appl Plant small RNA : biogenesis, regulation and application By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128173367 (electronic bk.) Full Article
appl Phytoremediation : in-situ applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030000998 (electronic bk.) Full Article
appl Natural materials and products from insects : chemistry and applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030366100 (electronic bk.) Full Article
appl Nanobiomaterial engineering : concepts and their applications in biomedicine and diagnostics By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789813298408 (electronic bk.) Full Article
appl Models of tree and stand dynamics : theory, formulation and application By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Mäkelä, Annikki, authorCallnumber: OnlineISBN: 9783030357610 Full Article
appl Microbial endophytes : functional biology and applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128196540 (print) Full Article
appl Maxillofacial cone beam computed tomography : principles, techniques and clinical applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319620619 (electronic bk.) Full Article
appl Intelligent wavelet based techniques for advanced multimedia applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Singh, Rajiv, authorCallnumber: OnlineISBN: 9783030318734 (electronic bk.) Full Article
appl Extra-coronal restorations : concepts and clinical application By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319790930 (electronic bk.) Full Article
appl Deep learning in medical image analysis : challenges and applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030331283 (electronic bk.) Full Article
appl Current microbiological research in Africa : selected applications for sustainable environmental management By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030352967 (electronic bk.) Full Article
appl Cellular internet of things : from massive deployments to critical 5G applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Liberg, Olof, 1943- author.Callnumber: OnlineISBN: 9780081029039 (electronic bk.) Full Article
appl Carotenoids : properties, processing and applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128173145 (electronic bk.) Full Article
appl Binary code fingerprinting for cybersecurity : application to malicious code fingerprinting By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Alrabaee, Saed, authiorCallnumber: OnlineISBN: 9783030342388 (electronic bk.) Full Article
appl Advances in applied microbiology. By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 1282169459 Full Article
appl Advances in applied microbiology. By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 1282169416 Full Article
appl A handbook of nuclear applications in humans' lives By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Tabbakh, Farshid, author.Callnumber: OnlineISBN: 9781527544512 (electronic bk.) Full Article
appl Asymptotic genealogies of interacting particle systems with an application to sequential Monte Carlo By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Jere Koskela, Paul A. Jenkins, Adam M. Johansen, Dario Spanò. Source: The Annals of Statistics, Volume 48, Number 1, 560--583.Abstract: We study weighted particle systems in which new generations are resampled from current particles with probabilities proportional to their weights. This covers a broad class of sequential Monte Carlo (SMC) methods, widely-used in applied statistics and cognate disciplines. We consider the genealogical tree embedded into such particle systems, and identify conditions, as well as an appropriate time-scaling, under which they converge to the Kingman $n$-coalescent in the infinite system size limit in the sense of finite-dimensional distributions. Thus, the tractable $n$-coalescent can be used to predict the shape and size of SMC genealogies, as we illustrate by characterising the limiting mean and variance of the tree height. SMC genealogies are known to be connected to algorithm performance, so that our results are likely to have applications in the design of new methods as well. Our conditions for convergence are strong, but we show by simulation that they do not appear to be necessary. Full Article
appl Joint convergence of sample autocovariance matrices when $p/n o 0$ with application By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Monika Bhattacharjee, Arup Bose. Source: The Annals of Statistics, Volume 47, Number 6, 3470--3503.Abstract: Consider a high-dimensional linear time series model where the dimension $p$ and the sample size $n$ grow in such a way that $p/n o 0$. Let $hat{Gamma }_{u}$ be the $u$th order sample autocovariance matrix. We first show that the LSD of any symmetric polynomial in ${hat{Gamma }_{u},hat{Gamma }_{u}^{*},ugeq 0}$ exists under independence and moment assumptions on the driving sequence together with weak assumptions on the coefficient matrices. This LSD result, with some additional effort, implies the asymptotic normality of the trace of any polynomial in ${hat{Gamma }_{u},hat{Gamma }_{u}^{*},ugeq 0}$. We also study similar results for several independent MA processes. We show applications of the above results to statistical inference problems such as in estimation of the unknown order of a high-dimensional MA process and in graphical and significance tests for hypotheses on coefficient matrices of one or several such independent processes. Full Article
