sen

Independent Thinking: Why is North Korea sending troops to Russia?

Independent Thinking: Why is North Korea sending troops to Russia? Audio john.pollock

Orysia Lutsevych, Edward Howell and Yossi Mekelberg discuss North Korean troops fighting with Russian forces against Ukraine, as well as the issue of military conscription.

On this episode

North Korea is sending troops to Russia, but what is Kim Jong-Un hoping to get from Vladmir Putin for this military assistance against Ukraine? The panel also discuss the role military conscription plays in Israel, South Korea and Ukraine’s defence.

Bronwen Maddox is joined by Edward Howell, the Korea Foundation fellow at Chatham House, Orysia Lutsevych, the head of our Ukraine Forum and Yossi Mekelberg, a senior consulting fellow with our Middle East and North Africa Programme.

About Independent Thinking

Independent Thinking is a weekly international affairs podcast hosted by our director Bronwen Maddox, in conversation with leading policymakers, journalists, and Chatham House experts providing insight on the latest international issues.

More ways to listen: Apple Podcasts, Spotify.




sen

Undercurrents: Episode 9 - Digital Subversion in Cyberspace, and Oleg Sentsov's Hunger Strike




sen

American Diplomacy: Past, Present and Future




sen

Renata Dwan Joins as Deputy Director and Senior Executive Officer

Renata Dwan Joins as Deputy Director and Senior Executive Officer News Release sysadmin 19 August 2020

Renata Dwan has been appointed deputy director and senior executive officer of Chatham House.




sen

Lord Hammond Joins Panel of Senior Advisers

Lord Hammond Joins Panel of Senior Advisers News Release NCapeling 10 December 2020

Chatham House is pleased to announce that Lord Hammond of Runnymede is joining our Panel of Senior Advisers.




sen

A novel stress-inducible CmtR-ESX3-Zn2+ regulatory pathway essential for survival of Mycobacterium bovis under oxidative stress [Microbiology]

Reactive oxygen species (ROS) are an unavoidable host environmental cue for intracellular pathogens such as Mycobacterium tuberculosis and Mycobacterium bovis; however, the signaling pathway in mycobacteria for sensing and responding to environmental stress remains largely unclear. Here, we characterize a novel CmtR-Zur-ESX3-Zn2+ regulatory pathway in M. bovis that aids mycobacterial survival under oxidative stress. We demonstrate that CmtR functions as a novel redox sensor and that its expression can be significantly induced under H2O2 stress. CmtR can physically interact with the negative regulator Zur and de-represses the expression of the esx-3 operon, which leads to Zn2+ accumulation and promotion of reactive oxygen species detoxication in mycobacterial cells. Zn2+ can also act as an effector molecule of the CmtR regulator, using which the latter can de-repress its own expression for further inducing bacterial antioxidant adaptation. Consistently, CmtR can induce the expression of EsxH, a component of esx-3 operon involved in Zn2+ transportation that has been reported earlier, and inhibit phagosome maturation in macrophages. Lastly, CmtR significantly contributes to bacterial survival in macrophages and in the lungs of infected mice. Our findings reveal the existence of an antioxidant regulatory pathway in mycobacteria and provide novel information on stress-triggered gene regulation and its association with host–pathogen interaction.





sen

Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii [Molecular Biophysics]

In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.




sen

Novel fluorescent GPCR biosensor detects retinal equilibrium binding to opsin and active G protein and arrestin signaling conformations [Molecular Biophysics]

Rhodopsin is a canonical class A photosensitive G protein–coupled receptor (GPCR), yet relatively few pharmaceutical agents targeting this visual receptor have been identified, in part due to the unique characteristics of its light-sensitive, covalently bound retinal ligands. Rhodopsin becomes activated when light isomerizes 11-cis-retinal into an agonist, all-trans-retinal (ATR), which enables the receptor to activate its G protein. We have previously demonstrated that, despite being covalently bound, ATR can display properties of equilibrium binding, yet how this is accomplished is unknown. Here, we describe a new approach for both identifying compounds that can activate and attenuate rhodopsin and testing the hypothesis that opsin binds retinal in equilibrium. Our method uses opsin-based fluorescent sensors, which directly report the formation of active receptor conformations by detecting the binding of G protein or arrestin fragments that have been fused onto the receptor's C terminus. We show that these biosensors can be used to monitor equilibrium binding of the agonist, ATR, as well as the noncovalent binding of β-ionone, an antagonist for G protein activation. Finally, we use these novel biosensors to observe ATR release from an activated, unlabeled receptor and its subsequent transfer to the sensor in real time. Taken together, these data support the retinal equilibrium binding hypothesis. The approach we describe should prove directly translatable to other GPCRs, providing a new tool for ligand discovery and mutant characterization.






sen

Webinar: Hong Kong: Dissent in the Age of Coronavirus

Webinar: Hong Kong: Dissent in the Age of Coronavirus 17 April 2020 — 12:00PM TO 1:00PM Anonymous (not verified) 8 April 2020

Street protests demanding greater autonomy and democratization in Hong Kong upended the city for seven months last year. However, with the outbreak of the coronavirus in China in late January, the protests quickly died out. What does this mean for the city’s protest movement?

The speaker will argue that, despite the lack of high-profile street rallies, protest in the city is continuing. It is building on and evolving from last year’s protest movement albeit in different forms. At the same time, the Hong Kong authorities, emboldened by a hard line from Beijing, have begun cracking down on activists and protesters in the city as they seek to put a lid on dissent ahead of important Legislative Council elections scheduled for this September.

