpose: Although the significance of data provenance has been recognized in a variety of sectors, there is currently no standardized technique or approach for gathering data provenance. The present automated technique mostly employs workflow-based strategies. Unfortunately, the majority of current information systems do not embrace the strategy, particularly biodiversity information systems in which data is acquired by a variety of persons using a wide range of equipment, tools, and protocols. Background: This article presents an automated technique for producing temporal data provenance that is independent of biodiversity information systems. The approach is dependent on the changes in contextual information of data items. By mapping the modifications to a schema, a standardized representation of data provenance may be created. Consequently, temporal information may be automatically inferred. Methodology: The research methodology consists of three main activities: database event detection, event-schema mapping, and temporal information inference. First, a list of events will be detected from databases. After that, the detected events will be mapped to an ontology, so a common representation of data provenance will be obtained. Based on the derived data provenance, rule-based reasoning will be automatically used to infer temporal information. Consequently, a temporal provenance will be produced. Contribution: This paper provides a new method for generating data provenance automatically without interfering with the existing biodiversity information system. In addition to this, it does not mandate that any information system adheres to any particular form. Ontology and the rule-based system as the core components of the solution have been confirmed to be highly valuable in biodiversity science. Findings: Detaching the solution from any biodiversity information system provides scalability in the implementation. Based on the evaluation of a typical biodiversity information system for species traits of plants, a high number of temporal information can be generated to the highest degree possible. Using rules to encode different types of knowledge provides high flexibility to generate temporal information, enabling different temporal-based analyses and reasoning. Recommendations for Practitioners: The strategy is based on the contextual information of data items, yet most information systems simply save the most recent ones. As a result, in order for the solution to function properly, database snapshots must be stored on a frequent basis. Furthermore, a more practical technique for recording changes in contextual information would be preferable. Recommendation for Researchers: The capability to uniformly represent events using a schema has paved the way for automatic inference of temporal information. Therefore, a richer representation of temporal information should be investigated further. Also, this work demonstrates that rule-based inference provides flexibility to encode different types of knowledge from experts. Consequently, a variety of temporal-based data analyses and reasoning can be performed. Therefore, it will be better to investigate multiple domain-oriented knowledge using the solution. Impact on Society: Using a typical information system to store and manage biodiversity data has not prohibited us from generating data provenance. Since there is no restriction on the type of information system, our solution has a high potential to be widely adopted. Future Research: The data analysis of this work was limited to species traits data. However, there are other types of biodiversity data, including genetic composition, species population, and community composition. In the future, this work will be expanded to cover all those types of biodiversity data. The ultimate goal is to have a standard methodology or strategy for collecting provenance from any biodiversity data regardless of how the data was stored or managed. Full Article
pro Traits Contributing to the Promotion of the Individual’s Continuance Usage Intention and Perceived Value of M-University Services By Published On :: 2022-06-25 Aim/Purpose: This study aims to examine the roles of key traits of m-university services and their users in promoting two crucial post-adoption outcomes of these services; namely, continuance usage intention and perceived value. Background: M-university (i.e., a university providing services via mobile technologies) has gained a great interest in the higher education sector as a driver of new business models and innovative service offerings. However, its assessment has been greatly overlooked, especially in evaluating the factors that drive the stakeholders’ continuance intention to use it and the determinants of its post-adoption perceived value. Consequently, research efforts undertaking such assessment facets empirically are highly required. Methodology: An integrated research model that enables such assessment was developed and evaluated using a quantitative research methodology. Accordingly, data were collected using a formulated closed-ended survey questionnaire. The target population consisted of the academic staff of a Saudi public university that has witnessed an extensive adoption of m-university services. The obtained data (i.e., 207 fully completed responses) were evaluated using the structural equation modeling approach. Contribution: To the best of our knowledge, this is the first study that gains the chance to provide the research community and m-service providers with new knowledge and understanding about the predictors that drive the continuance usage intention and value of m-university services. Findings: The findings showed that all of the examined traits of m-university services and their users (i.e., reliability, usability, customization, self-efficacy, and involvement) are having positive roles in promoting the continuance intention to use these services, while only two traits (i.e., reliability and involvement) contribute significantly to augmenting the perceived value. Recommendations for Practitioners: The study recommends developing effective design and implementation specifications that strengthen the contributions of the examined traits in the post-adoption stage of m-university services. Recommendation for Researchers: Further studies should be devoted to addressing the notable need to assess the factors influencing the adoption of m-university services, as well as to explore which ones are having significant roles in the attainment of post-adoption outcomes. Impact on Society: The empirical insights provided by the present study are essential for both university stakeholders and mobile service providers in their endeavors to improve the key aspects of the anticipated post-adoption outcomes of the provided services. Future Research: Further empirical investigations are needed to examine the roles of more m-university services and user traits in achieving a broad range of post-adoption outcomes of such services. Full Article
pro Impact of Text Diversity on Review Helpfulness: A Topic Modeling Approach By Published On :: 2022-02-22 Aim/Purpose: In this study, we aim to investigate the impact of an important characteristic of textual reviews – the diversity of the review content on review helpfulness. Background: Consumer-generated reviews are an essential format of online Word-of-Month that help customers reduce uncertainty and information asymmetry. However, not all reviews are equally helpful as reflected by the varying number of helpfulness votes received by reviews. From consumers’ perspective, what kind of content is more effective and useful for making purchase decisions is unclear. Methodology: We use a data set consisting of consumer reviews for laptop products on Amazon from 2014 to 2018. A topic modeling technique is implemented to unveil the hidden topics embedded in the reviews. Based on the extracted topics, we compute the text diversity score of each review. The diversity score measures how diverse the content in a review is compared to other reviews. Contribution: In the literature, studies have examined various factors that can influence review helpfulness. However, studies that emphasized the information value of textual reviews are limited. Our study contributes to the extant literature of online word-of-mouth by establishing the connection between the diversity of the review content and consumer perceived helpfulness. Findings: Empirical results show that text diversity plays an important role in consumers’ evaluation of whether the review is helpful. Reviews that contain more diverse content tend to be more helpful to consumers. Moreover, we find a negative interaction effect between text diversity and the text depth. This result suggests that text depth and text diversity have a substitution effect. When a review contains more in-depth content, the impact of text diversity is weakened. Recommendations for Practitioners: For consumers to quickly find the informative reviews, platforms should incorporate measures such as text diversity in the ranking algorithms to rank consumer reviews. Future Research: Future study can extend the current research by examine the impact of text diversity for experienced goods and compare the results with search goods. Full Article