appl A smeary central limit theorem for manifolds with application to high-dimensional spheres By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Benjamin Eltzner, Stephan F. Huckemann. Source: The Annals of Statistics, Volume 47, Number 6, 3360--3381.Abstract: The (CLT) central limit theorems for generalized Fréchet means (data descriptors assuming values in manifolds, such as intrinsic means, geodesics, etc.) on manifolds from the literature are only valid if a certain empirical process of Hessians of the Fréchet function converges suitably, as in the proof of the prototypical BP-CLT [ Ann. Statist. 33 (2005) 1225–1259]. This is not valid in many realistic scenarios and we provide for a new very general CLT. In particular, this includes scenarios where, in a suitable chart, the sample mean fluctuates asymptotically at a scale $n^{alpha }$ with exponents $alpha <1/2$ with a nonnormal distribution. As the BP-CLT yields only fluctuations that are, rescaled with $n^{1/2}$, asymptotically normal, just as the classical CLT for random vectors, these lower rates, somewhat loosely called smeariness, had to date been observed only on the circle. We make the concept of smeariness on manifolds precise, give an example for two-smeariness on spheres of arbitrary dimension, and show that smeariness, although “almost never” occurring, may have serious statistical implications on a continuum of sample scenarios nearby. In fact, this effect increases with dimension, striking in particular in high dimension low sample size scenarios. Full Article
appl The two-to-infinity norm and singular subspace geometry with applications to high-dimensional statistics By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Joshua Cape, Minh Tang, Carey E. Priebe. Source: The Annals of Statistics, Volume 47, Number 5, 2405--2439.Abstract: The singular value matrix decomposition plays a ubiquitous role throughout statistics and related fields. Myriad applications including clustering, classification, and dimensionality reduction involve studying and exploiting the geometric structure of singular values and singular vectors. This paper provides a novel collection of technical and theoretical tools for studying the geometry of singular subspaces using the two-to-infinity norm. Motivated by preliminary deterministic Procrustes analysis, we consider a general matrix perturbation setting in which we derive a new Procrustean matrix decomposition. Together with flexible machinery developed for the two-to-infinity norm, this allows us to conduct a refined analysis of the induced perturbation geometry with respect to the underlying singular vectors even in the presence of singular value multiplicity. Our analysis yields singular vector entrywise perturbation bounds for a range of popular matrix noise models, each of which has a meaningful associated statistical inference task. In addition, we demonstrate how the two-to-infinity norm is the preferred norm in certain statistical settings. Specific applications discussed in this paper include covariance estimation, singular subspace recovery, and multiple graph inference. Both our Procrustean matrix decomposition and the technical machinery developed for the two-to-infinity norm may be of independent interest. Full Article
appl Regression for copula-linked compound distributions with applications in modeling aggregate insurance claims By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Peng Shi, Zifeng Zhao. Source: The Annals of Applied Statistics, Volume 14, Number 1, 357--380.Abstract: In actuarial research a task of particular interest and importance is to predict the loss cost for individual risks so that informative decisions are made in various insurance operations such as underwriting, ratemaking and capital management. The loss cost is typically viewed to follow a compound distribution where the summation of the severity variables is stopped by the frequency variable. A challenging issue in modeling such outcomes is to accommodate the potential dependence between the number of claims and the size of each individual claim. In this article we introduce a novel regression framework for compound distributions that uses a copula to accommodate the association between the frequency and the severity variables and, thus, allows for arbitrary dependence between the two components. We further show that the new model is very flexible and is easily modified to account for incomplete data due to censoring or truncation. The flexibility of the proposed model is illustrated using both simulated and real data sets. In the analysis of granular claims data from property insurance, we find substantive negative relationship between the number and the size of insurance claims. In addition, we demonstrate that ignoring the frequency-severity association could lead to biased decision-making in insurance operations. Full Article
appl Feature selection for generalized varying coefficient mixed-effect models with application to obesity GWAS By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Wanghuan Chu, Runze Li, Jingyuan Liu, Matthew Reimherr. Source: The Annals of Applied Statistics, Volume 14, Number 1, 276--298.Abstract: Motivated by an empirical analysis of data from a genome-wide association study on obesity, measured by the body mass index (BMI), we propose a two-step gene-detection procedure for generalized varying coefficient mixed-effects models with ultrahigh dimensional covariates. The proposed procedure selects significant single nucleotide polymorphisms (SNPs) impacting the mean BMI trend, some of which have already been biologically proven to be “fat genes.” The method also discovers SNPs that significantly influence the age-dependent variability of BMI. The proposed procedure takes into account individual variations of genetic effects and can also be directly applied to longitudinal data with continuous, binary or count responses. We employ Monte Carlo simulation studies to assess the performance of the proposed method and further carry out causal inference for the selected SNPs. Full Article
