i

Aluminum alloy compositions and methods for die-casting thereof

Aluminum alloys are provided that have improved fluidity and elongation, as well as freedom of die soldering. The aluminum alloys are particularly suitable for die-casting of structural components. The aluminum alloy includes silicon at from about 8 weight % to about 11 weight %, manganese at from about 0.8 weight % to about 1.9 weight %, iron at from about 0.1 weight % to about 0.5 weight %, magnesium at from about 0.2 weight % to about 0.7 weight %, boron at from about 0.002 weight % to about 0.15 weight %, strontium at from about 0.006 weight % to about 0.017 weight %, less than about 0.25 weight % copper, less than about 0.35 weight % zinc, less than about 0.25 weight % titanium, and a balance of aluminum. Methods related to the aluminum alloys are also provided.




i

Die-casting method, die-casting device, and die-cast article

A die casting method and apparatus are provided, thereby making it possible to produce a thin diecast product that has hitherto been considered impossible to realize, and a diecast product is also provided. A semi-solidified metallic material is formed having particles in solid phase of a particle size less than 30 μm, and is thereupon injected into a die. A die casting machine has a sleeve into which a melt of metallic material is poured, and the semi-solidifying material there when it has a certain proportion of solid phase reached is injected into the die with a plunger to which pressure is applied. The melt of metallic material is poured into the sleeve so that the material occupies inside the sleeve at a proportion in vertical cross-sectional area of 30% or less. The particle size in this semi-solid material is held unvaried in a product as diecast.




i

Casting of internal features within a product

A method of forming a cast product (30) by providing a core (52) having a plurality of sections (54) and one or more gaps (55) there-between. The core further includes an insert member (60) spanning the gap (55) between adjacent sections (54). The core (52) is located within a mold (68) and a liquid phase material is introduced into gap (55) between the core sections. The liquid phase material is solidified in the gap so as to form a cast feature of a resulting solid product and the core sections (54) are removed from the solid product (30) such that the insert member (60) remains securely held within the feature (74).




i

Method for producing a trailing arm of a twist beam axle in which a drive unit of an electrical drive close to the wheel, comprising an electrical engine and a transmission, is integrated

A method of producing a trailing arm of a torsion beam axle in which an integrated drive unit of a wheel-adjacent electric drive has an electric machine and a transmission. By using the method, the trailing arm is produced in the form of a casting with a box profile. The contours for producing the area that accommodates the transmission, the connection point to the vehicle body, the bore that receives the cross-member which connects the two trailing arms to one another, the U-profile of the trailing arm, the box profile and the area that accommodates the electric machine, are modeled by cores such that the contours for producing the connection point of the trailing arm to the vehicle body, the bore that receives the cross-member and the U-profile of the trailing arm are modeled by one core.




i

Foundry mixture and related methods for casting and cleaning cast metal parts

A foundry mixture for making molds used for molding cast metal parts includes foundry sand, a non-aqueous binder, and a cleaning agent that includes calcium oxide. Residual foundry mixture remaining on the cast part after removal from the mold is removed by electrolytic cleaning of the cast part.




i

Titanium based ceramic reinforced alloy for use in medical implants

A titanium based, ceramic reinforced alloy ingot for use in producing medical implants. An ingot is formed from an alloy having comprising from about 5 to about 35 wt. % niobium, from about 0.5 to about 3.5 wt. % silicon, and from about 61.5 to about 94.5 wt. % of titanium. The alloy has a hexagonal crystal lattice α phase of from about 20 vol % to about 70 vol %, and a cubic body centered β crystal lattice phase of from about 30 vol. % to about 80 vol. %. The ingot has an ultimate tensile strength of about 940 MPa or more, and a Young's modulus of about 150 GPa or less. A molten substantially uniform admixture of a niobium, silicon, and titanium alloy is formed, cast into a shape, and cooled into an ingot. The ingot may then be formed into a medical implant and optionally annealed.




i

Cold chamber die casting of amorphous alloys using cold crucible induction melting techniques

Various embodiments provide systems and methods for casting amorphous alloys. Exemplary casting system may include an insertable and rotatable vessel configured in a non-movable induction heating structure for melting amorphous alloys to form molten materials in the vessel. While the molten materials remain heated, the vessel may be rotated to pour the molten materials into a casting device for casting them into articles.




i

Fluid purification level control apparatuses and methods

Apparatuses and methods for level control in a fluid purification apparatus. The apparatuses and methods include a fluid purification apparatus and a level sensor that regulates operation of the fluid purification apparatus. The level sensor may further operate a bypass valve or a heater.




