e

Cutting insert, cutting tool, and method of manufacturing machined product using the same

A cutting insert of the present invention includes an upper surface; a lower surface; a side surface; a cutting edge which is located along an intersection of the upper surface and the side surface, and comprises a major cutting edge, a flat cutting edge, and a minor cutting edge located between the major cutting edge and the flat cutting edge; and a land part located along the cutting edge on the upper surface. The land part includes a minor cutting edge land portion located correspondingly to the minor cutting edge. The minor cutting edge land portion is inclined downward toward a central part of the upper surface. The present invention also provides a cutting tool including the cutting insert, and a method of manufacturing a machined product by using the cutting tool.




e

Severing and beveling tool

A tool for both severing the end of a pipe and beveling the cut end includes a spiral cutting mill having an elongate end received in the bore of a frustoconical shell cutter. The shell cutter is locked for rotation with the cutting mill such that a single tool has two cutting surfaces, one for severing a length of pipe and one for beveling the outer edge thereof.




e

Sintered cubic boron nitride compact and sintered cubic boron nitride compact tool

It is an object of the present invention to provide a sintered cBN compact having excellent wear resistance and fracture resistance even in machining centrifugally cast iron having a property of being difficult to machine, and to provide a sintered cBN compact tool. A sintered cBN compact of the present invention contains 20% by volume or more and 65% by volume or less of cBN and, as a binder, 34% by volume or more and less than 80% by volume of Al2O3, at least one selected from the group consisting of nitrides, carbides, carbonitrides, borides, and boronitrides of Zr and solid solutions thereof (hereinafter, referred to as “X”), and ZrO2, the total amount of X and ZrO2 being 1.0% by volume or more and 6.0% by volume or less, the volume ratio of ZrO2 to Al2O3, ZrO2/Al2O3, being 0.010 or more and less than 0.100, in which the ratio Itetragonal ZrO2(101)/IαAl2O3(110) is 0.1 or more and 3 or less, where Itetragonal ZrO2(101) is the intensity of the (101) plane of tetragonal ZrO2 and IαAl2O3(110) is the intensity of the (110) plane of αAl2O3 among X-ray diffraction peaks of the sintered cBN compact.




e

Cutting insert and chip-control arrangement therefor

A cutting insert has at least first and second side surfaces, with a chip-control arrangement. The chip-control arrangement includes at least one projection disposed at an intersection of a corner of the cutting insert. When the chip-control arrangement includes two projections they can be disposed symmetrically on both sides of the intersection. Each of the at least one projections is elongated and extends longitudinally along an associated side surface.




e

Cutting insert and cutting tool

A cutting insert is capable of boring or drilling without the formation of a prepared hole in a workpiece. A cutting edge includes a cutting edge portion extending from the outer peripheral side to the tool center axis side of a cutting tool body when the cutting insert is attached to a mounting seat, reaching a first plane including the tool center axis, and traversing from one side to the other side of a second plane which is perpendicular to the first plane and which includes the tool center axis.




e

Super-hard cutter inserts and tools

A cutter insert assembly for a drill bit for boring into the earth, comprising a super-hard structure clampable to a support body by means of a clamp mechanism; the clamp mechanism comprising opposed or opposable compression members connected or connectable by a tension member capable of sustaining a clamping force between the compression members when the cutter insert assembly is in a clamped condition, in which condition the compression members exert opposing compressive forces on the super-hard structure and the support body, operable to clamp the super-hard structure to the support body, and in which condition the cutter insert assembly is self-supporting and capable of being mounted onto a drill bit body.




e

Cutting insert and shim for milling cutters

A cutting tool includes a polygonal cutter body and an end cutting insert for chipforming machining mounted in a serrated seat disposed at an axial end of the cutter body. A bottom surface of the insert has a plurality of parallel serrations meshing with corresponding serrations of the seat. The serrations extend transversely relative to the longitudinal axis for resisting axially rearward cutting forces applied to the insert. The seat is formed directly by the cutter body, or by a shim disposed beneath the insert. The shim is provided with a downward lip to transfer axial forces to the cutter body. The insert can be square or triangular, wherein the serrations are in the form of a plurality of sets of parallel serrations disposed adjacent respective cutting edges.