appl Integrative survival analysis with uncertain event times in application to a suicide risk study By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Wenjie Wang, Robert Aseltine, Kun Chen, Jun Yan. Source: The Annals of Applied Statistics, Volume 14, Number 1, 51--73.Abstract: The concept of integrating data from disparate sources to accelerate scientific discovery has generated tremendous excitement in many fields. The potential benefits from data integration, however, may be compromised by the uncertainty due to incomplete/imperfect record linkage. Motivated by a suicide risk study, we propose an approach for analyzing survival data with uncertain event times arising from data integration. Specifically, in our problem deaths identified from the hospital discharge records together with reported suicidal deaths determined by the Office of Medical Examiner may still not include all the death events of patients, and the missing deaths can be recovered from a complete database of death records. Since the hospital discharge data can only be linked to the death record data by matching basic patient characteristics, a patient with a censored death time from the first dataset could be linked to multiple potential event records in the second dataset. We develop an integrative Cox proportional hazards regression in which the uncertainty in the matched event times is modeled probabilistically. The estimation procedure combines the ideas of profile likelihood and the expectation conditional maximization algorithm (ECM). Simulation studies demonstrate that under realistic settings of imperfect data linkage the proposed method outperforms several competing approaches including multiple imputation. A marginal screening analysis using the proposed integrative Cox model is performed to identify risk factors associated with death following suicide-related hospitalization in Connecticut. The identified diagnostics codes are consistent with existing literature and provide several new insights on suicide risk, prediction and prevention. Full Article
appl Bayesian indicator variable selection to incorporate hierarchical overlapping group structure in multi-omics applications By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Li Zhu, Zhiguang Huo, Tianzhou Ma, Steffi Oesterreich, George C. Tseng. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2611--2636.Abstract: Variable selection is a pervasive problem in modern high-dimensional data analysis where the number of features often exceeds the sample size (a.k.a. small-n-large-p problem). Incorporation of group structure knowledge to improve variable selection has been widely studied. Here, we consider prior knowledge of a hierarchical overlapping group structure to improve variable selection in regression setting. In genomics applications, for instance, a biological pathway contains tens to hundreds of genes and a gene can be mapped to multiple experimentally measured features (such as its mRNA expression, copy number variation and methylation levels of possibly multiple sites). In addition to the hierarchical structure, the groups at the same level may overlap (e.g., two pathways can share common genes). Incorporating such hierarchical overlapping groups in traditional penalized regression setting remains a difficult optimization problem. Alternatively, we propose a Bayesian indicator model that can elegantly serve the purpose. We evaluate the model in simulations and two breast cancer examples, and demonstrate its superior performance over existing models. The result not only enhances prediction accuracy but also improves variable selection and model interpretation that lead to deeper biological insight of the disease. Full Article
appl Joint model of accelerated failure time and mechanistic nonlinear model for censored covariates, with application in HIV/AIDS By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Hongbin Zhang, Lang Wu. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2140--2157.Abstract: For a time-to-event outcome with censored time-varying covariates, a joint Cox model with a linear mixed effects model is the standard modeling approach. In some applications such as AIDS studies, mechanistic nonlinear models are available for some covariate process such as viral load during anti-HIV treatments, derived from the underlying data-generation mechanisms and disease progression. Such a mechanistic nonlinear covariate model may provide better-predicted values when the covariates are left censored or mismeasured. When the focus is on the impact of the time-varying covariate process on the survival outcome, an accelerated failure time (AFT) model provides an excellent alternative to the Cox proportional hazard model since an AFT model is formulated to allow the influence of the outcome by the entire covariate process. In this article, we consider a nonlinear mixed effects model for the censored covariates in an AFT model, implemented using a Monte Carlo EM algorithm, under the framework of a joint model for simultaneous inference. We apply the joint model to an HIV/AIDS data to gain insights for assessing the association between viral load and immunological restoration during antiretroviral therapy. Simulation is conducted to compare model performance when the covariate model and the survival model are misspecified. Full Article
appl Statistical inference for partially observed branching processes with application to cell lineage tracking of in vivo hematopoiesis By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Jason Xu, Samson Koelle, Peter Guttorp, Chuanfeng Wu, Cynthia Dunbar, Janis L. Abkowitz, Vladimir N. Minin. