dimensional Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification By Published On :: 2020 High dimensional data often contain multiple facets, and several clustering patterns can co-exist under different variable subspaces, also known as the views. While multi-view clustering algorithms were proposed, the uncertainty quantification remains difficult --- a particular challenge is in the high complexity of estimating the cluster assignment probability under each view, and sharing information among views. In this article, we propose an approximate Bayes approach --- treating the similarity matrices generated over the views as rough first-stage estimates for the co-assignment probabilities; in its Kullback-Leibler neighborhood, we obtain a refined low-rank matrix, formed by the pairwise product of simplex coordinates. Interestingly, each simplex coordinate directly encodes the cluster assignment uncertainty. For multi-view clustering, we let each view draw a parameterization from a few candidates, leading to dimension reduction. With high model flexibility, the estimation can be efficiently carried out as a continuous optimization problem, hence enjoys gradient-based computation. The theory establishes the connection of this model to a random partition distribution under multiple views. Compared to single-view clustering approaches, substantially more interpretable results are obtained when clustering brains from a human traumatic brain injury study, using high-dimensional gene expression data. Full Article
dimensional High-Dimensional Inference for Cluster-Based Graphical Models By Published On :: 2020 Motivated by modern applications in which one constructs graphical models based on a very large number of features, this paper introduces a new class of cluster-based graphical models, in which variable clustering is applied as an initial step for reducing the dimension of the feature space. We employ model assisted clustering, in which the clusters contain features that are similar to the same unobserved latent variable. Two different cluster-based Gaussian graphical models are considered: the latent variable graph, corresponding to the graphical model associated with the unobserved latent variables, and the cluster-average graph, corresponding to the vector of features averaged over clusters. Our study reveals that likelihood based inference for the latent graph, not analyzed previously, is analytically intractable. Our main contribution is the development and analysis of alternative estimation and inference strategies, for the precision matrix of an unobservable latent vector Z. We replace the likelihood of the data by an appropriate class of empirical risk functions, that can be specialized to the latent graphical model and to the simpler, but under-analyzed, cluster-average graphical model. The estimators thus derived can be used for inference on the graph structure, for instance on edge strength or pattern recovery. Inference is based on the asymptotic limits of the entry-wise estimates of the precision matrices associated with the conditional independence graphs under consideration. While taking the uncertainty induced by the clustering step into account, we establish Berry-Esseen central limit theorems for the proposed estimators. It is noteworthy that, although the clusters are estimated adaptively from the data, the central limit theorems regarding the entries of the estimated graphs are proved under the same conditions one would use if the clusters were known in advance. As an illustration of the usage of these newly developed inferential tools, we show that they can be reliably used for recovery of the sparsity pattern of the graphs we study, under FDR control, which is verified via simulation studies and an fMRI data analysis. These experimental results confirm the theoretically established difference between the two graph structures. Furthermore, the data analysis suggests that the latent variable graph, corresponding to the unobserved cluster centers, can help provide more insight into the understanding of the brain connectivity networks relative to the simpler, average-based, graph. Full Article
dimensional High-dimensional Gaussian graphical models on network-linked data By Published On :: 2020 Graphical models are commonly used to represent conditional dependence relationships between variables. There are multiple methods available for exploring them from high-dimensional data, but almost all of them rely on the assumption that the observations are independent and identically distributed. At the same time, observations connected by a network are becoming increasingly common, and tend to violate these assumptions. Here we develop a Gaussian graphical model for observations connected by a network with potentially different mean vectors, varying smoothly over the network. We propose an efficient estimation algorithm and demonstrate its effectiveness on both simulated and real data, obtaining meaningful and interpretable results on a statistics coauthorship network. We also prove that our method estimates both the inverse covariance matrix and the corresponding graph structure correctly under the assumption of network “cohesion”, which refers to the empirically observed phenomenon of network neighbors sharing similar traits. Full Article
dimensional Curse of dimensionality and related issues in nonparametric functional regression By projecteuclid.org Published On :: Thu, 14 Apr 2011 08:17 EDT Gery GeenensSource: Statist. Surv., Volume 5, 30--43.Abstract: Recently, some nonparametric regression ideas have been extended to the case of functional regression. Within that framework, the main concern arises from the infinite dimensional nature of the explanatory objects. Specifically, in the classical multivariate regression context, it is well-known that any nonparametric method is affected by the so-called “curse of dimensionality”, caused by the sparsity of data in high-dimensional spaces, resulting in a decrease in fastest achievable rates of convergence of regression function estimators toward their target curve as the dimension of the regressor vector increases. Therefore, it is not surprising to find dramatically bad theoretical properties for the nonparametric functional regression estimators, leading many authors to condemn the methodology. Nevertheless, a closer look at the meaning of the functional data under study and on the conclusions that the statistician would like to draw from it allows to consider the problem from another point-of-view, and to justify the use of slightly modified estimators. In most cases, it can be entirely legitimate to measure the proximity between two elements of the infinite dimensional functional space via a semi-metric, which could prevent those estimators suffering from what we will call the “curse of infinite dimensionality”. References:[1] Ait-Saïdi, A., Ferraty, F., Kassa, K. and Vieu, P. (2008). Cross-validated estimations in the single-functional index model, Statistics, 42, 475–494.[2] Aneiros-Perez, G. and Vieu, P. (2008). Nonparametric time series prediction: A semi-functional partial linear modeling, J. Multivariate Anal., 99, 834–857.[3] Baillo, A. and Grané, A. (2009). Local linear regression for functional predictor and scalar response, J. Multivariate Anal., 100, 102–111.