pro Modeling the Impact of Covid-19 on the Farm Produce Availability and Pricing in India By Published On :: 2022-01-09 Aim/Purpose: This paper aims to analyze the availability and pricing of perishable farm produce before and during the lockdown restrictions imposed due to Covid-19. This paper also proposes machine learning and deep learning models to help the farmers decide on an appropriate market to sell their farm produce and get a fair price for their product. Background: Developing countries like India have regulated agricultural markets governed by country-specific protective laws like the Essential Commodities Act and the Agricultural Produce Market Committee (APMC) Act. These regulations restrict the sale of agricultural produce to a predefined set of local markets. Covid-19 pandemic led to a lockdown during the first half of 2020 which resulted in supply disruption and demand-supply mismatch of agricultural commodities at these local markets. These demand-supply dynamics led to disruptions in the pricing of the farm produce leading to a lower price realization for farmers. Hence it is essential to analyze the impact of this disruption on the pricing of farm produce at a granular level. Moreover, the farmers need a tool that guides them with the most suitable market/city/town to sell their farm produce to get a fair price. Methodology: One hundred and fifty thousand samples from the agricultural dataset, released by the Government of India, were used to perform statistical analysis and identify the supply disruptions as well as price disruptions of perishable agricultural produce. In addition, more than seventeen thousand samples were used to implement and train machine learning and deep learning models that can predict and guide the farmers about the appropriate market to sell their farm produce. In essence, the paper uses descriptive analytics to analyze the impact of COVID-19 on agricultural produce pricing. The paper explores the usage of prescriptive analytics to recommend an appropriate market to sell agricultural produce. Contribution: Five machine learning models based on Logistic Regression, K-Nearest Neighbors, Support Vector Machine, Random Forest, and Gradient Boosting, and three deep learning models based on Artificial Neural Networks were implemented. The performance of these models was compared using metrics like Precision, Recall, Accuracy, and F1-Score. Findings: Among the five classification models, the Gradient Boosting classifier was the optimal classifier that achieved precision, recall, accuracy, and F1 score of 99%. Out of the three deep learning models, the Adam optimizer-based deep neural network achieved precision, recall, accuracy, and F1 score of 99%. Recommendations for Practitioners: Gradient boosting technique and Adam-based deep learning model should be the preferred choice for analyzing agricultural pricing-related problems. Recommendation for Researchers: Ensemble learning techniques like Random Forest and Gradient boosting perform better than non-Ensemble classification techniques. Hyperparameter tuning is an essential step in developing these models and it improves the performance of the model. Impact on Society: Statistical analysis of the data revealed the true nature of demand and supply and price disruption. This analysis helps to assess the revenue impact borne by the farmers due to Covid-19. The machine learning and deep learning models help the farmers to get a better price for their crops. Though the da-taset used in this paper is related to India, the outcome of this research work applies to many developing countries that have similar regulated markets. Hence farmers from developing countries across the world can benefit from the outcome of this research work. Future Research: The machine learning and deep learning models were implemented and tested for markets in and around Bangalore. The model can be expanded to cover other markets within India. Full Article
pro Determinants of Knowledge Transfer for Information Technology Project Managers: A Systematic Literature Review By Published On :: 2023-12-26 Aim/Purpose: The purpose of this study is to identify the key determinants hindering Knowledge Transfer (KT) practices for Information Technology Project Managers (ITPMs) Background: The failure rate of IT projects remains unacceptably high worldwide, and KT between project managers and team members has been recognized as a significant issue affecting project success. Therefore, this study tries to identify the determinants of KT within the context of IT projects for ITPMs. Methodology: A systematic review of the literature (SLR) was employed in the investigation. The SLR found 28 primary studies on KT for ITPMs that were published in Scopus and Web of Science databases between 2010 and 2023. Contribution: Social Cognitive Theory (SCT) was used to build a theoretical framework where the determinants were categorized into Personal factors, Environmental (Project organizational) factors, and other factors, such as Technological factors influencing ITPMs (Behavioral factors), to implement in KT practices. Findings: The review identified 11 key determinants categorized into three broad categories: Personal factors (i.e., motivation, absorptive capability, trust, time urgency), Project Organizational factors (i.e., team structure, leadership style, reward system, organizational culture, communication), and Technological factors (i.e., project task collaboration tool and IT infrastructure and support) that influence implementing KT for ITPMs Recommendations for Practitioners: The proposed framework in this paper can be used by project managers as a guide to adopt KT practices within their project organization. Recommendation for Researchers: The review showed that some determinants, such as Technological factors, have not been adequately explored in the existing KT model in the IT projects context and can be integrated with other relevant theories to understand how a project manager’s knowledge can be transferred and retained in the organization using technology in future research. Impact on Society: This study emphasizes the role of individual actions and project organizational and technological matters in shaping the efficacy of KT within project organizations. It offers insight that could steer business owners or executives within project organizations to closely observe the behavior of project managers, thereby securing successful project outcomes. Future Research: The determinant list provided in this paper is acquired from extensive SLR and, therefore, further research should aim to expand and deepen the investigation by validating these determinants from experts in the field of IT and project management. Future studies can also add other external technological determinants to provide a more comprehensive KT implementation framework. Similarly, this research does not include determinants identified directly from the industry, as it relies solely on determinants found in the existing literature. Although a comprehensive attempt has been made to encompass all relevant papers, there remains a potential for overlooking some research in this process. Full Article
pro Predicting Software Change-Proneness From Software Evolution Using Machine Learning Methods By Published On :: 2023-10-08 Aim/Purpose: To predict the change-proneness of software from the continuous evolution using machine learning methods. To identify when software changes become statistically significant and how metrics change. Background: Software evolution is the most time-consuming activity after a software release. Understanding evolution patterns aids in understanding post-release software activities. Many methodologies have been proposed to comprehend software evolution and growth. As a result, change prediction is critical for future software maintenance. Methodology: I propose using machine learning methods to predict change-prone classes. Classes that are expected to change in future releases were defined as change-prone. The previous release was only considered by the researchers to define change-proneness. In this study, I use the evolution of software to redefine change-proneness. Many snapshots of software were studied to determine when changes became statistically significant, and snapshots were taken biweekly. The research was validated by looking at the evolution of five large open-source systems. Contribution: In this study, I use the evolution of software to redefine change-proneness. The research was validated by looking at the evolution