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2091--2119.Abstract: Single-cell lineage tracking strategies enabled by recent experimental technologies have produced significant insights into cell fate decisions, but lack the quantitative framework necessary for rigorous statistical analysis of mechanistic models describing cell division and differentiation. In this paper, we develop such a framework with corresponding moment-based parameter estimation techniques for continuous-time, multi-type branching processes. Such processes provide a probabilistic model of how cells divide and differentiate, and we apply our method to study hematopoiesis , the mechanism of blood cell production. We derive closed-form expressions for higher moments in a general class of such models. These analytical results allow us to efficiently estimate parameters of much richer statistical models of hematopoiesis than those used in previous statistical studies. To our knowledge, the method provides the first rate inference procedure for fitting such models to time series data generated from cellular barcoding experiments. After validating the methodology in simulation studies, we apply our estimator to hematopoietic lineage tracking data from rhesus macaques. Our analysis provides a more complete understanding of cell fate decisions during hematopoiesis in nonhuman primates, which may be more relevant to human biology and clinical strategies than previous findings from murine studies. For example, in addition to previously estimated hematopoietic stem cell self-renewal rate, we are able to estimate fate decision probabilities and to compare structurally distinct models of hematopoiesis using cross validation. These estimates of fate decision probabilities and our model selection results should help biologists compare competing hypotheses about how progenitor cells differentiate. The methodology is transferrable to a large class of stochastic compartmental and multi-type branching models, commonly used in studies of cancer progression, epidemiology and many other fields. Full Article
appl A semiparametric modeling approach using Bayesian Additive Regression Trees with an application to evaluate heterogeneous treatment effects By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Bret Zeldow, Vincent Lo Re III, Jason Roy. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1989--2010.Abstract: Bayesian Additive Regression Trees (BART) is a flexible machine learning algorithm capable of capturing nonlinearities between an outcome and covariates and interactions among covariates. We extend BART to a semiparametric regression framework in which the conditional expectation of an outcome is a function of treatment, its effect modifiers, and confounders. The confounders are allowed to have unspecified functional form, while treatment and effect modifiers that are directly related to the research question are given a linear form. The result is a Bayesian semiparametric linear regression model where the posterior distribution of the parameters of the linear part can be interpreted as in parametric Bayesian regression. This is useful in situations where a subset of the variables are of substantive interest and the others are nuisance variables that we would like to control for. An example of this occurs in causal modeling with the structural mean model (SMM). Under certain causal assumptions, our method can be used as a Bayesian SMM. Our methods are demonstrated with simulation studies and an application to dataset involving adults with HIV/Hepatitis C coinfection who newly initiate antiretroviral therapy. The methods are available in an R package called semibart. Full Article
appl Wavelet spectral testing: Application to nonstationary circadian rhythms By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Jessica K. Hargreaves, Marina I. Knight, Jon W. Pitchford, Rachael J. Oakenfull, Sangeeta Chawla, Jack Munns, Seth J. Davis. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1817--1846.Abstract: Rhythmic data are ubiquitous in the life sciences. Biologists need reliable statistical tests to identify whether a particular experimental treatment has caused a significant change in a rhythmic signal. When these signals display nonstationary behaviour, as is common in many biological systems, the established methodologies may be misleading. Therefore, there is a real need for new methodology that enables the formal comparison of nonstationary processes. As circadian behaviour is best understood in the spectral domain, here we develop novel hypothesis testing procedures in the (wavelet) spectral domain, embedding replicate information when available. The data are modelled as realisations of locally stationary wavelet processes, allowing us to define and rigorously estimate their evolutionary wavelet spectra. Motivated by three complementary applications in circadian biology, our new methodology allows the identification of three specific types of spectral difference. We demonstrate the advantages of our methodology over alternative approaches, by means of a comprehensive simulation study and real data applications, using both published and newly generated circadian datasets. In contrast to the current standard methodologies, our method successfully identifies differences within the motivating circadian datasets, and facilitates wider ranging analyses of rhythmic biological data in general. Full Article
appl Sequential decision model for inference and prediction on nonuniform hypergraphs with application to knot matching from computational forestry By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Seong-Hwan Jun, Samuel W. K. Wong, James V. Zidek, Alexandre Bouchard-Côté. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1678--1707.Abstract: In this paper, we consider the knot-matching problem arising in computational forestry. The knot-matching problem is an important problem that needs to be solved to advance the state of the art in automatic strength prediction of lumber. We show that this problem can be formulated as a quadripartite matching problem and develop a sequential decision model that admits efficient parameter estimation along with a sequential Monte Carlo sampler on graph matching that can be utilized for rapid sampling of graph matching. We demonstrate the effectiveness of our methods on 30 manually annotated boards and present findings from various simulation studies to provide further evidence supporting the efficacy of our methods. Full Article