[4] Burba, F., Ferraty, F. and Vieu, P. (2009). k-Nearest Neighbour method in functional nonparametric regression, J. Nonparam. Stat., 21, 453–469.[5] Cardot, H., Ferraty, F. and Sarda, P. (1999). Functional linear model, Stat. Probabil. Lett., 45, 11–22.[6] Crambes, C., Kneip, A. and Sarda, P. (2009). Smoothing splines estimators for functional linear regression, Ann. Statist., 37, 35–72.[7] Delsol, L. (2009). Advances on asymptotic normality in nonparametric functional time series analysis, Statistics, 43, 13–33.[8] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications, Chapman and Hall, London.[9] Fan, J. and Zhang, J.-T. (2000). Two-step estimation of functional linear models with application to longitudinal data, J. Roy. Stat. Soc. B, 62, 303–322.[10] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis, Springer-Verlag, New York.[11] Ferraty, F., Laksaci, A. and Vieu, P. (2006). Estimating Some Characteristics of the Conditional Distribution in Nonparametric Functional Models, Statist. Inf. Stoch. Proc., 9, 47–76.[12] Ferraty, F., Mas, A. and Vieu, P. (2007). Nonparametric regression on functional data: inference and practical aspects, Aust. NZ. J. Stat., 49, 267–286.[13] Ferraty, F., Van Keilegom, I. and Vieu, P. (2010). On the validity of the bootstrap in nonparametric functional regression, Scand. J. Stat., 37, 286–306.[14] Ferraty, F., Laksaci, A., Tadj, A. and Vieu, P. (2010). Rate of uniform consistency for nonparametric estimates with functional variables, J. Stat. Plan. Inf., 140, 335–352.[15] Ferraty, F. and Romain, Y. (2011). Oxford handbook on functional data analysis (Eds), Oxford University Press.[16] Gasser, T., Hall, P. and Presnell, B. (1998). Nonparametric estimation of the mode of a distribution of random curves, J. Roy. Stat. Soc. B, 60, 681–691.[17] Geenens, G. (2011). A nonparametric functional method for signature recognition, Manuscript.[18] Härdle, W., Müller, M., Sperlich, S. and Werwatz, A. (2004). Nonparametric and semiparametric models, Springer-Verlag, Berlin.[19] James, G.M. (2002). Generalized linear models with functional predictors, J. Roy. Stat. Soc. B, 64, 411–432.[20] Masry, E. (2005). Nonparametric regression estimation for dependent functional data: asymptotic normality, Stochastic Process. Appl., 115, 155–177.[21] Nadaraya, E.A. (1964). On estimating regression, Theory Probab. Applic., 9, 141–142.[22] Quintela-Del-Rio, A. (2008). Hazard function given a functional variable: nonparametric estimation under strong mixing conditions, J. Nonparam. Stat., 20, 413–430.[23] Rachdi, M. and Vieu, P. (2007). Nonparametric regression for functional data: automatic smoothing parameter selection, J. Stat. Plan. Inf., 137, 2784–2801.[24] Ramsay, J. and Silverman, B.W. (1997). Functional Data Analysis, Springer-Verlag, New York.[25] Ramsay, J. and Silverman, B.W. (2002). Applied functional data analysis; methods and case study, Springer-Verlag, New York.[26] Ramsay, J. and Silverman, B.W. (2005). Functional Data Analysis, 2nd Edition, Springer-Verlag, New York.[27] Stone, C.J. (1982). Optimal global rates of convergence for nonparametric regression, Ann. Stat., 10, 1040–1053.[28] Watson, G.S. (1964). Smooth regression analysis, Sankhya A, 26, 359–372.[29] Yeung, D.T., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T. and Rigoll, G. (2004). SVC2004: First International Signature Verification Competition, Proceedings of the International Conference on Biometric Authentication (ICBA), Hong Kong, July 2004. Full Article
dimensional An n-dimensional Rosenbrock Distribution for MCMC Testing. (arXiv:1903.09556v4 [stat.CO] UPDATED) By arxiv.org Published On :: The Rosenbrock function is an ubiquitous benchmark problem for numerical optimisation, and variants have been proposed to test the performance of Markov Chain Monte Carlo algorithms. In this work we discuss the two-dimensional Rosenbrock density, its current $n$-dimensional extensions, and their advantages and limitations. We then propose a new extension to arbitrary dimensions called the Hybrid Rosenbrock distribution, which is composed of conditional normal kernels arranged in such a way that preserves the key features of the original kernel. Moreover, due to its structure, the Hybrid Rosenbrock distribution is analytically tractable and possesses several desirable properties, which make it an excellent test model for computational algorithms. Full Article
dimensional Modeling High-Dimensional Unit-Root Time Series. (arXiv:2005.03496v1 [stat.ME]) By arxiv.org Published On :: In this paper, we propose a new procedure to build a structural-factor model for a vector unit-root time series. For a $p$-dimensional unit-root process, we assume that each component consists of a set of common factors, which may be unit-root non-stationary, and a set of stationary components, which contain the cointegrations among the unit-root processes. To further reduce the dimensionality, we also postulate that the stationary part of the series is a nonsingular linear transformation of certain common factors and idiosyncratic white noise components as in Gao and Tsay (2019a, b). The estimation of linear loading spaces of the unit-root factors and the stationary components is achieved by an eigenanalysis of some nonnegative definite matrix, and the separation between the stationary factors and the white noises is based on an eigenanalysis and a projected principal component analysis. Asymptotic properties of the proposed method are established for both fixed $p$ and diverging $p$ as the sample size $n$ tends to infinity. Both simulated and real examples are used to demonstrate the performance of the proposed method in finite samples. Full Article
dimensional On a computationally-scalable sparse formulation of the multidimensional and non-stationary maximum entropy principle. (arXiv:2005.03253v1 [stat.CO]) By arxiv.org Published On :: Data-driven modelling and computational predictions based on maximum entropy principle (MaxEnt-principle) aim at finding as-simple-as-possible - but not simpler then necessary - models that allow to avoid the data overfitting problem. We derive a multivariate non-parametric and non-stationary formulation of the MaxEnt-principle and show that its solution can be approximated through a numerical maximisation of the sparse constrained optimization problem with regularization. Application of the resulting algorithm to popular financial benchmarks reveals memoryless models allowing for simple and qualitative descriptions of the major stock market indexes data. We compare the obtained MaxEnt-models to the heteroschedastic models from the computational econometrics (GARCH, GARCH-GJR, MS-GARCH, GARCH-PML4) in terms of the model fit, complexity and prediction quality. We compare the resulting model log-likelihoods, the values of the Bayesian Information Criterion, posterior model probabilities, the quality of the data autocorrelation function fits as well as the Value-at-Risk prediction quality. We show that all of the considered seven major financial benchmark time series (DJI, SPX, FTSE, STOXX, SMI, HSI and N225) are better described by conditionally memoryless MaxEnt-models with nonstationary regime-switching than by the common econometric models with finite memory. This analysis also reveals a sparse network of statistically-significant temporal relations for the positive and negative latent variance changes among different markets. The code is provided for open access. Full Article