In this webinar, the speaker will look at the current state of dissent in Hong Kong and prospects for Hong Kong’s future.

This event will be held on the record.




sen

A Glimpse into Geometric Representation Theory

Mahir Bilen Can and Jörg Feldvoss, editors. American Mathematical Society, 2024, CONM, volume 804, approx. 216 pp. ISBN: 978-1-4704-7090-6 (print), 978-1-4704-7664-9 (online).

This volume contains the proceedings of the AMS Special Session on Combinatorial and Geometric Representation Theory, held virtually on November...





sen

Does He Have It?: Sensitivity, Specificity, and COVID-19 Testing




sen

Woman, 23, had a 'burning sensation' in her stomach. It was the first sign of a rare cancer




sen

Passenger Sees Worker Unscrewing Plane Part Before Takeoff




sen

‘We have lost a future scientist’ - William Knibb High student gets emotional send-off

Family, friends, and community members gathered on Saturday at the Falmouth First Assembly Church to celebrate the life of 15-year-old Jahmarie Reid, a William Knibb High student who tragically lost his life at sea on August 27 in what is believed...




sen

Vaping sending youth to hospital

Health Minister Dr Christopher Tufton is warning about the possible dangers to the health of students caused by vaping. "We have seen cases where students have been rushed to the A...




sen

Carnosine synthase deficiency is compatible with normal skeletal muscle and olfactory function but causes reduced olfactory sensitivity in aging mice [Developmental Biology]

Carnosine (β-alanyl-l-histidine) and anserine (β-alanyl-3-methyl-l-histidine) are abundant peptides in the nervous system and skeletal muscle of many vertebrates. Many in vitro and in vivo studies demonstrated that exogenously added carnosine can improve muscle contraction, has antioxidant activity, and can quench various reactive aldehydes. Some of these functions likely contribute to the proposed anti-aging activity of carnosine. However, the physiological role of carnosine and related histidine-containing dipeptides (HCDs) is not clear. In this study, we generated a mouse line deficient in carnosine synthase (Carns1). HCDs were undetectable in the primary olfactory system and skeletal muscle of Carns1-deficient mice. Skeletal muscle contraction in these mice, however, was unaltered, and there was no evidence for reduced pH-buffering capacity in the skeletal muscle. Olfactory tests did not reveal any deterioration in 8-month-old mice lacking carnosine. In contrast, aging (18–24-month-old) Carns1-deficient mice exhibited olfactory sensitivity impairments that correlated with an age-dependent reduction in the number of olfactory receptor neurons. Whereas we found no evidence for elevated levels of lipoxidation and glycation end products in the primary olfactory system, protein carbonylation was increased in the olfactory bulb of aged Carns1-deficient mice. Taken together, these results suggest that carnosine in the olfactory system is not essential for information processing in the olfactory signaling pathway but does have a role in the long-term protection of olfactory receptor neurons, possibly through its antioxidant activity.




sen

Representative cancer-associated U2AF2 mutations alter RNA interactions and splicing [Molecular Bases of Disease]

High-throughput sequencing of hematologic malignancies and other cancers has revealed recurrent mis-sense mutations of genes encoding pre-mRNA splicing factors. The essential splicing factor U2AF2 recognizes a polypyrimidine-tract splice-site signal and initiates spliceosome assembly. Here, we investigate representative, acquired U2AF2 mutations, namely N196K or G301D amino acid substitutions associated with leukemia or solid tumors, respectively. We determined crystal structures of the wild-type (WT) compared with N196K- or G301D-substituted U2AF2 proteins, each bound to a prototypical AdML polypyrimidine tract, at 1.5, 1.4, or 1.7 Å resolutions. The N196K residue appears to stabilize the open conformation of U2AF2 with an inter-RNA recognition motif hydrogen bond, in agreement with an increased apparent RNA-binding affinity of the N196K-substituted protein. The G301D residue remains in a similar position as the WT residue, where unfavorable proximity to the RNA phosphodiester could explain the decreased RNA-binding affinity of the G301D-substituted protein. We found that expression of the G301D-substituted U2AF2 protein reduces splicing of a minigene transcript carrying prototypical splice sites. We further show that expression of either N196K- or G301D-substituted U2AF2 can subtly alter splicing of representative endogenous transcripts, despite the presence of endogenous, WT U2AF2 such as would be present in cancer cells. Altogether, our results demonstrate that acquired U2AF2 mutations such as N196K and G301D are capable of dysregulating gene expression for neoplastic transformation.




sen

Cholesterol sensing by CD81 is important for hepatitis C virus entry [Protein Structure and Folding]

CD81 plays a central role in a variety of physiological and pathological processes. Recent structural analysis of CD81 indicates that it contains an intramembrane cholesterol-binding pocket and that interaction with cholesterol may regulate a conformational switch in the large extracellular domain of CD81. Therefore, CD81 possesses a potential cholesterol-sensing mechanism; however, its relevance for protein function is thus far unknown. In this study we investigate CD81 cholesterol sensing in the context of its activity as a receptor for hepatitis C virus (HCV). Structure-led mutagenesis of the cholesterol-binding pocket reduced CD81–cholesterol association but had disparate effects on HCV entry, both reducing and enhancing CD81 receptor activity. We reasoned that this could be explained by alterations in the consequences of cholesterol binding. To investigate this further we performed molecular dynamic simulations of CD81 with and without cholesterol; this identified a potential allosteric mechanism by which cholesterol binding regulates the conformation of CD81. To test this, we designed further mutations to force CD81 into either the open (cholesterol-unbound) or closed (cholesterol-bound) conformation. The open mutant of CD81 exhibited reduced HCV receptor activity, whereas the closed mutant enhanced activity. These data are consistent with cholesterol sensing switching CD81 between a receptor active and inactive state. CD81 interactome analysis also suggests that conformational switching may modulate the assembly of CD81–partner protein networks. This work furthers our understanding of the molecular mechanism of CD81 cholesterol sensing, how this relates to HCV entry, and CD81's function as a molecular scaffold; these insights are relevant to CD81's varied roles in both health and disease.




sen

Conflict-Related Sexual Violence in Ukraine: An Opportunity for Gender-Sensitive Policymaking?