appl Network classification with applications to brain connectomics By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Jesús D. Arroyo Relión, Daniel Kessler, Elizaveta Levina, Stephan F. Taylor. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1648--1677.Abstract: While statistical analysis of a single network has received a lot of attention in recent years, with a focus on social networks, analysis of a sample of networks presents its own challenges which require a different set of analytic tools. Here we study the problem of classification of networks with labeled nodes, motivated by applications in neuroimaging. Brain networks are constructed from imaging data to represent functional connectivity between regions of the brain, and previous work has shown the potential of such networks to distinguish between various brain disorders, giving rise to a network classification problem. Existing approaches tend to either treat all edge weights as a long vector, ignoring the network structure, or focus on graph topology as represented by summary measures while ignoring the edge weights. Our goal is to design a classification method that uses both the individual edge information and the network structure of the data in a computationally efficient way, and that can produce a parsimonious and interpretable representation of differences in brain connectivity patterns between classes. We propose a graph classification method that uses edge weights as predictors but incorporates the network nature of the data via penalties that promote sparsity in the number of nodes, in addition to the usual sparsity penalties that encourage selection of edges. We implement the method via efficient convex optimization and provide a detailed analysis of data from two fMRI studies of schizophrenia. Full Article
appl Identifying multiple changes for a functional data sequence with application to freeway traffic segmentation By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Jeng-Min Chiou, Yu-Ting Chen, Tailen Hsing. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1430--1463.Abstract: Motivated by the study of road segmentation partitioned by shifts in traffic conditions along a freeway, we introduce a two-stage procedure, Dynamic Segmentation and Backward Elimination (DSBE), for identifying multiple changes in the mean functions for a sequence of functional data. The Dynamic Segmentation procedure searches for all possible changepoints using the derived global optimality criterion coupled with the local strategy of at-most-one-changepoint by dividing the entire sequence into individual subsequences that are recursively adjusted until convergence. Then, the Backward Elimination procedure verifies these changepoints by iteratively testing the unlikely changes to ensure their significance until no more changepoints can be removed. By combining the local strategy with the global optimal changepoint criterion, the DSBE algorithm is conceptually simple and easy to implement and performs better than the binary segmentation-based approach at detecting small multiple changes. The consistency property of the changepoint estimators and the convergence of the algorithm are proved. We apply DSBE to detect changes in traffic streams through real freeway traffic data. The practical performance of DSBE is also investigated through intensive simulation studies for various scenarios. Full Article
appl Imputation and post-selection inference in models with missing data: An application to colorectal cancer surveillance guidelines By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Lin Liu, Yuqi Qiu, Loki Natarajan, Karen Messer. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1370--1396.Abstract: It is common to encounter missing data among the potential predictor variables in the setting of model selection. For example, in a recent study we attempted to improve the US guidelines for risk stratification after screening colonoscopy ( Cancer Causes Control 27 (2016) 1175–1185), with the aim to help reduce both overuse and underuse of follow-on surveillance colonoscopy. The goal was to incorporate selected additional informative variables into a neoplasia risk-prediction model, going beyond the three currently established risk factors, using a large dataset pooled from seven different prospective studies in North America. Unfortunately, not all candidate variables were collected in all studies, so that one or more important potential predictors were missing on over half of the subjects. Thus, while variable selection was a main focus of the study, it was necessary to address the substantial amount of missing data. Multiple imputation can effectively address missing data, and there are also good approaches to incorporate the variable selection process into model-based confidence intervals. However, there is not consensus on appropriate methods of inference which address both issues simultaneously. Our goal here is to study the properties of model-based confidence intervals in the setting of imputation for missing data followed by variable selection. We use both simulation and theory to compare three approaches to such post-imputation-selection inference: a multiple-imputation approach based on Rubin’s Rules for variance estimation ( Comput. Statist. Data Anal. 71 (2014) 758–770); a single imputation-selection followed by bootstrap percentile confidence intervals; and a new bootstrap model-averaging approach presented here, following Efron ( J. Amer. Statist. Assoc. 109 (2014) 991–1007). We investigate relative strengths and weaknesses of each method. The “Rubin’s Rules” multiple imputation estimator can have severe undercoverage, and is not recommended. The imputation-selection estimator with bootstrap percentile confidence intervals works well. The bootstrap-model-averaged estimator, with the “Efron’s Rules” estimated variance, may be preferred if the true effect sizes are moderate. We apply these results to the colorectal neoplasia risk-prediction problem which motivated the present work. Full Article