e

Cutting insert

A cutting insert with a substantially triangular or square basic form is particularly suited for face milling at high feed rates. It has convex cutting edges, which are each made up of a circular arc and at least one straight portion. Each cutting edge has, adjoining a cutting corner, a straight face cutting edge that merges with a main cutting edge, having 1 to 3 straight portions, a circular portion with a radius of at most 80% of the radius Ri of the inscribed circle. The cutting edges have an all-round cutting edge chamfer with a chamfer angle α. This chamfer angle α has along the cutting corners a value in the range from −10° to −20° and changes continuously along sub-portions of the face cutting edge and main cutting edge and along the circular portion to a constant value in the range from 0° to −10°.




e

Cartridge with fine adjustment means

Cartridge for supporting at least one cutting insert and for being received on a tool body is disclosed. At least a first portion of the cartridge may be stationary mounted and the cartridge includes at least one pocket for receiving a cutting element. A coarse and a fine adjustment means are provided by means of which at least a second portion of the cartridge including the pocket may be moved with respect to the tool body and wherein the coarse and the fine adjustment means are merely provided at the cartridge.




e

Electrode milling cutter with milling edges interrupted by cut-outs

Electrode milling cutter for machining spot welding electrodes, said electrode milling cutter having one or more milling edges, wherein at least one of the milling edges is interrupted by one or more cut-outs at one or more points. The invention also relates to a milling device and to an apparatus for subsequently machining spot welding electrodes.




e

Cutting insert, cutting tool, and method of manufacturing machined product using them

A cutting insert includes an upper surface; a lower surface; a side surface which is connected to each of the upper surface and the lower surface and includes a first side surface, a second side surface and a third side surface being adjacent to each other in order; an upper cutting edge including an upper major cutting edge located at an intersection of the upper surface and the first side surface, and an upper flat cutting edge located closer to the upper major cutting edge in an intersection of the upper surface and the second side surface; and a lower cutting edge including a lower major cutting edge located at an intersection of the lower surface and the third side surface, and a lower flat cutting edge located closer to the lower major cutting edge in an intersection of the lower surface and the second side surface. The second side surface comprises an upper flank surface connected to the upper flat cutting edge, and a lower flank surface connected to the lower flat cutting edge. As going from the upper surface to the lower surface, the upper flank surface is closer to a central axis extending between the upper surface and the lower surface and the lower flank surface is separated from the central axis in a side sectional view. A cutting tool including the cutting insert, and a method of manufacturing a machined product by using the cutting tool are also provided.




e

Cutting tool, an arrangement and a method for chip removing machining with spring members for biasing a clamping body

In a cutting tool for chip removing machining a holder for a cutter has a body received therein and movable with surfaces to bear against the cutter for defining the position of the cutter in the direction of an intended axis of rotation of the holder as well as a screw which may be screwed in a threaded bore in the holder. Spring members are arranged to act between the holder and the body for biasing the body against said screw portions.




e

Cutting insert, cutting tool, and method of manufacturing machined product using the same

A cutting insert having excellent chip discharge performance is provided. The cutting insert (1) according to an embodiment of the present invention includes an upper surface (2), a lower surface (3), a side surface (4) connected to the upper surface (2) and the lower surface (3), and a cutting edge (5) which is located at an intersection of the upper surface (2) and the side surface (4), and includes a major cutting edge (51) and a flat cutting edge (52). The major cutting edge (51) includes a major cutting section (512) which has a concave shape and is inclined downward as a straight line connecting both ends thereof is away from the flat cutting edge (52) in a side view. A cutting tool (11) according to an embodiment of the present invention includes the cutting insert (1) and a holder (10) configured to attach the cutting insert (1) thereto.




e

Cutting insert and cutting tool

An upper surface of a cutting insert includes a first rake face and a second seating surface. A lower surface of the cutting insert includes a second rake face and a first seating surface. The cutting edge includes a first cutting edge portion formed at a crossing edge line portion between the first rake face and a flank face and a second cutting edge portion formed at a crossing edge line portion between the second rake face and the flank face. The first cutting edge portion and the crossing edge line portion between the first seating surface and the flank face are positioned opposite each other. The second cutting edge portion and the crossing edge line portion between the second seating surface and the flank face are positioned opposite each other.




e

Cutting insert, cutting tool, and method of manufacturing machined product using the same