18 August 2020

Kateryna Busol

Robert Bosch Stiftung Academy Fellow, Russia and Eurasia Programme
Meaningful change is needed in Ukraine’s response to the conflict-related sexual violence, which affects both women and men.

2020-08-18-Ukraine-Intl-Womens-Day.jpg

Ukrainian feminists and human rights activists carry posters at an International Women's Day protest in Kyiv, Ukraine on 8 March 2019. Photo: Getty Images.

The virus of violence

According to the UN (para. 7) and the International Criminal Court (ICC, para. 279), conflict-related sexual violence (CRSV) is quite prevalent in hostilities-affected eastern Ukraine. Both sexes are subjected to sexualized torture, rape, forced nudity, prolonged detention in unsanitary conditions with members of the other sex and threats of sexual violence towards detainees or their relatives to force confessions. Men are castrated. Women additionally suffer from sexual slavery, enforced and survival prostitution, and other forms of sexual abuse. Women are more exposed to CRSV: in the hostilities-affected area, every third woman has experienced or witnessed CRSV as opposed to every fourth man.

COVID-19 has redirected funding priorities, affecting the availability of medical and psychological help for CRSV survivors worldwide. In Ukraine, the very reporting of such violence, stigmatized even before the pandemic, has been further undermined by the country-wide quarantine-induced restrictions on movement and the closure of checkpoints between the government-controlled and temporarily uncontrolled areas.

Addressing CRSV in Ukraine

The stigma of CRSV, the patchy domestic legislation, and the unpreparedness of the criminal justice system to deal with such cases prevent the authorities from properly helping those harmed in the ongoing Russia-Ukraine armed conflict.

CRSV is equally traumatizing yet different in nuance for men and women. Female victims often choose not to report the violence. Women avoid protracted proceedings likely to cause re-traumatization and the disclosure of their experience, which could be particularly excruciating in small communities where everybody knows everyone.

Men also struggle to provide their accounts of CRSV. Their suppressed pain and shame of genital mutilation and other CRSV result in sexual and other health disfunctions. Combined with the post-conflict mental health struggles, this has been shown to lead to increased domestic violence and even suicide.

The very investigation of CRSV in Ukraine is challenging. Certain tests and examinations need to be done straight after an assault, which in the context of detention and grey zones of hostilities is often impossible. Specialized medical and psychological support is lacking. Investigators and prosecutors are hardly trained to deal with CRSV to the point that they do not ask questions about it during the interviews. Burdened by trauma and stigma, survivors are inclined to report torture or inhuman treatment, but not the sexualized aspects thereof.

Seven years into the conflict, the state still has not criminalized the full spectrum of CRSV in its domestic law. Ukraine’s Criminal Code contains a brief list of the violations of the rules and customs of warfare in article 438. It prohibits the inhuman treatment of civilians and POWs but does not list any types of CRSV.

The article has an open-ended reference to Ukraine’s ratified international treaties, from which the responsibility for other armed conflict violations may be derived. For the more detailed norms on CRSV, Ukraine should refer at least to Geneva Convention IV protecting civilians and two additional protocols to the Geneva Conventions, to which it is a party.

However, the novelty of the war context for Ukrainian investigators, prosecutors and judges and their overcautiousness about the direct application of international conventions mean that in practice, observing the treaty or jurisprudential instruction on CRSV has been slow.

Use of the Criminal Code’s articles on sexual violence not related to an armed conflict is not viable. Such provisions fail to reflect the horrible variety and complexity of CRSV committed in hostilities. They also envisage lesser punishment than a war crime of sexual violence would entail. Cumulatively, this fails to account for the intention of a perpetrator, the gravity of the crime and the trauma of its victims.

The lack of public debate and state action on CRSV understates its magnitude. Ukraine should break its silence about CRSV in Donbas and make addressing this violence part of its actionable agenda - in law and in implementation.

Ukraine should incorporate all war crimes and crimes against humanity of CRSV in its domestic legislation; ensure a more gendered psychological and medical support for both sexes; establish rehabilitation and compensation programmes for CRSV survivors; create special victims and witness protection schemes; consider the different stigmatizing effects of CRSV on men and women in criminal proceedings and engage the professionals of the same sex as the victim; map CRSV in the bigger picture of other crimes in Donbas to better understand the motives of the perpetrators; submit more information about CRSV to the ICC and educate the public to destigmatize the CRSV survivors.

The drafters of Ukraine’s transitional justice roadmap should ensure that it highlights CRSV, adopts a gendered approach to it and endorses female participation as a crucial component of reconciliation and broader policymaking.

Embracive policymaking

Although ‘the discriminatory line almost inevitably hurts women,’ 'every gender discrimination is a two-edged sword’, Ruth Bader Ginsburg famously argued before the US Supreme Court. This could not be more relevant for Ukraine. The conflict - and lockdown-related violence has reverberated deeper within Ukrainian society, raising fundamental questions about the roles of both sexes and gender equality.