dimensional Joint Multi-Dimensional Model for Global and Time-Series Annotations. (arXiv:2005.03117v1 [cs.LG]) By arxiv.org Published On :: Crowdsourcing is a popular approach to collect annotations for unlabeled data instances. It involves collecting a large number of annotations from several, often naive untrained annotators for each data instance which are then combined to estimate the ground truth. Further, annotations for constructs such as affect are often multi-dimensional with annotators rating multiple dimensions, such as valence and arousal, for each instance. Most annotation fusion schemes however ignore this aspect and model each dimension separately. In this work we address this by proposing a generative model for multi-dimensional annotation fusion, which models the dimensions jointly leading to more accurate ground truth estimates. The model we propose is applicable to both global and time series annotation fusion problems and treats the ground truth as a latent variable distorted by the annotators. The model parameters are estimated using the Expectation-Maximization algorithm and we evaluate its performance using synthetic data and real emotion corpora as well as on an artificial task with human annotations Full Article
dimensional mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data By www.jstatsoft.org Published On :: Mon, 27 Apr 2020 00:00:00 +0000 We present the R package mgm for the estimation of k-order mixed graphical models (MGMs) and mixed vector autoregressive (mVAR) models in high-dimensional data. These are a useful extensions of graphical models for only one variable type, since data sets consisting of mixed types of variables (continuous, count, categorical) are ubiquitous. In addition, we allow to relax the stationarity assumption of both models by introducing time-varying versions of MGMs and mVAR models based on a kernel weighting approach. Time-varying models offer a rich description of temporally evolving systems and allow to identify external influences on the model structure such as the impact of interventions. We provide the background of all implemented methods and provide fully reproducible examples that illustrate how to use the package. Full Article
dimensional Sparse high-dimensional regression: Exact scalable algorithms and phase transitions By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Dimitris Bertsimas, Bart Van Parys. Source: The Annals of Statistics, Volume 48, Number 1, 300--323.Abstract: We present a novel binary convex reformulation of the sparse regression problem that constitutes a new duality perspective. We devise a new cutting plane method and provide evidence that it can solve to provable optimality the sparse regression problem for sample sizes $n$ and number of regressors $p$ in the 100,000s, that is, two orders of magnitude better than the current state of the art, in seconds. The ability to solve the problem for very high dimensions allows us to observe new phase transition phenomena. Contrary to traditional complexity theory which suggests that the difficulty of a problem increases with problem size, the sparse regression problem has the property that as the number of samples $n$ increases the problem becomes easier in that the solution recovers 100% of the true signal, and our approach solves the problem extremely fast (in fact faster than Lasso), while for small number of samples $n$, our approach takes a larger amount of time to solve the problem, but importantly the optimal solution provides a statistically more relevant regressor. We argue that our exact sparse regression approach presents a superior alternative over heuristic methods available at present. Full Article
dimensional The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Emmanuel J. Candès, Pragya Sur. Source: The Annals of Statistics, Volume 48, Number 1, 27--42.Abstract: This paper rigorously establishes that the existence of the maximum likelihood estimate (MLE) in high-dimensional logistic regression models with Gaussian covariates undergoes a sharp “phase transition.” We introduce an explicit boundary curve $h_{mathrm{MLE}}$, parameterized by two scalars measuring the overall magnitude of the unknown sequence of regression coefficients, with the following property: in the limit of large sample sizes $n$ and number of features $p$ proportioned in such a way that $p/n ightarrow kappa $, we show that if the problem is sufficiently high dimensional in the sense that $kappa >h_{mathrm{MLE}}$, then the MLE does not exist with probability one. Conversely, if $kappa <h_{mathrm{MLE}}$, the MLE asymptotically exists with probability one. Full Article
dimensional Bootstrapping and sample splitting for high-dimensional, assumption-lean inference By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Alessandro Rinaldo, Larry Wasserman, Max G’Sell. Source: The Annals of Statistics, Volume 47, Number 6, 3438--3469.Abstract: Several new methods have been recently proposed for performing valid inference after model selection. An older method is sample splitting: use part of the data for model selection and the rest for inference. In this paper, we revisit sample splitting combined with the bootstrap (or the Normal approximation). We show that this leads to a simple, assumption-lean approach to inference and we establish results on the accuracy of the method. In fact, we find new bounds on the accuracy of the bootstrap and the Normal approximation for general nonlinear parameters with increasing dimension which we then use to assess the accuracy of regression inference. We define new parameters that measure variable importance and that can be inferred with greater accuracy than the usual regression coefficients. Finally, we elucidate an inference-prediction trade-off: splitting increases the accuracy and robustness of inference but can decrease the accuracy of the predictions. Full Article
dimensional Minimax posterior convergence rates and model selection consistency in high-dimensional DAG models based on sparse Cholesky factors By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Kyoungjae Lee, Jaeyong Lee, Lizhen Lin. Source: The Annals of Statistics, Volume 47, Number 6, 3413--3437.Abstract: In this paper we study the high-dimensional sparse directed acyclic graph (DAG) models under the empirical sparse Cholesky prior. Among our results, strong model selection consistency or graph selection consistency is obtained under more general conditions than those in the existing literature. Compared to Cao, Khare and Ghosh [ Ann. Statist. (2019) 47 319–348], the required conditions are weakened in terms of the dimensionality, sparsity and lower bound of the nonzero elements in the Cholesky factor. Furthermore, our result does not require the irrepresentable condition, which is necessary for Lasso-type methods. We also derive the posterior convergence rates for precision matrices and Cholesky factors with respect to various matrix norms. The obtained posterior convergence rates are the fastest among those of the existing Bayesian approaches. In particular, we prove that our posterior convergence rates for Cholesky factors are the minimax or at least nearly minimax depending on the relative size of true sparseness for the entire dimension. The simulation study confirms that the proposed method outperforms the competing methods. Full Article