appl Directional differentiability for supremum-type functionals: Statistical applications By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Javier Cárcamo, Antonio Cuevas, Luis-Alberto Rodríguez. Source: Bernoulli, Volume 26, Number 3, 2143--2175.Abstract: We show that various functionals related to the supremum of a real function defined on an arbitrary set or a measure space are Hadamard directionally differentiable. We specifically consider the supremum norm, the supremum, the infimum, and the amplitude of a function. The (usually non-linear) derivatives of these maps adopt simple expressions under suitable assumptions on the underlying space. As an application, we improve and extend to the multidimensional case the results in Raghavachari ( Ann. Statist. 1 (1973) 67–73) regarding the limiting distributions of Kolmogorov–Smirnov type statistics under the alternative hypothesis. Similar results are obtained for analogous statistics associated with copulas. We additionally solve an open problem about the Berk–Jones statistic proposed by Jager and Wellner (In A Festschrift for Herman Rubin (2004) 319–331 IMS). Finally, the asymptotic distribution of maximum mean discrepancies over Donsker classes of functions is derived. Full Article
appl Noncommutative Lebesgue decomposition and contiguity with applications in quantum statistics By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Akio Fujiwara, Koichi Yamagata. Source: Bernoulli, Volume 26, Number 3, 2105--2142.Abstract: We herein develop a theory of contiguity in the quantum domain based upon a novel quantum analogue of the Lebesgue decomposition. The theory thus formulated is pertinent to the weak quantum local asymptotic normality introduced in the previous paper [Yamagata, Fujiwara, and Gill, Ann. Statist. 41 (2013) 2197–2217], yielding substantial enlargement of the scope of quantum statistics. Full Article
appl Functional weak limit theorem for a local empirical process of non-stationary time series and its application By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Ulrike Mayer, Henryk Zähle, Zhou Zhou. Source: Bernoulli, Volume 26, Number 3, 1891--1911.Abstract: We derive a functional weak limit theorem for a local empirical process of a wide class of piece-wise locally stationary (PLS) time series. The latter result is applied to derive the asymptotics of weighted empirical quantiles and weighted V-statistics of non-stationary time series. The class of admissible underlying time series is illustrated by means of PLS linear processes and PLS ARCH processes. Full Article
appl Logarithmic Sobolev inequalities for finite spin systems and applications By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Holger Sambale, Arthur Sinulis. Source: Bernoulli, Volume 26, Number 3, 1863--1890.Abstract: We derive sufficient conditions for a probability measure on a finite product space (a spin system ) to satisfy a (modified) logarithmic Sobolev inequality. We establish these conditions for various examples, such as the (vertex-weighted) exponential random graph model, the random coloring and the hard-core model with fugacity. This leads to two separate branches of applications. The first branch is given by mixing time estimates of the Glauber dynamics. The proofs do not rely on coupling arguments, but instead use functional inequalities. As a byproduct, this also yields exponential decay of the relative entropy along the Glauber semigroup. Secondly, we investigate the concentration of measure phenomenon (particularly of higher order) for these spin systems. We show the effect of better concentration properties by centering not around the mean, but around a stochastic term in the exponential random graph model. From there, one can deduce a central limit theorem for the number of triangles from the CLT of the edge count. In the Erdős–Rényi model the first-order approximation leads to a quantification and a proof of a central limit theorem for subgraph counts. Full Article
appl Robust modifications of U-statistics and applications to covariance estimation problems By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Stanislav Minsker, Xiaohan Wei. Source: Bernoulli, Volume 26, Number 1, 694--727.Abstract: Let $Y$ be a $d$-dimensional random vector with unknown mean $mu $ and covariance matrix $Sigma $. This paper is motivated by the problem of designing an estimator of $Sigma $ that admits exponential deviation bounds in the operator norm under minimal assumptions on the underlying distribution, such as existence of only 4th moments of the coordinates of $Y$. To address this problem, we propose robust modifications of the operator-valued U-statistics, obtain non-asymptotic guarantees for their performance, and demonstrate the implications of these results to the covariance estimation problem under various structural assumptions. Full Article
appl A unified approach to coupling SDEs driven by Lévy noise and some applications By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Mingjie Liang, René L. Schilling, Jian Wang. Source: Bernoulli, Volume 26, Number 1, 664--693.Abstract: We present a general method to construct couplings of stochastic differential equations driven by Lévy noise in terms of coupling operators. This approach covers both coupling by reflection and refined basic coupling which are often discussed in the literature. As applications, we prove regularity results for the transition semigroups and obtain successful couplings for the solutions to stochastic differential equations driven by additive Lévy noise. Full Article
appl Normal approximation for sums of weighted $U$-statistics – application to Kolmogorov bounds in random subgraph counting By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Nicolas Privault, Grzegorz Serafin. Source: Bernoulli, Volume 26, Number 1, 587--615.Abstract: We derive normal approximation bounds in the Kolmogorov distance for sums of discrete multiple integrals and weighted $U$-statistics made of independent Bernoulli random variables. Such bounds are applied to normal approximation for the renormalized subgraph counts in the Erdős–Rényi random graph. This approach completely solves a long-standing conjecture in the general setting of arbitrary graph counting, while recovering recent results obtained for triangles and improving other bounds in the Wasserstein distance. Full Article