of five large open-source systems. Findings: Software metrics can measure the significance of evolution in software. In addition, metric values change within different periods and the significance of change should be considered for each metric separately. For five classifiers, change-proneness prediction models were trained on one snapshot and tested on the next. In most snapshots, the prediction performance was excellent. For example, for Eclipse, the F-measure values were between 80 and 94. For other systems, the F-measure values were higher than 75 for most snapshots. Recommendations for Practitioners: Software change happens frequently in the evolution of software; however, the significance of change happens over a considerable length of time and this time should be considered when evaluating the quality of software. Recommendation for Researchers: Researchers should consider the significance of change when studying software evolution. Software changes should be taken from different perspectives besides the size or length of the code. Impact on Society: Software quality management is affected by the continuous evolution of projects. Knowing the appropriate time for software maintenance reduces the costs and impacts of software changes. Future Research: Studying the significance of software evolution for software refactoring helps improve the internal quality of software code. Full Article
pro Content-Rating Consistency of Online Product Review and Its Impact on Helpfulness: A Fine-Grained Level Sentiment Analysis By Published On :: 2023-09-22 Aim/Purpose: The objective of this research is to investigate the effect of review consistency between textual content and rating on review helpfulness. A measure of review consistency is introduced to determine the degree to which the review sentiment of textual content conforms with the review rating score. A theoretical model grounded in signaling theory is adopted to explore how different variables (review sentiment, review rating, review length, and review rating variance) affect review consistency and the relationship between review consistency and review helpfulness. Background: Online reviews vary in their characteristics and hence their different quality features and degrees of helpfulness. High-quality online reviews offer consumers the ability to make informed purchase decisions and improve trust in e-commerce websites. The helpfulness of online reviews continues to be a focal research issue regardless of the independent or joint effects of different factors. This research posits that the consistency between review content and review rating is an important quality indicator affecting the helpfulness of online reviews. The review consistency of online reviews is another important requirement for maintaining the significance and perceived value of online reviews. Incidentally, this parameter is inadequately discussed in the literature. A possible reason is that review consistency is not a review feature that can be readily monitored on e-commerce websites. Methodology: More than 100,000 product reviews were collected from Amazon.com and preprocessed using natural language processing tools. Then, the quality reviews were identified, and relevant features were extracted for model training. Machine learning and sentiment analysis techniques were implemented, and each review was assigned a consistency score between 0 (not consistent) and 1 (fully consistent). Finally, signaling theory was employed, and the derived data were analyzed to determine the effect of review consistency on review helpfulness, the effect of several factors on review consistency, and their relationship with review helpfulness. Contribution: This research contributes to the literature by introducing a mathematical measure to determine the consistency between the textual content of online reviews and their associated ratings. Furthermore, a theoretical model grounded in signaling theory was developed to investigate the effect on review helpfulness. This work can considerably extend the body of knowledge on the helpfulness of online reviews, with notable implications for research and practice. Findings: Empirical results have shown that review consistency significantly affects the perceived helpfulness of online reviews. The study similarly finds that review rating is an important factor affecting review consistency; it also confirms a moderating effect of review sentiment, review rating, review length, and review rating variance on the relationship between review consistency and review helpfulness. Overall, the findings reveal the following: (1) online reviews with textual content that correctly explains the associated rating tend to be more helpful; (2) reviews with extreme ratings are more likely to be consistent with their textual content; and (3) comparatively, review consistency more strongly affects the helpfulness of reviews with short textual content, positive polarity textual content, and lower rating scores and variance. Recommendations for Practitioners: E-commerce systems should incorporate a review consistency measure to rank consumer reviews and provide customers with quick and accurate access to the most helpful reviews. Impact on Society: Incorporating a score of review consistency for online reviews can help consumers access the best reviews and make better purchase decisions, and e-commerce systems improve their business, ultimately leading to more effective e-commerce. Future Research: Additional research should be conducted to test the impact of review consistency on helpfulness in different datasets, product types, and different moderating variables. Full Article
pro How Information Security Management Systems Influence the Healthcare Professionals’ Security Behavior in a Public Hospital in Indonesia By Published On :: 2023-09-07 Aim/Purpose: This study analyzes health professionals’ information security behavior (ISB) as health information system (HIS) users concerning associated information security controls and risks established in a public hospital. This work measures ISB using a complete measuring scale and explains the relevant influential factors from the perspectives of Protection Motivation Theory (PMT) and General Deterrence Theory (GDT) Background: Internal users are the primary source of security concerns in hospitals, with malware and social engineering becoming common attack vectors in the health industry. This study focuses on HIS user behavior in developing countries with limited information security policies and resources. Methodology: The research was carried out in three stages. First, a semi-structured interview was conducted with three hospital administrators in charge of HIS implementation to investigate information security controls and threats. Second, a survey of 144 HIS users to determine ISB based on hospital security risk. Third, a semi-structured interview was conducted with 11 HIS users to discuss the elements influencing behavior and current information security implementation. Contribution: This study contributes to ISB practices in hospitals. It discusses how HIS managers could build information security programs to enhance health professionals’ behavior by considering PMT and GDT elements. Findings: According to the findings of this study, the hospital has implemented particular information security management system (ISMS) controls based on international standards, but there is still room for improvement. Insiders are the most prevalent information security dangers discovered, with certain working practices requiring HIS users to disclose passwords with others. The top three most common ISBs HIS users practice include appropriately disposing of printouts, validating link sources, and using a password to unlock the device. Meanwhile, the top three least commonly seen ISBs include transferring sensitive information online, leaving a password in an unsupervised area, and revealing sensitive information via social media. Recommendations for Practitioners: Hospital managers should create work practices that align with information security requirements. HIS managers should provide incentives to improve workers’ perceptions of the benefit of robust information security measures. Recommendation for Researchers: This study suggests more research into the components that influence ISB utilizing diverse theoretical foundations such as Regulatory Focus Theory to compare preventive and promotion motivation to enhance ISB. Impact on Society: This study can potentially improve information security in the healthcare industry, which has substantial risks to human life but still lags behind other vital sector implementations. Future Research: Future research could look into the best content and format for an information security education and training program to promote the behaviors of healthcare professionals that need to be improved based on this ISB measurement and other influential factors. Full Article