A cutting insert according to an embodiment of the present invention includes an upper surface; a lower surface; a side surface located between the upper surface and the lower surface; at least one concave part extending in a thickness direction in the side surface, and having one end thereof located at the upper surface; and a cutting edge which is located at an intersection region of the upper surface and the side surface, and is divided into a plurality of divided cutting edges with the at least one concave part interposed therebetween. The upper surface includes a first raised part located inwardly of the at least one concave part, and a plurality of second raised parts respectively located inwardly of the plurality of divided cutting edges. The plurality of the second raised parts are located inward compared to one end of the first raised part close to the cutting edge in a top view. A cutting tool including the cutting insert, and a method of manufacturing a machined product using the cutting tool are also provided.




e

Cutting insert, cutting tool, and method of manufacturing machined product using them

A cutting insert according to an embodiment of the invention includes: an upper surface; a lower surface; a side surface which is connected to each of the upper surface and the lower surface, and includes a first side surface and a second side surface adjacent to each other; and a cutting edge including a major cutting edge located at an intersection of the upper surface and the first side surface, and a minor cutting edge located at an intersection of the upper surface and the second side surface. The upper surface includes a rake surface which is located along the major cutting edge, and is inclined downward as the upper surface separates from the major cutting edge. The second side surface includes a second upper constraining surface and a second lower constraining surface in order as the second side surface goes from the upper surface to the lower surface. The second upper constraining surface is inclined inward at an inclination angle α1 with reference to a central axis extending between the upper surface and the lower surface. The second lower constraining surface is continuous with the second upper constraining surface, and is inclined outward at an inclination angle α2 with reference to the central axis. A cutting tool with the cutting inserts, and a method of manufacturing a machined product by using the cutting tool are also provided.




e

Rotary cutting tool with effective chip evacuation

A rotary cutting tool, such as a milling cutter (10) includes a central hub (12), a cutting rim (14) and a plurality of spokes (22) connecting the central hub (12) to the cutting rim (14). Each spoke (22) is separated by an opening (32) and polygonal in cross-sectional shape formed by two side walls (22a, 22b), two front walls (22c, 22d) and a rear wall (22e). One of the side walls (22a) of each spoke (22) is formed at a pitch angle (42) with respect to a central axis (11) of the cutting tool (10) that is sufficient to cause lift of chips through the opening (32), thereby providing effective chip evacuation during a material removal operation.




e

Milling cutter as well as a milling insert therefor

A milling cutter for chip removing machining, including a basic body rotatable in a predetermined direction around a center axis and having a front end surface and an envelope surface that extends axially backward from the front end surface and is concentric with the center axis. A number of indexable milling inserts are mounted in respective peripherally spaced-apart seats having a mutually fixed pitch, each milling insert including an upper side, an under side and at least one clearance surface, the clearance surface together with the upper side delimiting at least two alternately active cutting edges that are uniform in their extension between first and second end points. The cutting edges of each milling insert are situated on different levels in relation to the under side of the milling insert to alter the effective pitch between the active cutting edges of the milling inserts by indexing of at least one of the milling inserts.




e

Double-sided cutting inserts with anti-rotation features

A double-sided cutting insert may generally comprise a top surface, a bottom surface, at least one side surface interconnecting the top surface and the bottom surface and forming at least one cutting edge, a through hole extending between the top surface and bottom surface, wherein each of the top surface and bottom surface comprise at least one anti-rotation element. The cutting insert may comprise a single anti-rotation element on the top surface and a single anti-rotation element on the bottom surface. The anti-rotation element may be proximate to the through hole. A cutting tool using the cutting inserts, as well as methods of making and using the same are also described.




e

Clamping system

The invention relates to an indexable insert (1) for fitting in supporting tools (5) for the machining of workpieces, with an upper side (2) and an underside (3), on which clamping recesses are arranged, and with a circumferential geometry (4) joining the upper side (2) and the underside (3), wherein cutting corners and cutting edges (6) are arranged at the transition from the upper side (2) and the underside (3) to the circumferential geometry (4). In order that the clamping situation during machining is improved significantly, and at the same time the introduction of the clamping recesses is made easier, it is proposed that the clamping recess consists of grooves (10) which are arranged on two crossing straight lines (11), wherein the two straight lines (11) run at right angles in relation to each other and all the grooves (10) are arranged at the same distance from the center axis or longitudinal axis (12) of the indexable insert (1), and the crossing point (13) of the two straight lines (11) lies on the center axis or longitudinal axis (12) of the indexable insert (1).