appl Consistent semiparametric estimators for recurrent event times models with application to virtual age models By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Eric Beutner, Laurent Bordes, Laurent Doyen. Source: Bernoulli, Volume 26, Number 1, 557--586.Abstract: Virtual age models are very useful to analyse recurrent events. Among the strengths of these models is their ability to account for treatment (or intervention) effects after an event occurrence. Despite their flexibility for modeling recurrent events, the number of applications is limited. This seems to be a result of the fact that in the semiparametric setting all the existing results assume the virtual age function that describes the treatment (or intervention) effects to be known. This shortcoming can be overcome by considering semiparametric virtual age models with parametrically specified virtual age functions. Yet, fitting such a model is a difficult task. Indeed, it has recently been shown that for these models the standard profile likelihood method fails to lead to consistent estimators. Here we show that consistent estimators can be constructed by smoothing the profile log-likelihood function appropriately. We show that our general result can be applied to most of the relevant virtual age models of the literature. Our approach shows that empirical process techniques may be a worthwhile alternative to martingale methods for studying asymptotic properties of these inference methods. A simulation study is provided to illustrate our consistency results together with an application to real data. Full Article
appl High dimensional deformed rectangular matrices with applications in matrix denoising By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Xiucai Ding. Source: Bernoulli, Volume 26, Number 1, 387--417.Abstract: We consider the recovery of a low rank $M imes N$ matrix $S$ from its noisy observation $ ilde{S}$ in the high dimensional framework when $M$ is comparable to $N$. We propose two efficient estimators for $S$ under two different regimes. Our analysis relies on the local asymptotics of the eigenstructure of large dimensional rectangular matrices with finite rank perturbation. We derive the convergent limits and rates for the singular values and vectors for such matrices. Full Article
appl What Districts Want From Assessments, as They Grapple With the Coronavirus By marketbrief.edweek.org Published On :: Fri, 08 May 2020 02:23:58 +0000 EdWeek Market Brief asked district officials in a nationwide survey about their most urgent assessment needs, as they cope with COVID-19 and tentatively plan for reopening schools. The post What Districts Want From Assessments, as They Grapple With the Coronavirus appeared first on Market Brief. Full Article Market Trends Assessment / Testing Coronavirus COVID-19 Exclusive Data
appl Adaptive Bayesian Nonparametric Regression Using a Kernel Mixture of Polynomials with Application to Partial Linear Models By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Fangzheng Xie, Yanxun Xu. Source: Bayesian Analysis, Volume 15, Number 1, 159--186.Abstract: We propose a kernel mixture of polynomials prior for Bayesian nonparametric regression. The regression function is modeled by local averages of polynomials with kernel mixture weights. We obtain the minimax-optimal contraction rate of the full posterior distribution up to a logarithmic factor by estimating metric entropies of certain function classes. Under the assumption that the degree of the polynomials is larger than the unknown smoothness level of the true function, the posterior contraction behavior can adapt to this smoothness level provided an upper bound is known. We also provide a frequentist sieve maximum likelihood estimator with a near-optimal convergence rate. We further investigate the application of the kernel mixture of polynomials to partial linear models and obtain both the near-optimal rate of contraction for the nonparametric component and the Bernstein-von Mises limit (i.e., asymptotic normality) of the parametric component. The proposed method is illustrated with numerical examples and shows superior performance in terms of computational efficiency, accuracy, and uncertainty quantification compared to the local polynomial regression, DiceKriging, and the robust Gaussian stochastic process. Full Article
appl Separable covariance arrays via the Tucker product, with applications to multivariate relational data By projecteuclid.org Published On :: Wed, 13 Jun 2012 14:27 EDT Peter D. HoffSource: Bayesian Anal., Volume 6, Number 2, 179--196.Abstract: Modern datasets are often in the form of matrices or arrays, potentially having correlations along each set of data indices. For example, data involving repeated measurements of several variables over time may exhibit temporal correlation as well as correlation among the variables. A possible model for matrix-valued data is the class of matrix normal distributions, which is parametrized by two covariance matrices, one for each index set of the data. In this article we discuss an extension of the matrix normal model to accommodate multidimensional data arrays, or tensors. We show how a particular array-matrix product can be used to generate the class of array normal distributions having separable covariance structure. We derive some properties of these covariance structures and the corresponding array normal distributions, and show how the array-matrix product can be used to define a semi-conjugate prior distribution and calculate the corresponding posterior distribution. We illustrate the methodology in an analysis of multivariate longitudinal network data which take the form of a four-way array. Full Article