pro Improving the Accuracy of Facial Micro-Expression Recognition: Spatio-Temporal Deep Learning with Enhanced Data Augmentation and Class Balancing By Published On :: 2024-10-22 Aim/Purpose: This study presents a novel deep learning-based framework designed to enhance spontaneous micro-expression recognition by effectively increasing the amount and variety of data and balancing the class distribution to improve recognition accuracy. Background: Micro-expression recognition using deep learning requires large amounts of data. Micro-expression datasets are relatively small, and their class distribution is not balanced. Methodology: This study developed a framework using a deep learning-based model to recognize spontaneous micro-expressions on a person’s face. The framework also includes several technical stages, including image and data preprocessing. In data preprocessing, data augmentation is carried out to increase the amount and variety of data and class balancing to balance the distribution of sample classes in the dataset. Contribution: This study’s essential contribution lies in enhancing the accuracy of micro-expression recognition and overcoming the limited amount of data and imbalanced class distribution that typically leads to overfitting. Findings: The results indicate that the proposed framework, with its data preprocessing stages and deep learning model, significantly increases the accuracy of micro-expression recognition by overcoming dataset limitations and producing a balanced class distribution. This leads to improved micro-expression recognition accuracy using deep learning techniques. Recommendations for Practitioners: Practitioners can utilize the model produced by the proposed framework, which was developed to recognize spontaneous micro-expressions on a person’s face, by implementing it as an emotional analysis application based on facial micro-expressions. Recommendation for Researchers: Researchers involved in the development of a spontaneous micro-expression recognition framework for analyzing hidden emotions from a person’s face are playing an essential role in advancing this field and continue to search for more innovative deep learning-based solutions that continue to explore techniques to increase the amount and variety of data and find solutions to balancing the number of sample classes in various micro-expression datasets. They can further improvise to develop deep learning model architectures that are more suitable and relevant according to the needs of recognition tasks and the various characteristics of different datasets. Impact on Society: The proposed framework could significantly impact society by providing a reliable model for recognizing spontaneous micro-expressions in real-world applications, ranging from security systems and criminal investigations to healthcare and emotional analysis. Future Research: Developing a spontaneous micro-expression recognition framework based on spatial and temporal flow requires the learning model to classify optimal features. Our future work will focus more on exploring micro-expression features by developing various alternative learning models and increasing the weights of spatial and temporal features. Full Article
pro A Learn-to-Rank Approach to Medicine Selection for Patient Treatments By Published On :: 2024-10-20 Aim/Purpose: This research utilized a learn-to-rank algorithm to provide medical recommendations to prescribers. The algorithm has been utilized in other domains, such as information retrieval and recommender systems. Background: Ranking the possible medical treatments according to diagnoses of the medical cases is very beneficial for doctors, especially during the coding process. Methodology: We developed two deep learning pointwise learn-to-rank models within one prediction pipeline: one for predicting the top possible active ingredients from disease features, the other for ranking actual medicines codes from diseases and the ingredients features. Contribution: A new learn-to-rank deep learning model has been developed to rank medical procedures based on datasets collected from insurance companies. Findings: We ran 18 cross-validation trials on a confidential dataset from an insurance company. We obtained an average normalized discounted cumulative gain (NDCG@8) of 74% with a 5% standard deviation as a result of all 18 experiments. Our approach outperformed a known approach used in the information retrieval domain in which data is represented in LibSVM format. Then, we ran the same trials using three learn-to-rank models – pointwise, pairwise, and listwise – which yielded average NDCG@8 of 71%, 72%, and 72%, respectively. Recommendations for Practitioners: The proposed model provides an insightful approach to helping to manage the patient’s treatment process. Recommendation for Researchers: This research lays the groundwork for exploring various applications of data science techniques and machine learning algorithms in the medical field. Future studies should focus on the significant potential of learn-to-rank algorithms across different medical domains, including their use in cost-effectiveness models. Emphasizing these algorithms could enhance decision-making processes and optimize resource allocation in healthcare settings. Impact on Society: This will help insurance companies and end users reduce the cost associated with patient treatment. It also helps doctors to choose the best procedure and medicines for their patients. Future Research: Future research is required to investigate the impact of medicine data at a granular level. Full Article
pro Adopting Green Innovation in Tourism SMEs: Integrating Pro-Environmental Planned Behavior and TOE Model By Published On :: 2024-10-16 Aim/Purpose: This study investigated factors influencing the intention to engage in green innovation among small and medium enterprises (SMEs) in the tourism sector, using an integrated approach from the pro-environmental planned behavior (PEPB) and technology organization environment (TOE) models. Background: Green innovation is a long-term strategy aimed at addressing environmental challenges in the Indonesian tourism sector, especially those related to SMEs in culinary, accommodation, transportation, and creative industries. While prior research primarily focused on innovation characteristics and various behavioral intentions towards new technologies, this study pioneered an approach to understanding green innovation practices among SMEs by examining behavioral intention and the influence of internal organizational and external environmental factors. This was achieved through the PEPB model, which extends the theory of planned behavior (TPB) by incorporating perceived authority support and perceived environmental concern and integrating it with the TOE model. This comprehensive approach was crucial for understanding SME motivations, needs, and challenges in adopting green innovation, thereby supporting environmental sustainability. Methodology: Data were collected through offline and online questionnaires and interviews with 405 SMEs that had implemented green innovation as respondents. The theoretical model was tested using partial least squares structural equation modeling (PLS-SEM) with top-level constructs. Contribution: This research contributed to the development and validation of an integrated model for green innovation in SMEs, offering insights and recommendations for all stakeholders in the tourism sector to formulate effective green innovation strategies. Findings: This research revealed that the integrated model of pro-environmental planned behavior and technology organization environment successfully explained 71% of the factors influencing the intention to engage in green innovation for SMEs in the tourism sector. Perceived authority support emerged as the strongest factor, while perceived behavioral control was identified as a weaker factor. Recommendations for Practitioners: The research findings recommended that SMEs in the tourism sector focus on customer satisfaction and operational efficiency and optimize the recruitment and training processes of resources to maximize success in adopting environmentally friendly innovations. Meanwhile, for the government, providing support, incentives, and stringent environmental regulations could encourage sustainable business practices. Recommendation for Researchers: The research findings recommended that SMEs in the tourism sector focus on customer satisfaction and operational efficiency and optimize the recruitment and training processes of resources to maximize success in adopting environmentally friendly innovations. Meanwhile, for the government, providing support, incentives, and stringent environmental regulations could encourage sustainable business practices. Impact on Society: Examining the factors influencing the intention to engage in green innovation among SMEs in the tourism sector carried significant social implications. The findings contributed to recommending strategies for businesses and stakeholders such as the government, investors, and tourists to collectively strive to minimize environmental damage in tourist areas through the implementation of green innovation. Future Research: There are several promising avenues to explore to enhance future research. Expanding the scope to include diverse regions and industries and using additional approaches, such as leadership theory and management commitment theories, can increase the R-squared value. Additionally, broadening the profile of interviewees to obtain a more comprehensive understanding of the intention to engage in green innovation should be considered. Full Article