The failure to address CRSV and its different stigmas for both sexes mirrors the general lack of sustainable gender lenses in Ukraine's policymaking. It is no coincidence that a June 2020 proposal for gender parity in political parties coincided with another spike of sexist remarks by top officials. While women get access to more positions in the army, sexual harassment in the military is investigated slowly. Despite all the impressive female professionals, no woman made it to the first four-member consultative civic group in the Minsk process. Such lack of diversity sends an unfortunate message that women are not important for Ukraine’s peace process.

Ginsburg said, ‘women belong in all places where decisions are being made.’ CRSV against either sex won’t be addressed properly until both sexes contribute with their talents and their grievances to all pillars of Ukraine’s state governance and strategy. Ukraine should look to engage professional women - and there are plenty - to join its public service not just in numbers, but as the indispensable equal voices of a powerful choir.




sen

Formal Representation for Young People Enhances Politics for All

10 September 2020

Ben Horton

Communications Manager, Communications and Publishing

Michel Alimasi

Member, Common Futures Conversations, Italy

Gift Jedida

Member, Common Futures Conversations, Kenya

Sanne Thijssen

Member, Common Futures Conversations, Netherlands

Mondher Tounsi

Member, Common Futures Conversations, Tunisia
Despite grassroots associations, community organizing and online groups offering pathways for political engagement, the room for youth representation in international politics remains narrow, with many young people still left feeling they are passive participants in policymaking.

CFC Youth Participation EC_10092020.png

Youth protests at Parliament square against a new exam rating system which has been introduced in British education system - London, England on August 16, 2020. Photo by Dominika Zarzycka/NurPhoto via Getty Images.

According to UN Youth, people aged 15-24 make up one-sixth of the world’s population but, in roughly one-third of countries, the eligibility for parliamentarians begins at 25 years old and only 1.6% of parliamentarians are in their twenties. Young people are largely being excluded and overlooked, both as political candidates and even as participants in political processes, giving them limited political control over their own futures. 

If politics continues to be regarded as a space for older, more politically experienced individuals from particular backgrounds, young people will continue to be left systematically marginalized, and overall disengagement with politics within societies will continue to grow. Global leaders may increasingly point out the importance of youth representation in national and international fora, but the reality is their real policymaking impact still comes mainly from self-organized and informal activities.

And yet, despite this continued exclusion, huge numbers of young people are interested in political and civic engagement, and they have been driven to create new spaces. Youth networks, movements, and constituencies have emerged which provide the opportunity for younger voices to express political stances, and thus enhance the diversity and inclusivity of political debate. 

From the global Extinction Rebellion protests, to the student-led Rhodes Must Fall movement in South Africa and the UK, there are numerous examples of the power of informal youth networks and movements pushing for change. In certain cases, such as Sudan’s political revolution in 2019, we can see how direct action by young people creates major impact, but unfortunately these successes are few as most informal initiatives remain overlooked and undervalued. 

Putting youth representation into government

Creating diverse representation requires the linking of vital informal networks to formal political processes. In response to a recent Common Futures Conversations challenge, one mechanism with the potential to achieve this aim that emerged is creating dedicated youth representatives within government departments, so that qualified young people with relevant expertise are formally appointed to act as the link between government and informal youth movements. 

These individuals should be hired as employees rather than volunteers and take up the responsibilities of a government employee, supported by a large network of youth-led movements and initiatives as well as a smaller, voluntary advisory board of young people. 

This network then acts as a sounding board for the representative, gathering the opinions in their local communities and bringing forward crucial concerns so the youth representatives can confidently feed into policymaking processes with a clear sense of the substance of youth opinion. Alongside the network, a voluntary board of young people could provide additional support to the representatives when required to consult a broader range of youth organizations.

Both in the youth network and the board, a key priority is to involve different movements and initiatives reflecting diversities such as geographic spread, people who are marginalized due to ethnicity, gender or sexuality, educational and professional backgrounds, and other factors. 

Implementing such a structure would ensure more diversity in youth representation, something which is missing in many existing youth participation and formal political structures. Representation needs to move away from only highly-educated youth living in cities to ensure more influence for those young people usually left on the sidelines. 

Youth involvement in politics leads to better civic engagement overall. It improves the influence and access of young people, and supports governments becoming more inclusive and responsive to the plurality of voices they are representing. It also has the potential of encouraging millions more people to become properly engaged with politics. 

In order to gain support from parliamentarians and policymakers, it is crucial to highlight these benefits and demonstrate how the support of young people helps shift the political landscape for the better. All the necessary parties already exist in most countries, so all that is required is to drive a collective initiative and for both governments and the youth to take responsibility for making it work.

As the former president of Ireland Mary Robinson said during a recent Chatham House Centenary event: ‘We need to make space for young people so we can hear their voices, their imagination, their commitment to question and speak truth to power. We need young people to feel that they are part of the solution.’ 