appl Maximum Independent Component Analysis with Application to EEG Data By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Ruosi Guo, Chunming Zhang, Zhengjun Zhang. Source: Statistical Science, Volume 35, Number 1, 145--157.Abstract: In many scientific disciplines, finding hidden influential factors behind observational data is essential but challenging. The majority of existing approaches, such as the independent component analysis (${mathrm{ICA}}$), rely on linear transformation, that is, true signals are linear combinations of hidden components. Motivated from analyzing nonlinear temporal signals in neuroscience, genetics, and finance, this paper proposes the “maximum independent component analysis” (${mathrm{MaxICA}}$), based on max-linear combinations of components. In contrast to existing methods, ${mathrm{MaxICA}}$ benefits from focusing on significant major components while filtering out ignorable components. A major tool for parameter learning of ${mathrm{MaxICA}}$ is an augmented genetic algorithm, consisting of three schemes for the elite weighted sum selection, randomly combined crossover, and dynamic mutation. Extensive empirical evaluations demonstrate the effectiveness of ${mathrm{MaxICA}}$ in either extracting max-linearly combined essential sources in many applications or supplying a better approximation for nonlinearly combined source signals, such as $mathrm{EEG}$ recordings analyzed in this paper. Full Article
appl A Kernel Regression Procedure in the 3D Shape Space with an Application to Online Sales of Children’s Wear By projecteuclid.org Published On :: Thu, 18 Jul 2019 22:01 EDT Gregorio Quintana-Ortí, Amelia Simó. Source: Statistical Science, Volume 34, Number 2, 236--252.Abstract: This paper is focused on kernel regression when the response variable is the shape of a 3D object represented by a configuration matrix of landmarks. Regression methods on this shape space are not trivial because this space has a complex finite-dimensional Riemannian manifold structure (non-Euclidean). Papers about it are scarce in the literature, the majority of them are restricted to the case of a single explanatory variable, and many of them are based on the approximated tangent space. In this paper, there are several methodological innovations. The first one is the adaptation of the general method for kernel regression analysis in manifold-valued data to the three-dimensional case of Kendall’s shape space. The second one is its generalization to the multivariate case and the addressing of the curse-of-dimensionality problem. Finally, we propose bootstrap confidence intervals for prediction. A simulation study is carried out to check the goodness of the procedure, and a comparison with a current approach is performed. Then, it is applied to a 3D database obtained from an anthropometric survey of the Spanish child population with a potential application to online sales of children’s wear. Full Article
appl Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry By www.jneurosci.org Published On :: 2020-04-15 Brian ZinggApr 15, 2020; 40:3250-3267Systems/Circuits Full Article
appl UK Rejects Apple-Google Contact Tracing Approach By www.technewsworld.com Published On :: 2020-04-29T04:00:00-07:00 The UK's plans to launch a smartphone application to track potential COVID-19 infections won't include Apple and Google. The country's National Health Service has designed its own mobile software to do contact tracing of people exposed to the coronavirus. The NHS reportedly found that its own tech works "sufficiently well." The NHS chose a centralized model for its data collection and storage. Full Article
appl Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Revealing the organization and function of neural circuits is greatly facilitated by viral tools that spread transsynaptically. Adeno-associated virus (AAV) exhibits anterograde transneuronal transport, however, the synaptic specificity of this spread and its broad application within a diverse set of circuits remains to be explored. Here, using anatomic, functional, and molecular approaches, we provide evidence for the preferential transport of AAV1 to postsynaptically connected neurons and reveal its spread is strongly dependent on synaptic transmitter release. In addition to glutamatergic pathways, AAV1 also spreads through GABAergic synapses to both excitatory and inhibitory cell types. We observed little or no transport, however, through neuromodulatory projections (e.g., serotonergic, cholinergic, and noradrenergic). In addition, we found that AAV1 can be transported through long-distance descending projections from various brain regions to effectively transduce spinal cord neurons. Combined with newly designed intersectional and sparse labeling strategies, AAV1 can be applied within a wide variety of pathways to categorize neurons according to their input sources, morphology, and molecular identities. These properties make AAV1 a promising anterograde transsynaptic tool for establishing a comprehensive cell-atlas of the brain, although its capacity for retrograde transport currently limits its use to unidirectional circuits. SIGNIFICANCE STATEMENT The discovery of anterograde transneuronal spread of AAV1 generates great promise for its application as a unique tool for manipulating input-defined cell populations and mapping their outputs. However, several outstanding questions remain for anterograde transsynaptic approaches in the field: (1) whether AAV1 spreads exclusively or specifically to synaptically connected neurons, and (2) how broad its application could be in various types of neural circuits in the brain. This study provides several lines of evidence in terms of anatomy, functional innervation, and underlying mechanisms, to strongly support that AAV1 anterograde transneuronal spread is highly synapse specific. In addition, several potentially important applications of transsynaptic AAV1 in probing neural circuits are described. Full Article