pro Enhancing Waste Management Decisions: A Group DSS Approach Using SSM and AHP in Indonesia By Published On :: 2024-09-12 Aim/Purpose: This research aims to design a website-based group decision support system (DSS) user interface to support an integrated and sustainable waste management plan in Jagatera. The main focus of this research is to design a group DSS to help Jagatera prioritize several waste alternatives to be managed so that Jagatera can make the right decisions to serve the community. Background: The Indonesian government and various stakeholders are trying to solve the waste problem. Jagatera, as a waste recycling company, plays a role as a stakeholder in managing waste. In 2024, Jagatera plans to accept all waste types, which impacts the possibility of increasing waste management costs. If Jagatera does not have a waste management plan, this will impact reducing waste management services in the community. To solve this problem, the group DSS assists Jagatera in prioritizing waste based on aspects of waste management cost. Methodology: Jagatera, an Indonesian waste recycling company, is implementing a group DSS using the soft system methodology (SSM) method. The SSM process involves seven stages, including problem identification, problem explanation using rich pictures, system design, conceptual model design, real-life comparison, changes, and improvement steps. The final result is a prototype user interface design addressing the relationship between actors and the group DSS. The analytical hierarchy process (AHP) method prioritized waste based on management costs. This research obtained primary data from interviews with Jagatera management, a literature review regarding the group DSS, and questionnaires to determine the type of waste and evaluate user interface design. Contribution: This research focuses on determining waste handling priorities based on their management. It contributes the DSS, which uses a decision-making approach based on management groups developed using the SSM and AHP methods focused on waste management decisions. It also contributes to the availability of a user interface design from the DSS group that explains the interactions between actors. The implications of the availability of DSS groups in waste recycling companies can help management understand waste prioritization problems in a structured manner, increase decision-making efficiency, and impact better-quality waste management. Combining qualitative approaches from SSM to comprehend issues from different actor perspectives and AHP to assist quantitative methods in prioritizing decisions can yield theoretical implications when using the SSM and AHP methods together. Findings: This research produces a website-based group DSS user interface design that can facilitate decision-making using AHP techniques. The user interface design from the DSS group was developed using the SSM approach to identify complex problems at waste recycling companies in Indonesia. This study also evaluated the group DSS user interface design, which resulted in a score of 91.67%. This value means that the user interface design has met user expectations, which include functional, appearance, and comfort needs. These results also show that group DSS can enhance waste recycling companies’ decision-making process. The results of the AHP technique using all waste process information show that furniture waste, according to the CEO, is given more priority, and textile waste, according to the Managing Director. Group DSS developed using the AHP method allows user actors to provide decisions based on their perspectives and authority. Recommendations for Practitioners: This research shows that the availability of a group DSS is one of the digital transformation efforts that waste recycling companies can carry out to support the determination of a sustainable waste management plan. Managers benefit from DSS groups by providing a digital decision-making process to determine which types of waste should be prioritized based on management costs. Timely and complete information in the group DSS is helpful in the decision-making process and increases organizational knowledge based on the chosen strategy. Recommendation for Researchers: Developing a group DSS for waste recycling companies can encourage strategic decision-making processes. This research integrates SSM and AHP to support a comprehensive group DSS because SSM encourages a deeper and more detailed understanding of waste recycling companies with complex problems. At the same time, AHP provides a structured approach for recycling companies to make decisions. The group DSS that will be developed can be used to identify other more relevant criteria, such as environmental impact, waste management regulations, and technological capabilities. Apart from more varied criteria, the group DSS can be encouraged to provide various alternatives such as waste paper, metal, or glass. In addition to evaluating the group DSS’s user interface design, waste recycling companies need to consider training or support for users to increase system adoption. Impact on Society: The waste problem requires the role of various stakeholders, one of which is a waste recycling company. The availability of a group DSS design can guide waste recycling companies in providing efficient and effective services so that they can respond more quickly to the waste management needs of the community. The community also gets transparent information regarding their waste management. The impact of good group DSS is reducing the amount of waste in society. Future Research: Future research could identify various other types of waste used as alternatives in the decision-making process to illustrate the complexity of the prioritization process. Future research could also identify other criteria, such as environmental impact, social aspects of community involvement, or policy compliance. Future research could involve decision-makers from other parties, such as the government, who play an essential role in the waste industry. Full Article
pro Recommendation System for an Online Shopping Pay-Later System Using a Multistage Approach: A Case Study from Indonesia By Published On :: 2024-08-29 Aim/Purpose: In this study, we developed a recommendation system model designed to support decision-makers in identifying consumers eligible for pay-later options via consensus-based decision-making. This approach was chosen due to the high and complex risks involved, such as delayed payments, challenges in reaching consumers, and issues of bad credit. Background: The “pay-later” option, which allows consumers to postpone payment for e-commerce purchases, offers convenience and flexibility but also introduces several challenges: (i) by enabling payment deferral, merchants face financial risks, including potential delays or defaults in payment, adversely affecting their cash flow and profitability; and (ii) this payment delay can also heighten the risk of fraud, including identity theft and unauthorized transactions. Methodology: This study initiated a risk analysis utilizing the ROAD process. Considering contemporary economic developments and advancements in neural networks, integrating these networks into risk assessment has become crucial. Consequently, model development involved the amalgamation of three deep learning methods – CNN (Convolutional Neural Networks), RNN (Recurrent Neural Networks), and LSTM (Long Short-Term Memory) – to address various risk alternatives and facilitate multi-stage decision-making recommendations. Contribution: Our primary contribution is threefold. First, our study identified potential consumers by prioritizing those with the smallest associated problem consequence values. Second, we achieved an optimal recall value using a candidate generator. Last, we categorized consumers to assess their eligibility for pay-later rights. Findings: The findings from this study indicate that our multi-stage recommendation model is effective in minimizing the risk associated with consumer debt repayment. This method of consumer selection empowers policymakers to make informed decisions regarding which