Building formal structures is a necessary step to achieving this vision, as it provides practical solutions to realize a more diverse, inclusive and meaningful participation of the youth in politics, and also creates more representative and responsive governments.




sen

The glucose-sensing transcription factor ChREBP is targeted by proline hydroxylation [Metabolism]

Cellular energy demands are met by uptake and metabolism of nutrients like glucose. The principal transcriptional regulator for adapting glycolytic flux and downstream pathways like de novo lipogenesis to glucose availability in many cell types is carbohydrate response element–binding protein (ChREBP). ChREBP is activated by glucose metabolites and post-translational modifications, inducing nuclear accumulation and regulation of target genes. Here we report that ChREBP is modified by proline hydroxylation at several residues. Proline hydroxylation targets both ectopically expressed ChREBP in cells and endogenous ChREBP in mouse liver. Functionally, we found that specific hydroxylated prolines were dispensable for protein stability but required for the adequate activation of ChREBP upon exposure to high glucose. Accordingly, ChREBP target gene expression was rescued by re-expressing WT but not ChREBP that lacks hydroxylated prolines in ChREBP-deleted hepatocytes. Thus, proline hydroxylation of ChREBP is a novel post-translational modification that may allow for therapeutic interference in metabolic diseases.




sen

Ascertaining the biochemical function of an essential pectin methylesterase in the gut microbe Bacteroides thetaiotaomicron [Metabolism]

Pectins are a major dietary nutrient source for the human gut microbiota. The prominent gut microbe Bacteroides thetaiotaomicron was recently shown to encode the founding member (BT1017) of a new family of pectin methylesterases essential for the metabolism of the complex pectin rhamnogalacturonan-II (RG-II). However, biochemical and structural knowledge of this family is lacking. Here, we showed that BT1017 is critical for the metabolism of an RG-II–derived oligosaccharide ΔBT1017oligoB generated by a BT1017 deletion mutant (ΔBT1017) during growth on carbohydrate extract from apple juice. Structural analyses of ΔBT1017oligoB using a combination of enzymatic, mass spectrometric, and NMR approaches revealed that it is a bimethylated nonaoligosaccharide (GlcA-β1,4-(2-O-Me-Xyl-α1,3)-Fuc-α1,4-(GalA-β1,3)-Rha-α1,3-Api-β1,2-(Araf-α1,3)-(GalA-α1,4)-GalA) containing components of the RG-II backbone and its side chains. We showed that the catalytic module of BT1017 adopts an α/β-hydrolase fold, consisting of a central twisted 10-stranded β-sheet sandwiched by several α-helices. This constitutes a new fold for pectin methylesterases, which are predominantly right-handed β-helical proteins. Bioinformatic analyses revealed that the family is dominated by sequences from prominent genera of the human gut microbiota, including Bacteroides and Prevotella. Our re-sults not only highlight the critical role played by this family of enzymes in pectin metabolism but also provide new insights into the molecular basis of the adaptation of B. thetaiotaomicron to the human gut.




sen

SophosAI team presents three papers on AI applied to cybersecurity at CAMLIS

On October 24 and 25, SophosAI presents ideas on how to use models large and small—and defend against malignant ones.




sen

Overdose crisis: more common sense and less ideology




sen

OpenPepXL: An Open-Source Tool for Sensitive Identification of Cross-Linked Peptides in XL-MS

Eugen Netz
Dec 1, 2020; 19:2157-2167
Technological Innovation and Resources




sen

Systematic identification of P. falciparum sporozoite membrane protein interactions reveals an essential role for the p24 complex in host infection

Julia Knöckel
Dec 22, 2020; 0:RA120.002432v1-mcp.RA120.002432
Research




sen

A proteomic approach to understand the clinical significance of acute myeloid leukemia-derived extracellular vesicles reflecting essential characteristics of leukemia

Ka-Won Kang
Nov 30, 2020; 0:RA120.002169v1-mcp.RA120.002169
Research




sen

Prediction and validation of mouse meiosis-essential genes based on spermatogenesis proteome dynamics

Kailun Fang
Nov 30, 2020; 0:RA120.002081v1-mcp.RA120.002081
Research




sen

Plasma proteomic data can contain personally identifiable, sensitive information and incidental findings

Philipp Emanuel Geyer
Dec 17, 2020; 0:RA120.002359v1-mcp.RA120.002359
Research




sen

Distant coupling between RNA editing and alternative splicing of the osmosensitive cation channel Tmem63b [Cell Biology]

Post-transcriptional modifications of pre-mRNAs expand the diversity of proteomes in higher eukaryotes. In the brain, these modifications diversify the functional output of many critical neuronal signal molecules. In this study, we identified a brain-specific A-to-I RNA editing that changed glutamine to arginine (Q/R) at exon 20 and an alternative splicing of exon 4 in Tmem63b, which encodes a ubiquitously expressed osmosensitive cation channel. The channel isoforms lacking exon 4 occurred in ∼80% of Tmem63b mRNAs in the brain but were not detected in other tissues, suggesting a brain-specific splicing. We found that the Q/R editing was catalyzed by Adar2 (Adarb1) and required an editing site complementary sequence located in the proximal 5' end of intron 20. Moreover, the Q/R editing was almost exclusively identified in the splicing isoform lacking exon 4, indicating a coupling between the editing and the splicing. Elimination of the Q/R editing in brain-specific Adar2 knockout mice did not affect the splicing efficiency of exon 4. Furthermore, transfection with the splicing isoform containing exon 4 suppressed the Q/R editing in primary cultured cerebellar granule neurons. Thus, our study revealed a coupling between an RNA editing and a distant alternative splicing in the Tmem63b pre-mRNA, in which the splicing plays a dominant role. Finally, physiological analysis showed that the splicing and the editing coordinately regulate Ca2+ permeability and osmosensitivity of channel proteins, which may contribute to their functions in the brain.




sen

Depletion of essential isoprenoids and ER stress induction following acute liver-specific deletion of HMG-CoA reductase

Marco De Giorgi
Dec 1, 2020; 61:1675-1686
Research Articles




sen

Deletion of lysophosphatidylcholine acyltransferase3 in myeloid cells worsens hepatic steatosis after a high fat diet