dimensional On testing for high-dimensional white noise By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Zeng Li, Clifford Lam, Jianfeng Yao, Qiwei Yao. Source: The Annals of Statistics, Volume 47, Number 6, 3382--3412.Abstract: Testing for white noise is a classical yet important problem in statistics, especially for diagnostic checks in time series modeling and linear regression. For high-dimensional time series in the sense that the dimension $p$ is large in relation to the sample size $T$, the popular omnibus tests including the multivariate Hosking and Li–McLeod tests are extremely conservative, leading to substantial power loss. To develop more relevant tests for high-dimensional cases, we propose a portmanteau-type test statistic which is the sum of squared singular values of the first $q$ lagged sample autocovariance matrices. It, therefore, encapsulates all the serial correlations (up to the time lag $q$) within and across all component series. Using the tools from random matrix theory and assuming both $p$ and $T$ diverge to infinity, we derive the asymptotic normality of the test statistic under both the null and a specific VMA(1) alternative hypothesis. As the actual implementation of the test requires the knowledge of three characteristic constants of the population cross-sectional covariance matrix and the value of the fourth moment of the standardized innovations, nontrivial estimations are proposed for these parameters and their integration leads to a practically usable test. Extensive simulation confirms the excellent finite-sample performance of the new test with accurate size and satisfactory power for a large range of finite $(p,T)$ combinations, therefore, ensuring wide applicability in practice. In particular, the new tests are consistently superior to the traditional Hosking and Li–McLeod tests. Full Article
dimensional A smeary central limit theorem for manifolds with application to high-dimensional spheres By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Benjamin Eltzner, Stephan F. Huckemann. Source: The Annals of Statistics, Volume 47, Number 6, 3360--3381.Abstract: The (CLT) central limit theorems for generalized Fréchet means (data descriptors assuming values in manifolds, such as intrinsic means, geodesics, etc.) on manifolds from the literature are only valid if a certain empirical process of Hessians of the Fréchet function converges suitably, as in the proof of the prototypical BP-CLT [ Ann. Statist. 33 (2005) 1225–1259]. This is not valid in many realistic scenarios and we provide for a new very general CLT. In particular, this includes scenarios where, in a suitable chart, the sample mean fluctuates asymptotically at a scale $n^{alpha }$ with exponents $alpha <1/2$ with a nonnormal distribution. As the BP-CLT yields only fluctuations that are, rescaled with $n^{1/2}$, asymptotically normal, just as the classical CLT for random vectors, these lower rates, somewhat loosely called smeariness, had to date been observed only on the circle. We make the concept of smeariness on manifolds precise, give an example for two-smeariness on spheres of arbitrary dimension, and show that smeariness, although “almost never” occurring, may have serious statistical implications on a continuum of sample scenarios nearby. In fact, this effect increases with dimension, striking in particular in high dimension low sample size scenarios. Full Article
dimensional Hypothesis testing on linear structures of high-dimensional covariance matrix By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Shurong Zheng, Zhao Chen, Hengjian Cui, Runze Li. Source: The Annals of Statistics, Volume 47, Number 6, 3300--3334.Abstract: This paper is concerned with test of significance on high-dimensional covariance structures, and aims to develop a unified framework for testing commonly used linear covariance structures. We first construct a consistent estimator for parameters involved in the linear covariance structure, and then develop two tests for the linear covariance structures based on entropy loss and quadratic loss used for covariance matrix estimation. To study the asymptotic properties of the proposed tests, we study related high-dimensional random matrix theory, and establish several highly useful asymptotic results. With the aid of these asymptotic results, we derive the limiting distributions of these two tests under the null and alternative hypotheses. We further show that the quadratic loss based test is asymptotically unbiased. We conduct Monte Carlo simulation study to examine the finite sample performance of the two tests. Our simulation results show that the limiting null distributions approximate their null distributions quite well, and the corresponding asymptotic critical values keep Type I error rate very well. Our numerical comparison implies that the proposed tests outperform existing ones in terms of controlling Type I error rate and power. Our simulation indicates that the test based on quadratic loss seems to have better power than the test based on entropy loss. Full Article
dimensional Adaptive estimation of the rank of the coefficient matrix in high-dimensional multivariate response regression models By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Xin Bing, Marten H. Wegkamp. Source: The Annals of Statistics, Volume 47, Number 6, 3157--3184.Abstract: We consider the multivariate response regression problem with a regression coefficient matrix of low, unknown rank. In this setting, we analyze a new criterion for selecting the optimal reduced rank. This criterion differs notably from the one proposed in Bunea, She and Wegkamp ( Ann. Statist. 39 (2011) 1282–1309) in that it does not require estimation of the unknown variance of the noise, nor does it depend on a delicate choice of a tuning parameter. We develop an iterative, fully data-driven procedure, that adapts to the optimal signal-to-noise ratio. This procedure finds the true rank in a few steps with overwhelming probability. At each step, our estimate increases, while at the same time it does not exceed the true rank. Our finite sample results hold for any sample size and any dimension, even when the number of responses and of covariates grow much faster than the number of observations. We perform an extensive simulation study that confirms our theoretical findings. The new method performs better and is more stable than the procedure of Bunea, She and Wegkamp ( Ann. Statist. 39 (2011) 1282–1309) in both low- and high-dimensional settings. Full Article