consumers should be granted pay-later privileges. Recommendations for Practitioners: This recommendation system is proposed to several key parties involved in the development, implementation, and use of pay-later systems. These parties include E-commerce Executive Management for financial analysis and risk evaluation, the Risk Management Team to assess and manage risks related to users utilizing Pay-Later services, and Sales Managers to integrate Pay-Later services into sales strategies. Recommendation for Researchers: Advanced fraud detection mechanisms were implemented to prevent unauthorized transactions effectively. The goal was to cultivate user confidence in the safety of their financial data by ensuring secure payment processing. Impact on Society: Ensuring consumers understand the terms and conditions of pay-later arrangements, including interest rates, repayment schedules, and potential fees, is crucial. Providing clear and transparent information, along with educating consumers about their financial responsibilities, helps prevent misunderstandings and disputes. Future Research: Our future development plans involve the ongoing assessment of the system’s performance to enhance prediction accuracy. This includes updating models and criteria based on feedback and changes in economic or market conditions. Upholding compliance with security and data privacy regulations necessitates the implementation of protective measures to safeguard consumer information. The implementation of such a system requires careful consideration to ensure fairness and adherence to legal standards. Additionally, it is important to acknowledge that algorithms and models may evolve over time through the incorporation of additional data and continuous evaluations. Full Article
pro Unveiling the Secrets of Big Data Projects: Harnessing Machine Learning Algorithms and Maturity Domains to Predict Success By Published On :: 2024-08-19 Aim/Purpose: While existing literature has extensively explored factors influencing the success of big data projects and proposed big data maturity models, no study has harnessed machine learning to predict project success and identify the critical features contributing significantly to that success. The purpose of this paper is to offer fresh insights into the realm of big data projects by leveraging machine-learning algorithms. Background: Previously, we introduced the Global Big Data Maturity Model (GBDMM), which encompassed various domains inspired by the success factors of big data projects. In this paper, we transformed these maturity domains into a survey and collected feedback from 90 big data experts across the Middle East, Gulf, Africa, and Turkey regions regarding their own projects. This approach aims to gather firsthand insights from practitioners and experts in the field. Methodology: To analyze the feedback obtained from the survey, we applied several algorithms suitable for small datasets and categorical features. Our approach included cross-validation and feature selection techniques to mitigate overfitting and enhance model performance. Notably, the best-performing algorithms in our study were the Decision Tree (achieving an F1 score of 67%) and the Cat Boost classifier (also achieving an F1 score of 67%). Contribution: This research makes a significant contribution to the field of big data projects. By utilizing machine-learning techniques, we predict the success or failure of such projects and identify the key features that significantly contribute to their success. This provides companies with a valuable model for predicting their own big data project outcomes. Findings: Our analysis revealed that the domains of strategy and data have the most influential impact on the success of big data projects. Therefore, companies should prioritize these domains when undertaking such projects. Furthermore, we now have an initial model capable of predicting project success or failure, which can be invaluable for companies. Recommendations for Practitioners: Based on our findings, we recommend that practitioners concentrate on developing robust strategies and prioritize data management to enhance the outcomes of their big data projects. Additionally, practitioners can leverage machine-learning techniques to predict the success rate of these projects. Recommendation for Researchers: For further research in this field, we suggest exploring additional algorithms and techniques and refining existing models to enhance the accuracy and reliability of predicting the success of big data projects. Researchers may also investigate further into the interplay between strategy, data, and the success of such projects. Impact on Society: By improving the success rate of big data projects, our findings enable organizations to create more efficient and impactful data-driven solutions across various sectors. This, in turn, facilitates informed decision-making, effective resource allocation, improved operational efficiency, and overall performance enhancement. Future Research: In the future, gathering additional feedback from a broader range of big data experts will be valuable and help refine the prediction algorithm. Conducting longitudinal studies to analyze the long-term success and outcomes of Big Data projects would be beneficial. Furthermore, exploring the applicability of our model across different regions and industries will provide further insights into the field. Full Article
pro Factors Influencing Adoption of Blockchain Technology in Jordan: The Perspective of Health Care Professionals By Published On :: 2024-05-16 Aim/Purpose: This paper investigates the user acceptability of blockchain technology in the healthcare sector, with a specific focus on healthcare professionals in Jordan. Background: The study seeks to identify the factors that affect healthcare professionals’ use and acceptance of blockchain technology in Jordan. Methodology: The study’s research framework integrates factors from the Technology Acceptance Model (TAM) and the Unified Theory of Acceptance and Use of Technology (UTAUT). A questionnaire was distributed to collect data from 372 healthcare professionals in Jordan, and the results were analyzed using structural equation modeling based on the Partial Least Square (PLS) technique. Contribution: While only a few previous studies have explored blockchain technology acceptance in the healthcare sector using either the TAM or the UTAUT, this study uniquely integrates elements from both models, offering a novel approach that provides a comprehensive understanding of the factors that influence the acceptance of blockchain technology among healthcare professionals in Jordan. The findings can assist decision-makers in developing strategies to enhance the adoption rate of blockchain technology in the Jordanian healthcare sector. Findings: The study revealed that usability, convenience, privacy and security, cost, and trust significantly impact the perceived usefulness of blockchain technology. The findings also suggest that healthcare professionals are more likely to have a positive attitude towards blockchain-based healthcare systems if they perceive them as useful and easy to use. Attitude, social influence, and facilitating conditions were found to significantly impact behavioral intention to use. Recommendations for Practitioners: Stakeholders should focus on developing blockchain-based healthcare systems that are easy to use, convenient, efficient, and effort-free. Recommendation for Researchers: Researchers may compare the acceptance of blockchain technology in the healthcare sector with other industries to identify industry-specific factors that may influence adoption. This comparative analysis can contribute to a broader understanding of technology acceptance. Impact on Society: Successful adoption of blockchain technology in the healthcare sector can lead to improved efficiency, enhanced protection of healthcare data, and reduced administrative burdens. This, in turn, can positively impact patient care and lead to cost savings, which contributes to more sustainable and accessible healthcare services. Future Research: Future research may explore integrating blockchain technology with other emerging technologies, such as artificial intelligence and sidechain, to create more comprehensive and innovative healthcare solutions. Full Article