Thibaut Bourgeois
Dec 11, 2020; 0:jlr.RA120000737v1-jlr.RA120000737
Research Articles




sen

Human CETP lacks lipopolysaccharide transfer activity, but worsens inflammation and sepsis outcomes in mice

Aloïs Dusuel
Dec 9, 2020; 0:jlr.RA120000704v1-jlr.RA120000704
Research Articles




sen

Human CETP lacks lipopolysaccharide transfer activity, but worsens inflammation and sepsis outcomes in mice [Research Articles]

Bacterial lipopolysaccharides (LPSs or endotoxins) can bind most proteins of the lipid transfer/LPS-binding protein (LT/LBP) family in host organisms. The LPS-bound LT/LBP proteins then trigger either an LPS-induced proinflammatory cascade or LPS binding to lipoproteins that are involved in endotoxin inactivation and detoxification. Cholesteryl ester transfer protein (CETP) is an LT/LBP member, but its impact on LPS metabolism and sepsis outcome is unclear. Here, we performed fluorescent LPS transfer assays to assess the ability of CETP to bind and transfer LPS. The effects of intravenous (iv) infusion of purified LPS or polymicrobial infection (cecal ligation and puncture [CLP]) were compared in transgenic mice expressing human CETP and wild-type mice naturally having no CETP activity. CETP displayed no LPS transfer activity in vitro, but it tended to reduce biliary excretion of LPS in vivo. The CETP expression in mice was associated with significantly lower basal plasma lipid levels and with higher mortality rates in both models of endotoxemia and sepsis. Furthermore, CETPTg plasma modified cytokine production of macrophages in vitro. In conclusion, despite having no direct LPS binding and transfer property, human CETP worsens sepsis outcomes in mice by altering the protective effects of plasma lipoproteins against endotoxemia, inflammation, and infection.




sen

Deletion of lysophosphatidylcholine acyltransferase3 in myeloid cells worsens hepatic steatosis after a high fat diet [Research Articles]

Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3’s role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approx. 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation.




sen

A sensitive S-Trap-based approach to the analysis of T cell lipid raft proteome [Methods]

The analysis of T cell lipid raft proteome is challenging due to the highly dynamic nature of rafts and the hydrophobic character of raft-resident proteins. We explored an innovative strategy for bottom-up lipid raftomics based on suspension-trapping (S-Trap) sample preparation. Mouse T cells were prepared from splenocytes by negative immunoselection, and rafts were isolated by a detergent-free method and OptiPrep gradient ultracentrifugation. Microdomains enriched in flotillin-1, LAT, and cholesterol were subjected to proteomic analysis through an optimized protocol based on S-Trap and high pH fractionation, followed by nano-LC-MS/MS. Using this method, we identified 2,680 proteins in the raft-rich fraction and established a database of 894 T cell raft proteins. We then performed a differential analysis on the raft-rich fraction from nonstimulated versus anti-CD3/CD28 T cell receptor (TCR)-stimulated T cells. Our results revealed 42 proteins present in one condition and absent in the other. For the first time, we performed a proteomic analysis on rafts from ex vivo T cells obtained from individual mice, before and after TCR activation. This work demonstrates that the proposed method utilizing an S-Trap-based approach for sample preparation increases the specificity and sensitivity of lipid raftomics.




sen

Characterization of essential domains in HSD17B13 for cellular localization and enzymatic activity [Research Articles]

Human genetic studies recently identified an association of SNPs in the 17-β hydroxysteroid dehydrogenase 13 (HSD17B13) gene with alcoholic and nonalcoholic fatty liver disease development. Mutant HSD17B13 variants devoid of enzymatic function have been demonstrated to be protective from cirrhosis and liver cancer, supporting the development of HSD17B13 as a promising therapeutic target. Previous studies have demonstrated that HSD17B13 is a lipid droplet (LD)-associated protein. However, the critical domains that drive LD targeting or determine the enzymatic activity have yet to be defined. Here we used mutagenesis to generate multiple truncated and point-mutated proteins and were able to demonstrate in vitro that the N-terminal hydrophobic domain, PAT-like domain, and a putative α-helix/β-sheet/α-helix domain in HSD17B13 are all critical for LD targeting. Similarly, we characterized the predicted catalytic, substrate-binding, and homodimer interaction sites and found them to be essential for the enzymatic activity of HSD17B13, in addition to our previous identification of amino acid P260 and cofactor binding site. In conclusion, we identified critical domains and amino acid sites that are essential for the LD localization and protein function of HSD17B13, which may facilitate understanding of its function and targeting of this protein to treat chronic liver diseases.




sen

Lipid sensing tips the balance for a key cholesterol synthesis enzyme [Images in Lipid Research]




sen

Depletion of essential isoprenoids and ER stress induction following acute liver-specific deletion of HMG-CoA reductase [Research Articles]

HMG-CoA reductase (Hmgcr) is the rate-limiting enzyme in the mevalonate pathway and is inhibited by statins. In addition to cholesterol, Hmgcr activity is also required for synthesizing nonsterol isoprenoids, such as dolichol, ubiquinone, and farnesylated and geranylgeranylated proteins. Here, we investigated the effects of Hmgcr inhibition on nonsterol isoprenoids in the liver. We have generated new genetic models to acutely delete genes in the mevalonate pathway in the liver using AAV-mediated delivery of Cre-recombinase (AAV-Cre) or CRISPR/Cas9 (AAV-CRISPR). The genetic deletion of Hmgcr by AAV-Cre resulted in extensive hepatocyte apoptosis and compensatory liver regeneration. At the biochemical level, we observed decreased levels of sterols and depletion of the nonsterol isoprenoids, dolichol and ubiquinone. At the cellular level, Hmgcr-null hepatocytes showed ER stress and impaired N-glycosylation. We further hypothesized that the depletion of dolichol, essential for N-glycosylation, could be responsible for ER stress. Using AAV-CRISPR, we somatically disrupted dehydrodolichyl diphosphate synthase subunit (Dhdds), encoding a branch point enzyme required for dolichol biosynthesis. Dhdds-null livers showed ER stress and impaired N-glycosylation, along with apoptosis and regeneration. Finally, the combined deletion of Hmgcr and Dhdds synergistically exacerbated hepatocyte ER stress. Our data show a critical role for mevalonate-derived dolichol in the liver and suggest that dolichol depletion is at least partially responsible for ER stress and apoptosis upon potent Hmgcr inhibition.