dimensional Testing for independence of large dimensional vectors By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Taras Bodnar, Holger Dette, Nestor Parolya. Source: The Annals of Statistics, Volume 47, Number 5, 2977--3008.Abstract: In this paper, new tests for the independence of two high-dimensional vectors are investigated. We consider the case where the dimension of the vectors increases with the sample size and propose multivariate analysis of variance-type statistics for the hypothesis of a block diagonal covariance matrix. The asymptotic properties of the new test statistics are investigated under the null hypothesis and the alternative hypothesis using random matrix theory. For this purpose, we study the weak convergence of linear spectral statistics of central and (conditionally) noncentral Fisher matrices. In particular, a central limit theorem for linear spectral statistics of large dimensional (conditionally) noncentral Fisher matrices is derived which is then used to analyse the power of the tests under the alternative. The theoretical results are illustrated by means of a simulation study where we also compare the new tests with several alternative, in particular with the commonly used corrected likelihood ratio test. It is demonstrated that the latter test does not keep its nominal level, if the dimension of one sub-vector is relatively small compared to the dimension of the other sub-vector. On the other hand, the tests proposed in this paper provide a reasonable approximation of the nominal level in such situations. Moreover, we observe that one of the proposed tests is most powerful under a variety of correlation scenarios. Full Article
dimensional Projected spline estimation of the nonparametric function in high-dimensional partially linear models for massive data By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Heng Lian, Kaifeng Zhao, Shaogao Lv. Source: The Annals of Statistics, Volume 47, Number 5, 2922--2949.Abstract: In this paper, we consider the local asymptotics of the nonparametric function in a partially linear model, within the framework of the divide-and-conquer estimation. Unlike the fixed-dimensional setting in which the parametric part does not affect the nonparametric part, the high-dimensional setting makes the issue more complicated. In particular, when a sparsity-inducing penalty such as lasso is used to make the estimation of the linear part feasible, the bias introduced will propagate to the nonparametric part. We propose a novel approach for estimation of the nonparametric function and establish the local asymptotics of the estimator. The result is useful for massive data with possibly different linear coefficients in each subpopulation but common nonparametric function. Some numerical illustrations are also presented. Full Article
dimensional Test for high-dimensional correlation matrices By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Shurong Zheng, Guanghui Cheng, Jianhua Guo, Hongtu Zhu. Source: The Annals of Statistics, Volume 47, Number 5, 2887--2921.Abstract: Testing correlation structures has attracted extensive attention in the literature due to both its importance in real applications and several major theoretical challenges. The aim of this paper is to develop a general framework of testing correlation structures for the one , two and multiple sample testing problems under a high-dimensional setting when both the sample size and data dimension go to infinity. Our test statistics are designed to deal with both the dense and sparse alternatives. We systematically investigate the asymptotic null distribution, power function and unbiasedness of each test statistic. Theoretically, we make great efforts to deal with the nonindependency of all random matrices of the sample correlation matrices. We use simulation studies and real data analysis to illustrate the versatility and practicability of our test statistics. Full Article
dimensional Eigenvalue distributions of variance components estimators in high-dimensional random effects models By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Zhou Fan, Iain M. Johnstone. Source: The Annals of Statistics, Volume 47, Number 5, 2855--2886.Abstract: We study the spectra of MANOVA estimators for variance component covariance matrices in multivariate random effects models. When the dimensionality of the observations is large and comparable to the number of realizations of each random effect, we show that the empirical spectra of such estimators are well approximated by deterministic laws. The Stieltjes transforms of these laws are characterized by systems of fixed-point equations, which are numerically solvable by a simple iterative procedure. Our proof uses operator-valued free probability theory, and we establish a general asymptotic freeness result for families of rectangular orthogonally invariant random matrices, which is of independent interest. Our work is motivated in part by the estimation of components of covariance between multiple phenotypic traits in quantitative genetics, and we specialize our results to common experimental designs that arise in this application. Full Article
dimensional Linear hypothesis testing for high dimensional generalized linear models By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Chengchun Shi, Rui Song, Zhao Chen, Runze Li. Source: The Annals of Statistics, Volume 47, Number 5, 2671--2703.Abstract: This paper is concerned with testing linear hypotheses in high dimensional generalized linear models. To deal with linear hypotheses, we first propose the constrained partial regularization method and study its statistical properties. We further introduce an algorithm for solving regularization problems with folded-concave penalty functions and linear constraints. To test linear hypotheses, we propose a partial penalized likelihood ratio test, a partial penalized score test and a partial penalized Wald test. We show that the limiting null distributions of these three test statistics are $chi^{2}$ distribution with the same degrees of freedom, and under local alternatives, they asymptotically follow noncentral $chi^{2}$ distributions with the same degrees of freedom and noncentral parameter, provided the number of parameters involved in the test hypothesis grows to $infty$ at a certain rate. Simulation studies are conducted to examine the finite sample performance of the proposed tests. Empirical analysis of a real data example is used to illustrate the proposed testing procedures. Full Article
dimensional Doubly penalized estimation in additive regression with high-dimensional data By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Zhiqiang Tan, Cun-Hui Zhang. Source: The Annals of Statistics, Volume 47, Number 5, 2567--2600.Abstract: Additive regression provides an extension of linear regression by modeling the signal of a response as a sum of functions of covariates of relatively low complexity. We study penalized estimation in high-dimensional nonparametric additive regression where functional semi-norms are used to induce smoothness of component functions and the empirical $L_{2}$ norm is used to induce sparsity. The functional semi-norms can be of Sobolev or bounded variation types and are allowed to be different amongst individual component functions. We establish oracle inequalities for the predictive performance of such methods under three simple technical conditions: a sub-Gaussian condition on the noise, a compatibility condition on the design and the functional classes under consideration and an entropy condition on the functional classes. For random designs, the sample compatibility condition can be replaced by its population version under an additional condition to ensure suitable convergence of empirical norms. In homogeneous settings where the complexities of the component functions are of the same order, our results provide a spectrum of minimax convergence rates, from the so-called slow rate without requiring the compatibility condition to the fast rate under the hard sparsity or certain $L_{q}$ sparsity to allow many small components in the true regression function. These results significantly broaden and sharpen existing ones in the literature. Full Article