e

Cutting insert and cutting tool

A cutting insert is provided with a plurality of cutting portions formed at the intersection portion of each end surface and a peripheral surface. Each cutting portion includes first and second cutting edges. First corners and second corners which differ in their internal angles are alternately formed in each end surface. An internal angle of the first corner is smaller than an internal angle of the second corner. Each first cutting edge has a portion extending to approach the median plane as a distance from a corresponding first corner increases. A first side surface portion extending on the peripheral surface from each first cutting edge forms an insert internal obtuse angle, and a second side surface portion extending on the peripheral surface from each second cutting edge forms an insert internal acute angle.




e

Surface-coated WC-based cemented carbide insert

Provided is a surface-coated cemented carbide insert obtained by containing at least WC powder and Co powder as raw materials, including a WC-based cemented carbide obtained by forming and sintering mixed raw materials containing at least any of (a) Zr compound powder, Nb compound powder, and Ta compound powder, (b) complex compound powder of Nb and Ta, and Zr compound powder, (c) complex compound powder of Nb, Ta, and Zr, (d) complex compound powder of Nb, Zr, and Ta compound powder, and (e) complex compound powder of Ta and Zr, and Nb compound powder, as essential powder components, as a substrate, and forming a hard coating layer on the substrate by vapor deposition, in which a Co enrichment surface region is formed in a substrate surface, Co content in the Co enrichment surface region satisfies to be between 1.30 and 2.10 (mass ratio) of Co content in cemented carbide.




e

Roughing end mill and insert for a roughing end mill

A roughing end mill comprises an end mill body and plural inserts which are placed on an outer circumference of the end mill body with a predetermined distance apart from each other in the axial direction of the end mill body, wherein the plural inserts form plural insert rows which are provided in a circumferential direction of the end mill body, where the inserts are offset in the axial direction from each other between the different insert rows which are adjacent in the circumferential direction. The inserts have waveform cutting edges which face towards an outer circumferential side of the end mill body. One insert of one insert row and an insert of another insert row are positioned such that the waveform cutting edges of each of these inserts make up a waveform cutting edge row whose phase is continuous on a rotation trajectory around the axis.




e

Cutting insert, cutting body and clamping mechanism of a cutting tool assembly for chip removal

A cutting insert (14) is formed with an insert aperture (32) opening out to insert top and bottom surfaces (14A, 14B) of the cutting insert (14). In a plan view of the insert top surface (14A), the cutting insert (14) and the insert aperture (32) both have oblong shapes which are elongated along a common insert longitudinal axis (AIL). The aperture (32) includes first and second side surfaces (32A1, 32A2) which each extend along the insert longitudinal axis (AIL), and aperture first and second end surfaces (32B1, 32B2) which each extend transverse relative to the insert longitudinal axis (AIL). At least one of the aperture first and second end surfaces (32B1, 32B2) is formed with a clamping lip (32C1, 32C2).




e

Cutting insert having curved ramps for insertion into a tool holder, cutting tool and method of assembly

A cutting tool used for grooving and turning operations where a cutting insert is resiliently securable in a holder blade. The cutting insert includes an insert central lower surface located between, and recessed with respect to, two insert lower component surfaces, each having an insert lower abutment surface. At least one of the two insert lower component surfaces includes an insert inner curved ramp extending from its insert lower abutment surface to the adjacent insert lower intermediate surface and at least the other of the two insert lower component surfaces includes an insert outer curved ramp extending from its insert lower abutment surface to an adjacent end surface.




e

Indexable, double-sided cutting insert and cutting tool including such an insert

A cutting insert includes a first surface having a first rake surface, a second surface having a second rake surface, a central axis of the insert extending between the first and second surfaces, four side surfaces extending between the first surface and the second surface, and four cutting edges. Each cutting edge has a first cutting edge component and a second cutting edge component and being associated with a respective one of the first and second surfaces and with two respective ones of the side surfaces. The first rake surface is identical to the second rake surface and the first rake surface and the second rake surface are oriented at a 90° angle to each other about the central axis of the insert.