pro Learning-Based Models for Building User Profiles for Personalized Information Access By Published On :: 2024-04-30 Aim/Purpose: This study aims to evaluate the success of deep learning in building user profiles for personalized information access. Background: To better express document content and information during the matching phase of the information retrieval (IR) process, deep learning architectures could potentially offer a feasible and optimal alternative to user profile building for personalized information access. Methodology: This study uses deep learning-based models to deduce the domain of the document deemed implicitly relevant by a user that corresponds to their center of interest, and then used predicted domain by the best given architecture with user’s characteristics to predict other centers of interest. Contribution: This study contributes to the literature by considering the difference in vocabulary used to express document content and information needs. Users are integrated into all research phases in order to provide them with relevant information adapted to their context and their preferences meeting their precise needs. To better express document content and information during this phase, deep learning models are employed to learn complex representations of documents and queries. These models can capture hierarchical, sequential, or attention-based patterns in textual data. Findings: The results show that deep learning models were highly effective for building user profiles for personalized information access since they leveraged the power of neural networks in analyzing and understanding complex patterns in user behavior, preferences, and user interactions. Recommendations for Practitioners: Building effective user profiles for personalized information access is an ongoing process that requires a combination of technology, user engagement, and a commitment to privacy and security. Recommendation for Researchers: Researchers involved in building user profiles for personalized information access play a crucial role in advancing the field and developing more innovative deep-based networks solutions by exploring novel data sources, such as biometric data, sentiment analysis, or physiological signals, to enhance user profiles. They can investigate the integration of multimodal data for a more comprehensive understanding of user preferences. Impact on Society: The proposed models can provide companies with an alternative and sophisticated recommendation system to foster progress in building user profiles by analyzing complex user behavior, preferences, and interactions, leading to more effective and dynamic content suggestions. Future Research: The development of user profile evolution models and their integration into a personalized information search system may be confronted with other problems such as the interpretability and transparency of the learning-based models. Developing interpretable machine learning techniques and visualization tools to explain how user profiles are constructed and used for personalized information access seems necessary to us as a future extension of our work. Full Article
pro Continuous Use of Mobile Banking Applications: The Role of Process Virtualizability, Anthropomorphism and Virtual Process Failure Risk By Published On :: 2024-03-13 Aim/Purpose: The research aims to investigate the factors that influence the continuous use of mobile banking applications to complete banking monetary transactions. Background: Despite a significant increase in the use of mobile banking applications, particularly during the COVID-19 pandemic, new evidence indicates that the use rate of mobile banking applications for operating banking monetary transactions has declined. Methodology: The study proposed an integrated model based mainly on the process virtualization theory (PVT) with other novel factors such as mobile banking application anthropomorphism and virtual process failure risk. The study model was empirically validated using structural equation modeling analysis on quantitative data from 484 mobile banking application users from Jordan. Contribution: The study focuses on continuing use or post-adoption behavior rather than pre-adoption behavior. This is important since the maximum and long-term viability, as well as the financial investment in mobile banking applications, depend on regular usage rather than first-time use or initial experience. Findings: The results indicate that process virtualizable and anthropomorphism have a strong positive impact on bank customers’ decisions to continue using mobile banking applications to complete banking monetary transactions. Meanwhile, the negative impact of virtualization process failure risk on continuous use has been discovered. The found factors explain 67.5% of the variance in continuous use. Recommendations for Practitioners: The study identified novel, significant factors that affect bank customers’ decisions to use mobile banking applications frequently, and these factors should be examined, matched, satisfied, or addressed when redesigning or upgrading mobile applications. Banks should provide users with clear directions, processes, or tutorials on how to complete monetary transactions effectively. They should also embrace Artificial Intelligence (AI) technology to improve their applications and products with anthropomorphic features like speech synthesizers, Chatbots, and AI-powered virtual bank assistants. This is expected to help bank customers conduct various banking services conveniently and securely, just as if interacting with real people. The study further recommends that banks create and publish clear norms and procedures, as well as promote tolerance and protect consumers’ rights when the process fails or mistakes occur. Recommendation for Researchers: The study provides measurement items that were specifically built for the context of mobile banking applications based on PVT notions. Researchers are invited to reuse, test, and modify existing measurement items, as well as submit new ones if necessary. The study model does not consider psychological aspects like trust and satisfaction, which would provide additional insight into factors affecting continuing use. Researchers could potentially take a different approach by focusing on user resistance and non-adoption. Impact on Society: Financial inclusion is problematic, particularly in underdeveloped nations. According to financial inclusion research, Jordanians rarely utilize mobile banking apps. Continuous usage of mobile banking applications will be extremely beneficial in closing the financial inclusion gap, particularly among women. Furthermore, it could help the country’s efforts to transition to a digital society. Future Research: The majority of study participants are from urban areas. Future studies should focus on consumers who live in rural areas. It was also suggested that the elderly be targeted because they may have different views/perspectives on the continued use of mobile banking applications. Full Article
pro Automatic pectoral muscles and artefacts removal in mammogram images for improved breast cancer diagnosis By www.inderscience.com Published On :: 2024-11-08T23:20:50-05:00 Breast cancer is leading cause of mortality among women compared to other types of cancers. Hence, early breast cancer diagnosis is crucial to the success of treatment. Various pathological and imaging tests are available for the diagnosis of breast cancer. However, it may introduce errors during detection and interpretation, leading to false-negative and false-positive results due to lack of pre-processing of it. To overcome this issue, we proposed a effective image pre-processing technique-based on Otsu's thresholding and single-seeded region growing (SSRG) to remove artefacts and segment the pectoral muscle from breast mammograms. To validate the proposed method, a publicly available MIAS dataset was utilised. The experimental finding showed that proposed technique improved 18% breast cancer detection accuracy compared to existing methods. The proposed methodology works efficiently for artefact removal and pectoral segmentation at different shapes and nonlinear patterns. Full Article
pro IRNN-SS: deep learning for optimised protein secondary structure prediction through PROMOTIF and DSSP annotation fusion By www.inderscience.com Published On :: 2024-11-08T23:20:50-05:00 DSSP stands as a foundational tool in the domain of protein secondary structure prediction, yet it encounters notable challenges in accurately annotating irregular structures, such as β-turns and γ-turns, which constitute approximately 25%-30% and 10%-15% of protein turns, respectively. This limitation arises from DSSP's reliance on hydrogen-bond analysis, resulting in annotation gaps and reduced consensus on irregular structures. Alternatively, PROMOTIF excels at identifying these irregular structure annotations using phi-psi information. Despite their complementary strengths, previous methodologies utilised DSSP and PROMOTIF separately, leading to disparate prediction methods for protein secondary structures, hampering comprehensive structure analysis crucial for drug development. In this work, we bridge this gap using an annotation fusion approach, combining DSSP structures with beta, and gamma turns. We introduce IRNN-SS, a model employing deep inception and bidirectional gated recurrent neural networks, achieving 77.4% prediction accuracy on benchmark datasets, outpacing current models. Full Article