dimensional A knockoff filter for high-dimensional selective inference By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Rina Foygel Barber, Emmanuel J. Candès. Source: The Annals of Statistics, Volume 47, Number 5, 2504--2537.Abstract: This paper develops a framework for testing for associations in a possibly high-dimensional linear model where the number of features/variables may far exceed the number of observational units. In this framework, the observations are split into two groups, where the first group is used to screen for a set of potentially relevant variables, whereas the second is used for inference over this reduced set of variables; we also develop strategies for leveraging information from the first part of the data at the inference step for greater power. In our work, the inferential step is carried out by applying the recently introduced knockoff filter, which creates a knockoff copy—a fake variable serving as a control—for each screened variable. We prove that this procedure controls the directional false discovery rate (FDR) in the reduced model controlling for all screened variables; this says that our high-dimensional knockoff procedure “discovers” important variables as well as the directions (signs) of their effects, in such a way that the expected proportion of wrongly chosen signs is below the user-specified level (thereby controlling a notion of Type S error averaged over the selected set). This result is nonasymptotic, and holds for any distribution of the original features and any values of the unknown regression coefficients, so that inference is not calibrated under hypothesized values of the effect sizes. We demonstrate the performance of our general and flexible approach through numerical studies, showing more power than existing alternatives. Finally, we apply our method to a genome-wide association study to find locations on the genome that are possibly associated with a continuous phenotype. Full Article
dimensional Property testing in high-dimensional Ising models By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Matey Neykov, Han Liu. Source: The Annals of Statistics, Volume 47, Number 5, 2472--2503.Abstract: This paper explores the information-theoretic limitations of graph property testing in zero-field Ising models. Instead of learning the entire graph structure, sometimes testing a basic graph property such as connectivity, cycle presence or maximum clique size is a more relevant and attainable objective. Since property testing is more fundamental than graph recovery, any necessary conditions for property testing imply corresponding conditions for graph recovery, while custom property tests can be statistically and/or computationally more efficient than graph recovery based algorithms. Understanding the statistical complexity of property testing requires the distinction of ferromagnetic (i.e., positive interactions only) and general Ising models. Using combinatorial constructs such as graph packing and strong monotonicity, we characterize how target properties affect the corresponding minimax upper and lower bounds within the realm of ferromagnets. On the other hand, by studying the detection of an antiferromagnetic (i.e., negative interactions only) Curie–Weiss model buried in Rademacher noise, we show that property testing is strictly more challenging over general Ising models. In terms of methodological development, we propose two types of correlation based tests: computationally efficient screening for ferromagnets, and score type tests for general models, including a fast cycle presence test. Our correlation screening tests match the information-theoretic bounds for property testing in ferromagnets in certain regimes. Full Article
dimensional The two-to-infinity norm and singular subspace geometry with applications to high-dimensional statistics By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Joshua Cape, Minh Tang, Carey E. Priebe. Source: The Annals of Statistics, Volume 47, Number 5, 2405--2439.Abstract: The singular value matrix decomposition plays a ubiquitous role throughout statistics and related fields. Myriad applications including clustering, classification, and dimensionality reduction involve studying and exploiting the geometric structure of singular values and singular vectors. This paper provides a novel collection of technical and theoretical tools for studying the geometry of singular subspaces using the two-to-infinity norm. Motivated by preliminary deterministic Procrustes analysis, we consider a general matrix perturbation setting in which we derive a new Procrustean matrix decomposition. Together with flexible machinery developed for the two-to-infinity norm, this allows us to conduct a refined analysis of the induced perturbation geometry with respect to the underlying singular vectors even in the presence of singular value multiplicity. Our analysis yields singular vector entrywise perturbation bounds for a range of popular matrix noise models, each of which has a meaningful associated statistical inference task. In addition, we demonstrate how the two-to-infinity norm is the preferred norm in certain statistical settings. Specific applications discussed in this paper include covariance estimation, singular subspace recovery, and multiple graph inference. Both our Procrustean matrix decomposition and the technical machinery developed for the two-to-infinity norm may be of independent interest. Full Article
dimensional On deep learning as a remedy for the curse of dimensionality in nonparametric regression By projecteuclid.org Published On :: Tue, 21 May 2019 04:00 EDT Benedikt Bauer, Michael Kohler. Source: The Annals of Statistics, Volume 47, Number 4, 2261--2285.Abstract: Assuming that a smoothness condition and a suitable restriction on the structure of the regression function hold, it is shown that least squares estimates based on multilayer feedforward neural networks are able to circumvent the curse of dimensionality in nonparametric regression. The proof is based on new approximation results concerning multilayer feedforward neural networks with bounded weights and a bounded number of hidden neurons. The estimates are compared with various other approaches by using simulated data. Full Article
dimensional A new McKean–Vlasov stochastic interpretation of the parabolic–parabolic Keller–Segel model: The one-dimensional case By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Denis Talay, Milica Tomašević. Source: Bernoulli, Volume 26, Number 2, 1323--1353.Abstract: In this paper, we analyze a stochastic interpretation of the one-dimensional parabolic–parabolic Keller–Segel system without cut-off. It involves an original type of McKean–Vlasov interaction kernel. At the particle level, each particle interacts with all the past of each other particle by means of a time integrated functional involving a singular kernel. At the mean-field level studied here, the McKean–Vlasov limit process interacts with all the past time marginals of its probability distribution in a similarly singular way. We prove that the parabolic–parabolic Keller–Segel system in the whole Euclidean space and the corresponding McKean–Vlasov stochastic differential equation are well-posed for any values of the parameters of the model. Full Article