e

Hybrid digital and channel microfluidic devices and methods of use thereof

The present invention provides a hybrid digital and channel microfluidic device in the form of an integrated structure in which a droplet may be transported by a digital microfluidic array and transferred to a microfluidic channel. In one aspect of the invention, a hybrid device comprises a first substrate having a digital microfluidic array capable of transporting a droplet to a transfer location, and a second substrate having a microfluidic channel. The first and second substrates are affixed to form a hybrid device in which an opening in the microfluidic channel is positioned adjacent to the transfer location, so that a droplet transported to the transfer location contacts the channel opening and may enter the channel. The invention also provides methods of performing separations using a hybrid digital and channel microfluidic device and methods of assembling a hybrid digital microfluidic device.




e

Analyte monitoring devices and methods therefor

Method and apparatus for performing a discrete glucose testing and bolus dosage determination including a glucose meter with bolus calculation function are provided.




e

MEMS sensors with closed nodal anchors for operation in an in-plane contour mode

A MEMS sensor includes at least one closed nodal anchor along a predetermined closed nodal path on at least one surface of a resonant mass. The resonant mass may be configured to resonate substantially in an in-plane contour mode. Drive and/or sense electrodes may be disposed within a cavity formed at least in part by the resonant mass, the closed nodal anchor, and a substrate.




e

Method and apparatus for dispensing diagnostic test strips

An apparatus for storing and dispensing a test strip includes a container configured to store a stack of test strips. The container maintains appropriate environmental conditions, such as humidity, for storing the test strips. An engaging member is disposed in the container and is adapted to contact one test strip of the stack of test strips. An actuator actuates the engaging member to dispense the one test strip from the container. Since one test strip is dispensed at a time, the remaining test strips are not handled by the user. Accordingly, the unused test strips remain free of contaminants such as naturally occurring oils on the user's hand.




e

Low-carbon, material consumption-free air cleaner

A low-carbon, material consumption-free air cleaner includes a rectangular box body, a fan, a negative ion generator unit and a dielectric barrier discharge actuator respectively arranged at upper part, middle part and lower part of the rectangular box body, an air input port disposed at the bottom side of the dielectric barrier discharge actuator, and air output port disposed at the top side of the rectangular box body.




e

Apparatus and method of reacting polymers passing through metal ion chelated resin matrix to produce injectable medical devices

The present disclosure relates to an apparatus and process for forming medical devices from an injectable composition. The apparatus includes a supply assembly configured to maintain and selective dispense a first precursor and a second precursor, a mixing assembly configured to mix the first and second precursors, and at least one catalyzing element including a transition metal ion to aid in the polymerization of the first and second precursors. The process includes dispensing a volume of the first precursor and a volume of the second precursor into a mixing assembly and mixing the first and second precursors. The first and second precursors each possess a core and at least one functional group known to have click reactivity with each other. The mixed precursors are contacted with a transition metal catalyst to produce a flowable composition for use as a medical device.




e

Slurry bubble column reactor

A slurry bubble column reactor with a gas distribution arrangement comprising an upper sparger, a lower sparger, and an open-ended tube. Gas from the lower sparger enters the tube and lowers the density of slurry in the tube. The difference in slurry density causes the slurry in the tube to rise, causing slurry outside the tube to move down, maintaining circulation and flushing catalyst from the vessel wall.




e

Exhaust gas purification apparatus of an internal combustion engine

A laminated body composed of a holding member and an inner cylinder is arranged between a heat generation element, which is electrically energized to generate heat, and a case which covers the heat generation element, and the inner cylinder has an upstream side end portion extended to a more upstream side than an upstream side end face of said heat generation element and an upstream side end face of said holding member to form an extension portion, which is formed with a protruding portion protruding to an inner side in a diametrical direction. A flow of an exhaust gas, which flows backwards after colliding with the heat generation element, will be obstructed by said protruding portion. As a result, the backflow exhaust gas stops flowing into a gap between the case and the inner cylinder.




e

Catalyzed SCR filter and emission treatment system

Provided is a catalyst article for simultaneously remediating the nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The catalyst article has a soot filter coated with a material effective in the Selective Catalytic Reduction (SCR) of NOx by a reductant, e.g., ammonia.