pro Feature analytics of asthma severity levels for bioinformatics improvement using Gini importance By www.inderscience.com Published On :: 2024-11-08T23:20:50-05:00 In the context of asthma severity prediction, this study delves into the feature importance of various symptoms and demographic attributes. Leveraging a comprehensive dataset encompassing symptom occurrences across varying severity levels, this investigation employs visualisation techniques, such as stacked bar plots, to illustrate the distribution of symptomatology within different severity categories. Additionally, correlation coefficient analysis is applied to quantify the relationships between individual attributes and severity levels. Moreover, the study harnesses the power of random forest and the Gini importance methodology, essential tools in feature importance analytics, to discern the most influential predictors in asthma severity prediction. The experimental results bring to light compelling associations between certain symptoms, notably 'runny-nose' and 'nasal-congestion', and specific severity levels, elucidating their potential significance as pivotal predictive indicators. Conversely, demographic factors, encompassing age groups and gender, exhibit comparatively weaker correlations with symptomatology. These findings underscore the pivotal role of individual symptoms in characterising asthma severity, reinforcing the potential for feature importance analysis to enhance predictive models in the realm of asthma management and bioinformatics. Full Article
pro Leading the diversity and inclusion narrative through continuing professional education By www.inderscience.com Published On :: 2024-03-06T23:20:50-05:00 This conceptual research aims to connect aspects of learning activities of continuing education for professionals (CPE). The objective is to provide conclusions about modes of professional learning within diversity, equity, inclusion, and belonging (DEIB) training. This interpretation is placed in context relating to the process of professional learning objectives. A CPE DEIB training plan is presented as an example of how to provide continuing professional education to adult learners within a DEIB curriculum (El-Amin, 2020). The purpose of incorporating the foundations of CPE into DEIB training permits organisations to strengthening organisational development and productivity. By connecting the foundations of curriculum design, alignment, assessment and mapping, and research-informed innovation, CPE aims to enhance the effectiveness of organisational DEIB initiatives. A CPE DEIB training plan emphasises the importance of accountability, employee involvement, and effective training to drive DEIB initiatives. Full Article
pro Hybrid encryption of Fernet and initialisation vector with attribute-based encryption: a secure and flexible approach for data protection By www.inderscience.com Published On :: 2024-06-04T23:20:50-05:00 With the continuous growth and importance of data, the need for strong data protection becomes crucial. Encryption plays a vital role in preserving the confidentiality of data, and attribute-based encryption (ABE) offers a meticulous access control system based on attributes. This study investigates the integration of Fernet encryption with initialisation vector (IV) and ABE, resulting in a hybrid encryption approach that enhances both security and flexibility. By combining the advantages of Fernet encryption and IV-based encryption, the hybrid encryption scheme establishes an effective and robust mechanism for safeguarding data. Fernet encryption, renowned for its simplicity and efficiency, provides authenticated encryption, guaranteeing both the confidentiality and integrity of the data. The incorporation of an initialisation vector (IV) introduces an element of randomness into the encryption process, thereby strengthening the overall security measures. This research paper discusses the advantages and drawbacks of the hybrid encryption of Fernet and IV with ABE. Full Article
pro Resource monitoring framework for big raw data processing By www.inderscience.com Published On :: 2024-06-04T23:20:50-05:00 Scientific experiments, simulations, and modern applications generate large amounts of data. Analysing resources required to process such big datasets is essential to identify application running costs for cloud or in-house deployments. Researchers have proposed keeping data in raw formats to avoid upfront utilisation of resources. However, it poses reparsing issues for frequently accessed data. The paper discusses detailed comparative analysis of resources required by in-situ engines and traditional database management systems to process a real-world scientific dataset. A resource monitoring framework has been developed and incorporated into the raw data query processing framework to achieve this goal. The work identified different query types best suited to a given data processing tool in terms of data to result time and resource requirements. The analysis of resource utilisation patterns has led to the development of query complexity aware (QCA) and resource utilisation aware (RUA) data partitioning techniques to process big raw data efficiently. Resource utilisation data have been analysed to estimate the data processing capacity of a given machine. Full Article
pro On large automata processing: towards a high level distributed graph language By www.inderscience.com Published On :: 2024-06-04T23:20:50-05:00 Large graphs or automata have their data that cannot fit in a single machine, or may take unreasonable time to be processed. We implement with MapReduce and Giraph two algorithms for intersecting and minimising large and distributed automata. We provide some comparative analysis, and the experiment results are depicted in figures. Our work experimentally validates our propositions as long as it shows that our choice, in comparison with MapReduce one, is not only more suitable for graph-oriented algorithms, but also speeds the executions up. This work is one of the first steps of a long-term goal that consists in a high level distributed graph processing language. Full Article
pro Perceived service process in e-service delivery system: B2C online retailers performance ranking by TOPSIS By www.inderscience.com Published On :: 2024-04-30T23:20:50-05:00 Significant work in service domain has focused on customer journey within e-service delivery system process (e-SDSP). Few studies have focused on process-centric approach to customer journey during delivery of e-services. This study aims to investigate the performance assessment of three online retailers (alternatives) using perceived service process during different stages of e-SDSP as a criterion for decision-making. TOPSIS is used in this paper to rate and evaluate multiple online retailers. Based on perceived service process as the criterion, results show that online retailer-2 outperforms other two online retailers. This study is one of the first to rate online retailers by utilising customer-perceived service process (latent variables) as a decision-making criterion throughout e-SDSP. The finding suggests that perceived searching process is the most essential criterion for decision-making, followed by the perceived after-sales service process, the perceived agreement process, and the perceived fulfilment process. Implications, limitations, and future scope are also discussed. Full Article
pro Modeling the Organizational Aspects of Learning Objects in Semantic Web Approaches to Information Systems By Published On :: Full Article
pro Addressing the eLearning Contradiction: A Collaborative Approach for Developing a Conceptual Framework Learning Object By Published On :: Full Article
pro An Engagement Model for Learning: Providing a Framework to Identify Technology Services By Published On :: Full Article
pro An Integrated Approach for Automatic Aggregation of Learning Knowledge Objects By Published On :: Full Article
pro Applying a System Development Approach to Translate Educational Requirements into E-Learning By Published On :: Full Article
pro Building a Framework to Support Project-Based Collaborative Learning Experiences in an Asynchronous Learning Network By Published On :: Full Article
pro An Ontology to Automate Learning Scenarios? An Approach to its Knowledge Domain By Published On :: Full Article
pro Open the Windows of Communication: Promoting Interpersonal and Group Interactions Using Blogs in Higher Education By Published On :: Full Article
pro Learning about Online Learning Processes and Students' Motivation through Web Usage Mining By Published On :: Full Article
pro The Effect of Procrastination on Multi-Drafting in a Web-Based Learning Content Management Environment By Published On :: Full Article
pro Social Bookmarking Tools as Facilitators of Learning and Research Collaborative Processes: The Diigo Case By Published On :: Full Article