dimensional Dynamic linear discriminant analysis in high dimensional space By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Binyan Jiang, Ziqi Chen, Chenlei Leng. Source: Bernoulli, Volume 26, Number 2, 1234--1268.Abstract: High-dimensional data that evolve dynamically feature predominantly in the modern data era. As a partial response to this, recent years have seen increasing emphasis to address the dimensionality challenge. However, the non-static nature of these datasets is largely ignored. This paper addresses both challenges by proposing a novel yet simple dynamic linear programming discriminant (DLPD) rule for binary classification. Different from the usual static linear discriminant analysis, the new method is able to capture the changing distributions of the underlying populations by modeling their means and covariances as smooth functions of covariates of interest. Under an approximate sparse condition, we show that the conditional misclassification rate of the DLPD rule converges to the Bayes risk in probability uniformly over the range of the variables used for modeling the dynamics, when the dimensionality is allowed to grow exponentially with the sample size. The minimax lower bound of the estimation of the Bayes risk is also established, implying that the misclassification rate of our proposed rule is minimax-rate optimal. The promising performance of the DLPD rule is illustrated via extensive simulation studies and the analysis of a breast cancer dataset. Full Article
dimensional Recurrence of multidimensional persistent random walks. Fourier and series criteria By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Peggy Cénac, Basile de Loynes, Yoann Offret, Arnaud Rousselle. Source: Bernoulli, Volume 26, Number 2, 858--892.Abstract: The recurrence and transience of persistent random walks built from variable length Markov chains are investigated. It turns out that these stochastic processes can be seen as Lévy walks for which the persistence times depend on some internal Markov chain: they admit Markov random walk skeletons. A recurrence versus transience dichotomy is highlighted. Assuming the positive recurrence of the driving chain, a sufficient Fourier criterion for the recurrence, close to the usual Chung–Fuchs one, is given and a series criterion is derived. The key tool is the Nagaev–Guivarc’h method. Finally, we focus on particular two-dimensional persistent random walks, including directionally reinforced random walks, for which necessary and sufficient Fourier and series criteria are obtained. Inspired by ( Adv. Math. 208 (2007) 680–698), we produce a genuine counterexample to the conjecture of ( Adv. Math. 117 (1996) 239–252). As for the one-dimensional case studied in ( J. Theoret. Probab. 31 (2018) 232–243), it is easier for a persistent random walk than its skeleton to be recurrent. However, such examples are much more difficult to exhibit in the higher dimensional context. These results are based on a surprisingly novel – to our knowledge – upper bound for the Lévy concentration function associated with symmetric distributions. Full Article
dimensional High dimensional deformed rectangular matrices with applications in matrix denoising By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Xiucai Ding. Source: Bernoulli, Volume 26, Number 1, 387--417.Abstract: We consider the recovery of a low rank $M imes N$ matrix $S$ from its noisy observation $ ilde{S}$ in the high dimensional framework when $M$ is comparable to $N$. We propose two efficient estimators for $S$ under two different regimes. Our analysis relies on the local asymptotics of the eigenstructure of large dimensional rectangular matrices with finite rank perturbation. We derive the convergent limits and rates for the singular values and vectors for such matrices. Full Article
dimensional High-Dimensional Posterior Consistency for Hierarchical Non-Local Priors in Regression By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Xuan Cao, Kshitij Khare, Malay Ghosh. Source: Bayesian Analysis, Volume 15, Number 1, 241--262.Abstract: The choice of tuning parameters in Bayesian variable selection is a critical problem in modern statistics. In particular, for Bayesian linear regression with non-local priors, the scale parameter in the non-local prior density is an important tuning parameter which reflects the dispersion of the non-local prior density around zero, and implicitly determines the size of the regression coefficients that will be shrunk to zero. Current approaches treat the scale parameter as given, and suggest choices based on prior coverage/asymptotic considerations. In this paper, we consider the fully Bayesian approach introduced in (Wu, 2016) with the pMOM non-local prior and an appropriate Inverse-Gamma prior on the tuning parameter to analyze the underlying theoretical property. Under standard regularity assumptions, we establish strong model selection consistency in a high-dimensional setting, where $p$ is allowed to increase at a polynomial rate with $n$ or even at a sub-exponential rate with $n$ . Through simulation studies, we demonstrate that our model selection procedure can outperform other Bayesian methods which treat the scale parameter as given, and commonly used penalized likelihood methods, in a range of simulation settings. Full Article
dimensional Variance Prior Forms for High-Dimensional Bayesian Variable Selection By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Gemma E. Moran, Veronika Ročková, Edward I. George. Source: Bayesian Analysis, Volume 14, Number 4, 1091--1119.Abstract: Consider the problem of high dimensional variable selection for the Gaussian linear model when the unknown error variance is also of interest. In this paper, we show that the use of conjugate shrinkage priors for Bayesian variable selection can have detrimental consequences for such variance estimation. Such priors are often motivated by the invariance argument of Jeffreys (1961). Revisiting this work, however, we highlight a caveat that Jeffreys himself noticed; namely that biased estimators can result from inducing dependence between parameters a priori . In a similar way, we show that conjugate priors for linear regression, which induce prior dependence, can lead to such underestimation in the Bayesian high-dimensional regression setting. Following Jeffreys, we recommend as a remedy to treat regression coefficients and the error variance as independent a priori . Using such an independence prior framework, we extend the Spike-and-Slab Lasso of Ročková and George (2018) to the unknown variance case. This extended procedure outperforms both the fixed variance approach and alternative penalized likelihood methods on simulated data. On the protein activity dataset of Clyde and Parmigiani (1998), the Spike-and-Slab Lasso with unknown variance achieves lower cross-validation error than alternative penalized likelihood methods, demonstrating the gains in predictive accuracy afforded by simultaneous error variance estimation. The unknown variance implementation of the Spike-and-Slab Lasso is provided in the publicly available R package SSLASSO (Ročková and Moran, 2017). Full Article