e

Catalyzed SCR filter and emission treatment system

Provided is a catalyst article for simultaneously remediating the nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The catalyst article has a soot filter coated with a material effective in the Selective Catalytic Reduction (SCR) of NOx by a reductant, e.g., ammonia.




e

Catalyzed SCR filter and emission treatment system

Provided is a catalyst article for simultaneously remediating the nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The catalyst article has a soot filter coated with a material effective in the Selective Catalytic Reduction (SCR) of NOx by a reductant, e.g., ammonia.




e

Ozone generator

Ozone generator cells that include two thermally conductive plates that maintain contact between various layers of the cells in the absence of a bonding agent. The cells lack aluminum-containing materials in the discharge region of the cell.




e

Chemical reactor with a plate heat exchanger

A steam cooled chemical reactor (1) comprising a vertical vessel (2), a plate heat exchanger embedded in a catalytic bed, to cool the catalytic bed by evaporation of a cooling water flow, wherein a water inlet and a steam outlet are located underneath the heat exchanger, and the plates and related piping are arranged so that the path of the cooling flow comprises a first ascending path from bottom to top of the catalytic bed, and a second descending path from top to the bottom of catalytic bed, and wherein internal evaporation channels of the plates provide the second descending or the first ascending path, and water upcomers or respectively steam downcomers provide the other of said first and second path.




e

Mass transfer packing element and method of making the same

A ceramic mass transfer packing element that includes a planar end surface which intersects an internal wall's geometric plane at an acute angle is disclosed. A process for making the packing element and an apparatus that uses the packing element are also disclosed.




e

Disinfection cap for disinfecting a male luer end of an infusion therapy device

The present invention extends to a disinfection cap for disinfecting a male luer end of an infusion therapy device. The disinfection cap can include an internal reservoir containing an antimicrobial or saline solution which is sealed with a flexible septum to prevent the solution from evaporating. The septum can include one or more slits or pierceable seams that allow a male luer end of an infusion therapy device to be inserted through the septum and into the solution. While the male luer is inserted through the septum, the solution contacts both the inner and outer surfaces of the male luer. Because the septum reduces evaporation of the solution and prevents the solution from leaking out of the cap, the solution remains in contact with the male luer for a longer duration then when typical disinfection caps are used thereby increasing the effectiveness of the disinfectant.




e

Ventilator autoclave

The present invention relates to a ventilator autoclave comprising a chamber (1) with a space (5) for receiving goods (18) to be sterilized, at least one fan arrangement (2) for circulating steam and/or air in said chamber, and at least one first heat exchanger arrangement (11) for cooling and/or heating said steam and/or air, wherein said fan arrangement is arranged and configured to circulate said steam and/or air in said chamber (1), wherein said chamber (1) is configured such that said steam and/or air that is circulated in said chamber (1) follows a flow path passing at least a part of said first heat exchanger arrangement (11) before reaching said goods (18) to be sterilized, wherein said autoclave further comprises at least one second heat exchanger arrangement (19) that is provided upstream of said first heat exchanger arrangement (11) in said flow path, and wherein said second heat exchanger arrangement (19) is provided at such a distance from the periphery of said fan arrangement (2) that said flow of steam and/or air being circulated by said fan arrangement has a tangential velocity component, as seen in relation to the fan arrangement, when it passes said second heat exchanger arrangement (19).




e

Biosensors and bio-measurement systems using the same

A biosensor is provided. The biosensor is used to sense a biological sample and has a code representing features of the biosensor. The biosensor includes a substrate and a conductive layer. The conductive layer is disposed on a first side of the substrate and includes a first conductive loop and a second conductive loop. The first conductive loop is formed between a first node and a second node and has a first impedance. The second conductive loop is formed between the second node and a third node and has a second impedance. The code is determined according to a comparison result between the second impedance and the first impedance.




e

Apparatus for closed tube sampling and open tube sampling for automated clinical analyzers

A centrifuge to which sample tubes can be introduced while the centrifuge is in motion. The centrifuge comprises a carousel having an upper portion and a lower portion. The upper portion of the carousel has a plurality of positions for sample tubes for a centrifugation operation, a plurality of drive mechanisms attached to the upper portion of the carousel, a movable element mounted upon each drive mechanism, the movable element capable of traversing the length of the drive mechanism when the drive mechanism is actuated, a sample tube-holding assembly comprising a sample tube holder and a bearing attached to each movable element, and at least one balancing element capable of contributing to a force vector that cancels an imbalance vector generated by rotation of the centrifuge.