sen

Radiosensitization by Kinase Inhibition Revealed by Phosphoproteomic Analysis of Pancreatic Cancer Cells [Research]

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers and known for its extensive genetic heterogeneity, high therapeutic resistance, and strong variation in intrinsic radiosensitivity. To understand the molecular mechanisms underlying radioresistance, we screened the phenotypic response of 38 PDAC cell lines to ionizing radiation. Subsequent phosphoproteomic analysis of two representative sensitive and resistant lines led to the reproducible identification of 7,800 proteins and 13,000 phosphorylation sites (p-sites). Approximately 700 p-sites on 400 proteins showed abundance changes after radiation in all cell lines regardless of their phenotypic sensitivity. Apart from recapitulating known radiation response phosphorylation markers such as on proteins involved in DNA damage repair, the analysis uncovered many novel members of a radiation-responsive signaling network that was apparent only at the level of protein phosphorylation. These regulated p-sites were enriched in potential ATM substrates and in vitro kinase assays corroborated 10 of these. Comparing the proteomes and phosphoproteomes of radiosensitive and -resistant cells pointed to additional tractable radioresistance mechanisms involving apoptotic proteins. For instance, elevated NADPH quinine oxidoreductase 1 (NQO1) expression in radioresistant cells may aid in clearing harmful reactive oxygen species. Resistant cells also showed elevated phosphorylation levels of proteins involved in cytoskeleton organization including actin dynamics and focal adhesion kinase (FAK) activity and one resistant cell line showed a strong migration phenotype. Pharmacological inhibition of the kinases FAK by Defactinib and of CHEK1 by Rabusertib showed a statistically significant sensitization to radiation in radioresistant PDAC cells. Together, the presented data map a comprehensive molecular network of radiation-induced signaling, improves the understanding of radioresistance and provides avenues for developing radiotherapeutic strategies.




sen

OpenPepXL: An Open-Source Tool for Sensitive Identification of Cross-Linked Peptides in XL-MS [Technological Innovation and Resources]

Cross-linking MS (XL-MS) has been recognized as an effective source of information about protein structures and interactions. In contrast to regular peptide identification, XL-MS has to deal with a quadratic search space, where peptides from every protein could potentially be cross-linked to any other protein. To cope with this search space, most tools apply different heuristics for search space reduction. We introduce a new open-source XL-MS database search algorithm, OpenPepXL, which offers increased sensitivity compared with other tools. OpenPepXL searches the full search space of an XL-MS experiment without using heuristics to reduce it. Because of efficient data structures and built-in parallelization OpenPepXL achieves excellent runtimes and can also be deployed on large compute clusters and cloud services while maintaining a slim memory footprint. We compared OpenPepXL to several other commonly used tools for identification of noncleavable labeled and label-free cross-linkers on a diverse set of XL-MS experiments. In our first comparison, we used a data set from a fraction of a cell lysate with a protein database of 128 targets and 128 decoys. At 5% FDR, OpenPepXL finds from 7% to over 50% more unique residue pairs (URPs) than other tools. On data sets with available high-resolution structures for cross-link validation OpenPepXL reports from 7% to over 40% more structurally validated URPs than other tools. Additionally, we used a synthetic peptide data set that allows objective validation of cross-links without relying on structural information and found that OpenPepXL reports at least 12% more validated URPs than other tools. It has been built as part of the OpenMS suite of tools and supports Windows, macOS, and Linux operating systems. OpenPepXL also supports the MzIdentML 1.2 format for XL-MS identification results. It is freely available under a three-clause BSD license at https://openms.org/openpepxl.




sen

Prediction and validation of mouse meiosis-essential genes based on spermatogenesis proteome dynamics [Research]

The molecular mechanism associated with mammalian meiosis has yet to be fully explored, and one of the main reasons for this lack of exploration is that some meiosis-essential genes are still unknown. The profiling of gene expression during spermatogenesis has been performed in previous studies, yet few studies have aimed to find new functional genes. Since there is a huge gap between the number of genes that are able to be quantified and the number of genes that can be characterized by phenotype screening in one assay, an efficient method to rank quantified genes according to phenotypic relevance is of great importance. We proposed to rank genes by the probability of their function in mammalian meiosis based on global protein abundance using machine learning. Here, nine types of germ cells focusing on continual substages of meiosis prophase I were isolated, and the corresponding proteomes were quantified by high-resolution mass spectrometry. By combining meiotic labels annotated from the MGI mouse knockout database and the spermatogenesis proteomics dataset, a supervised machine learning package, FuncProFinder, was developed to rank meiosis-essential candidates. Of the candidates whose functions were unannotated, four of ten genes with the top prediction scores, Zcwpw1, Tesmin, 1700102P08Rik and Kctd19, were validated as meiosis-essential genes by knockout mouse models. Therefore,  mammalian meiosis-essential genes could be efficiently predicted based on the protein abundance dataset, which provides a paradigm for other functional gene mining from a related abundance dataset.