dimensional High-Dimensional Confounding Adjustment Using Continuous Spike and Slab Priors By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Joseph Antonelli, Giovanni Parmigiani, Francesca Dominici. Source: Bayesian Analysis, Volume 14, Number 3, 825--848.Abstract: In observational studies, estimation of a causal effect of a treatment on an outcome relies on proper adjustment for confounding. If the number of the potential confounders ( $p$ ) is larger than the number of observations ( $n$ ), then direct control for all potential confounders is infeasible. Existing approaches for dimension reduction and penalization are generally aimed at predicting the outcome, and are less suited for estimation of causal effects. Under standard penalization approaches (e.g. Lasso), if a variable $X_{j}$ is strongly associated with the treatment $T$ but weakly with the outcome $Y$ , the coefficient $eta_{j}$ will be shrunk towards zero thus leading to confounding bias. Under the assumption of a linear model for the outcome and sparsity, we propose continuous spike and slab priors on the regression coefficients $eta_{j}$ corresponding to the potential confounders $X_{j}$ . Specifically, we introduce a prior distribution that does not heavily shrink to zero the coefficients ( $eta_{j}$ s) of the $X_{j}$ s that are strongly associated with $T$ but weakly associated with $Y$ . We compare our proposed approach to several state of the art methods proposed in the literature. Our proposed approach has the following features: 1) it reduces confounding bias in high dimensional settings; 2) it shrinks towards zero coefficients of instrumental variables; and 3) it achieves good coverages even in small sample sizes. We apply our approach to the National Health and Nutrition Examination Survey (NHANES) data to estimate the causal effects of persistent pesticide exposure on triglyceride levels. Full Article
dimensional Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation [published erratum appears in J Neurosci 1992 Aug;1 By www.jneurosci.org Published On :: 1992-07-01 KM HarrisJul 1, 1992; 12:2685-2705Articles Full Article
dimensional Cellular Composition and Three-Dimensional Organization of the Subventricular Germinal Zone in the Adult Mammalian Brain By www.jneurosci.org Published On :: 1997-07-01 Fiona DoetschJul 1, 1997; 17:5046-5061Articles Full Article
dimensional Delineating the role of membrane blebs in a hybrid mode of cancer cell invasion in three-dimensional environments [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-28T08:24:46-07:00 Asja Guzman, Rachel C. Avard, Alexander J. Devanny, Oh Sang Kweon, and Laura J. Kaufman The study of cancer cell invasion in 3D environments in vitro has revealed a variety of invasive modes, including amoeboid migration, characterized by primarily round cells that invade in a protease- and adhesion-independent manner. Here, we delineate a contractility-dependent migratory mode of primarily round breast cancer cells that is associated with extensive integrin-mediated extracellular matrix (ECM) reorganization that occurs at membrane blebs, with bleb necks sites of integrin clustering and integrin-dependent ECM alignment. We show that the spatiotemporal distribution of blebs and their utilization for ECM reorganization is mediated by functional β1 integrin receptors and other components of focal adhesions. Taken together, the work presented here characterizes a migratory mode of primarily round cancer cells in complex 3D environments and reveals a fundamentally new function for membrane blebs in cancer cell invasion. Full Article
dimensional Doom Eternal's next update summons trans-dimensional Empowered Demons By feedproxy.google.com Published On :: Sat, 09 May 2020 15:36:56 +0000 For most of Doom Eternal‘s demonic foes, the best they can expect is to make a nice corpse. A particularly pleasing splash of gore on the Doom Slayer’s boot. But for those lucky few that manage to take down our man in green, a special reward will soon be in store. Doom Eternal’s first major […] Full Article PC Game News Bethesda Softworks id Software
dimensional Two-dimensional optical edge detection By feeds.nature.com Published On :: 2020-04-28 Full Article
dimensional A novel multidimensional reinforcement task in mice elucidates sex-specific behavioral strategies By feeds.nature.com Published On :: 2020-05-06 Full Article
dimensional Five evils: Multidimensional poverty and race in America By webfeeds.brookings.edu Published On :: Thu, 14 Apr 2016 00:00:00 -0400 Image Source: © Rebecca Cook / Reuters Full Article
dimensional Three-dimensional ceramic artworks offer vignettes of nature By www.treehugger.com Published On :: Wed, 06 Feb 2019 14:54:08 -0500 Atmospheric glazes of color and hand-shaped clay leaves and tree trunks adorn these beautiful ceramic pieces. Full Article Living
dimensional Multi-dimensional Review of Thailand 2018 By www.oecd.org Published On :: Mon, 09 Apr 2018 09:17:00 GMT Thailand has made remarkable socio-economic progress over the past several decades. Even so, rising prosperity has not been shared equally across the country. Today, Thailand strives to pursue a development path to benefit all, seeking to reinvigorate economic transformation and reduce multifaceted inequalities in the face of a rapidly ageing population and technological change. Full Article
dimensional [ASAP] Immunological Responses Induced by Blood Protein Coronas on Two-Dimensional MoS<sub>2</sub> Nanosheets By feedproxy.google.com Published On :: Wed, 29 Apr 2020 04:00:00 GMT ACS NanoDOI: 10.1021/acsnano.9b09744 Full Article
dimensional [ASAP] Acoustofluidics-Assisted Engineering of Multifunctional Three-Dimensional Zinc Oxide Nanoarrays By feedproxy.google.com Published On :: Mon, 04 May 2020 04:00:00 GMT ACS NanoDOI: 10.1021/acsnano.0c02145 Full Article
dimensional [ASAP] Superconductivity on Edge: Evidence of a One-Dimensional Superconducting Channel at the Edges of Single-Layer FeTeSe Antiferromagnetic Nanoribbons By feedproxy.google.com Published On :: Mon, 04 May 2020 04:00:00 GMT ACS NanoDOI: 10.1021/acsnano.9b08726 Full Article
dimensional Three dimensional space-time analysis theory of geotechnical seismic engineering [Electronic book] / Changwei Yang... [et al.]. By encore.st-andrews.ac.uk Published On :: Singapore : Springer, c2019. Full Article
dimensional New Trends in One-Dimensional Dynamics [Electronic book] : in honour of Welington de Melo on the occasion of his 70th Birthday IMPA 2016, Rio de Janeiro, Brazil, November 14-17 / Maria José Pacifico, Pablo Guarino, editors. By encore.st-andrews.ac.uk Published On :: Cham : Springer, 2019. Full Article
dimensional NEW TRENDS IN ONE-DIMENSIONAL DYNAMICS [Electronic book] : in honour of welington de melo. By encore.st-andrews.ac.uk Published On :: [S.l.] : SPRINGER NATURE, 2019. Full Article
dimensional An introduction to compressible flows with applications [Electronic book] : Quasi-One-Dimensional Approximation and General Formulation for Subsonic, Transonic and Supersonic Flows / José Pontes, Norberto Mangiavacchi, Gustavo R. Anjos. By encore.st-andrews.ac.uk Published On :: Cham : Springer, 2019. Full Article