e

Microfluidic device

Microfluidic devices of the present disclosure relate to quick and inexpensive microfluidic manipulation/handling. A number of channels may be supplied with fluid ingredient(s). In some embodiments, a number of protrusions as well as a sealing material may be disposed adjacent to the channels. When the channels are supplied with fluid ingredient(s), the channels may be partitioned into a number of separate cavities that are fluidly isolated from one another. For instance, a sealing material may be compressed so as to deform into the channels, obstructing fluid flow. In some embodiments, the channels supply fluid ingredients to a number of pre-formed cavities. Once the cavities are supplied with fluid ingredient, channels connecting the cavities may be sealed off; that is, the cavities may be subject to fluid isolation. When appropriate, contents within reaction chambers may be subject to further processing (e.g., thermal cycling, various analyses).




e

Silicon substrate optimization for microarray technology

A micro device includes a substrate and a structure configured to bind to an object or a material, or not to bind to an object or material. The structure has a roughness based on a roughness of the object or material. For example, a microarray includes a substrate and a well positioned in the substrate and configured to bind to a type of bead. The well has a roughness based on a roughness of the type of bead to which the well is configured to bind. The roughness of the well is controlled by controlling a position and number of striations in the side of the well. In another example, a moveable component of a micro device may have a roughness different from a roughness of an adjacent component, to reduce the likelihood of the moveable component sticking to the adjacent component.




e

Microfluidic devices with removable cover and methods of fabrication and application

The present invention includes microfluidic systems having a microfabricated cavity that may be covered with a removable cover, where the removable cover allows at least part of the opening of the microfabricated cavity to be exposed or directly accessed by an operator. The microfluidic systems comprise chambers, flow and control channels formed in elastomeric layers that may comprise PDMS. The removable cover comprises a thermoplastic base film bonded to an elastomer layer by an adhesive layer. When the removable cover is peeled off, the chamber is at least partially open to allow sample extraction from the chamber. The chamber may have macromolecular crystals formed inside or resulting contents from a PCR reaction. The invention also includes a method for making vias in elastomeric layers by using the removable cover. The invention further includes methods and devices for peeling the peelable cover or a removable component such as Integrated Heater Spreader.




e

Bioprinting station, assembly comprising such bioprinting station and bioprinting method

Bioprinting station (1) comprising:—a Bioprinting device (4) adapted to deposit a pattern of biological material (2) onto an area of interest (3a) of a substrate (3),—an imaging system (15) adapted to acquire an image of the substrate (3) and to reveal on the acquired image the area of interest (3a) with respect to a remaining part (3b) of the substrate (3), the acquired image of the substrate (3) being processed so as to detect the revealed area of interest (3a) on the acquired image and to determine the pattern corresponding to the area of interest (3a) detected on the acquired image.




e

Apparatus, system, and method for collecting a target material

This disclosure is directed to an apparatus, system and method for retrieving a target material from a suspension. A system includes a processing vessel, such as an Eppendorf tube, a syringe or a test tube, and a collector. The collector is sized and shaped to fit into a primary vessel, such as a test tube. The collector funnels the target material from the suspension through a cannula and into the processing vessel. The cannula extends into a cavity at a first end of the collector that holds the processing vessel. The collector includes a funnel at a second end in fluid communication with the cannula. In one implementation, the processing vessel includes at least one displacement fluid to be expelled, such that the at least one displacement fluid pushes the target material into the collector.




e

Sample container with sensor receptacle and methods of use

Devices and methods are described herein that are configured for use in laboratory testing, such as, for example, during a procedure including the monitoring and detection of chemical reactions. For example, the systems and devices described herein can be used during a procedure to monitor and detect polymerase chain reactions (PCR). In some embodiments, a sample container includes a container body that defines an interior volume and has an open end in fluid communication with the interior volume. A cap is sealingly engageable with the open end of the container body. The cap defines a receptacle that is configured to extend within a portion of the interior volume of the container body when the cap is sealingly engaged thereto. The receptacle can receive therein a sensor, such as, a temperature sensor that can monitor the temperature of a sample material disposed within the container body.