sen

A proteomic approach to understand the clinical significance of acute myeloid leukemia-derived extracellular vesicles reflecting essential characteristics of leukemia [Research]

Extracellular vesicle (EV) proteins from acute myeloid leukemia (AML) cell lines were analyzed using mass spectrometry. The analyses identified 2450 proteins, including 461 differentially expressed proteins (290 upregulated and 171 downregulated). CD53 and CD47 were upregulated and were selected as candidate biomarkers. The association between survival of patients with AML and the expression levels of CD53 and CD47 at diagnosis was analyzed using mRNA expression data from The Cancer Genome Atlas database. Patients with higher expression levels showed significantly inferior survival than those with lower expression levels. Enzyme-linked immunosorbent assay results of the expression levels of CD53 and CD47 from EVs in the bone marrow of patients with AML at diagnosis and at the time of complete remission with induction chemotherapy revealed that patients with downregulated CD53 and CD47 expression appeared to relapse less frequently. Network model analysis of EV proteins revealed several upregulated kinases, including LYN, CSNK2A1, SYK, CSK, and PTK2B. The potential cytotoxicity of several clinically applicable drugs that inhibit these kinases was tested in AML cell lines. The drugs lowered the viability of AML cells. The collective data suggest that AML-derived EVs could reflect essential leukemia biology.




sen

Plasma proteomic data can contain personally identifiable, sensitive information and incidental findings [Research]

The goal of clinical proteomics is to identify, quantify, and characterize proteins in body fluids or tissue to assist diagnosis, prognosis, and treatment of patients. In this way, it is similar to more mature omics technologies, such as genomics, that are increasingly applied in biomedicine. We argue that, similar to those fields, proteomics also faces ethical issues related to the kinds of information that is inherently obtained through sample measurement, although their acquisition was not the primary purpose. Specifically, we demonstrate the potential to identify individuals both by their characteristic, individual-specific protein levels and by variant peptides reporting on coding single nucleotide polymorphisms. Furthermore, it is in the nature of blood plasma proteomics profiling that it broadly reports on the health status of an individual – beyond the disease under investigation. Finally, we show that private and potentially sensitive information, such as ethnicity and pregnancy status, can increasingly be derived from proteomics data. Although this is potentially valuable not only to the individual, but also for biomedical research, it raises ethical questions similar to the incidental findings obtained through other omics technologies. We here introduce the necessity of - and argue for the desirability for - ethical and human rights-related issues to be discussed within the proteomics community. Those thoughts are more fully developed in our accompanying manuscript. Appreciation and discussion of ethical aspects of proteomic research will allow for deeper, better-informed, more diverse, and, most importantly, wiser guidelines for clinical proteomics.




sen

Systematic identification of P. falciparum sporozoite membrane protein interactions reveals an essential role for the p24 complex in host infection [Research]

Sporozoites are a motile form of malaria-causing Plasmodium falciparum parasites that migrate from the site of transmission in the dermis through the bloodstream to invade hepatocytes. Sporozoites interact with many cells within the host, but the molecular identity of these interactions and their role in the pathology of malaria is poorly understood. Parasite proteins that are secreted and embedded within membranes are known to be important for these interactions, but our understanding of how they interact with each other to form functional complexes is largely unknown. Here, we compile a library of recombinant proteins representing the repertoire of cell surface and secreted proteins from the P. falciparum sporozoite and use an assay designed to detect extracellular interactions to systematically identify complexes. We identify three protein complexes including an interaction between two components of the p24 complex that is involved in the trafficking of glycosylphosphatidylinositol (GPI)-anchored proteins through the secretory pathway. Plasmodium parasites lacking either gene are strongly inhibited in the establishment of liver stage infections. These findings reveal an important role for the p24 complex in malaria pathogenesis and show that the library of recombinant proteins represents a valuable resource to investigate P. falciparum sporozoite biology.




sen

A human cancer cell line initiates DNA replication normally in the absence of ORC5 and ORC2 proteins [DNA and Chromosomes]

The origin recognition complex (ORC), composed of six subunits, ORC1–6, binds to origins of replication as a ring-shaped heterohexameric ATPase that is believed to be essential to recruit and load MCM2–7, the minichromosome maintenance protein complex, around DNA and initiate DNA replication. We previously reported the creation of viable cancer cell lines that lacked detectable ORC1 or ORC2 protein without a reduction in the number of origins firing. Here, using CRISPR-Cas9–mediated mutations, we report that human HCT116 colon cancer cells also survive when ORC5 protein expression is abolished via a mutation in the initiator ATG of the ORC5 gene. Even if an internal methionine is used to produce an undetectable, N terminally deleted ORC5, the protein would lack 80% of the AAA+ ATPase domain, including the Walker A motif. The ORC5-depleted cells show normal chromatin binding of MCM2–7 and initiate replication from a similar number of origins as WT cells. In addition, we introduced a second mutation in ORC2 in the ORC5 mutant cells, rendering both ORC5 and ORC2 proteins undetectable in the same cells and destabilizing the ORC1, ORC3, and ORC4 proteins. Yet the double mutant cells grow, recruit MCM2–7 normally to chromatin, and initiate DNA replication with normal number of origins. Thus, in these selected cancer cells, either a crippled ORC lacking ORC2 and ORC5 and present at minimal levels on the chromatin can recruit and load enough MCM2–7 to initiate DNA replication, or human cell lines can sometimes recruit MCM2–7 to origins independent of ORC.