i

Oil recovery apparatus

A method and apparatus for recovering oil from oil-containing sorbents, such as drill cuttings obtained from drilling with an oil-based mud. The method includes peptizing the substrate with an acid reagent and direct thermal desorption with combustion effluent gases at high temperature under turbulent mixing conditions. Another method disclosed includes upgrading the oil in the substrate to improve one or more of the properties of the recovered oil relative to the oil in the substrate, such as, lower aromatics content, lower sulfur content, lower functional group content, higher saturates, higher viscosity, higher viscosity index, and any combination thereof. The apparatus provides for efficient recovery of oil from the substrate with a short residence time, high throughput, low residual oil content in the treated solids and/or high percentage of oil recovery. The apparatus may be transported to a remote location for on-site treatment of drill cuttings or other oil-containing solids.




i

Bituminous froth inline steam injection processing

An inline bitumen froth steam heater system including steam injection and static mixing devices is provided. The system heats and de-aerates input bitumen froth without creating downstream processing problems with the bitumen froth such as emulsification or live steam entrainment. The system is a multistage unit that injects and thoroughly mixes steam with bitumen resulting in output bitumen material having temperature of about 190° F. The system conditions a superheated steam supply to obtain saturated steam at about 300° F. The saturated steam is contacted with bitumen froth flow and mixed in a static mixer stage. The static mixers provide surface area and rotating action that allows the injected steam to condense and transfer its heat to the bitumen froth. The mixing action and increase in temperature of the bitumen froth results in reduction in bitumen viscosity and allows the release of entrapped air from the bitumen froth.




i

Oil sands treatment system and process

Oil sands ore containing bitumen is treated in a reactor chamber by ultrasonic oscillations impact such that cavitation of ore molecules occurs. The disintegration of the pulsating bubbles in the cavitation results in the separation of the oil, water, sand and air fractions of the oil sands. The oil fraction may be continuously extracted for subsequent refining processes.




i

Apparatus for removing a contaminant from a solvent separation process

The invention is a process and apparatus for removing a contaminant from an aromatic selective solvent. A feed stream comprising an aromatic hydrocarbon and a non-aromatic hydrocarbon is contacted with the aromatic selective solvent in an extractive distillation zone to produce a raffinate stream comprising the non-aromatic hydrocarbon, and a rich solvent stream comprising the aromatic hydrocarbon and the solvent. The rich solvent stream is separated in a second distillation zone to produce an extract stream comprising the aromatic hydrocarbon, and a lean solvent stream comprising the contaminant and the aromatic selective solvent. At least a portion of the lean solvent stream is washed with a non-aromatic hydrocarbon to produce a clean solvent stream, at least a portion of which is passed to at least one of the extractive distillation zone and the second distillation zone.




i

System and method for extracting bitumen from tar sand

An improved system for removing bitumen from tar sands comprises a pre-treatment system utilizing a vibratory load hopper for classifying and sizing said tar sand particles communicating with a dryer for heating and drying said tar sand particles to a predetermined temperature thereby controlling the moisture content of said tar sands. An extraction system is also included for accepting said tar sands from the dryer comprising a plurality of extraction vessels arranged in series for transporting said tar sands from a first extraction vessel to a final extraction vessel. Furthermore, a solvent system for supplying a predetermined volume of solvent flow through said extraction vessels is employed, whereby solvent is supplied to the last extraction vessel and a solvent and bitumen mixture is withdrawn from the first extraction vessel.




i

Multi-stage sulfur removal system and process for a fuel system

A system for producing an auxiliary fuel stream containing a low concentration of sulfur compounds from a primary fuel stream includes a first separation stage to separate a portion of a primary fuel stream into a first vapor permeate stream and a first retentate stream, a first separation stage partial condenser connected to the first vapor permeate stream condensing a portion of the first vapor permeate stream into a first liquid stage stream and a first vapor stage stream, and a second separation stage partial condenser condensing a portion of the first vapor stage stream into a second liquid stage. The stream may then be processed through a sorbent bed to effectively remove the sulfur compounds.




i

Carbon dioxide fractionalization process

A process comprising receiving a hydrocarbon feed stream comprising carbon dioxide, separating the hydrocarbon feed stream into a light hydrocarbon stream and a heavy hydrocarbon stream, separating the light hydrocarbon stream into a carbon dioxide-rich stream and a carbon dioxide-lean stream, and feeding the carbon dioxide-lean stream into a hydrocarbon sweetening process, thereby increasing the processing capacity of the hydrocarbon sweetening process compared to the processing capacity of the hydrocarbon sweetening process when fed the hydrocarbon feed stream. Included is an apparatus comprising a first separation unit that receives a hydrocarbon feed stream containing carbon dioxide and produces a heavy hydrocarbon stream and a light hydrocarbon stream, and a second separation unit that receives the light hydrocarbon stream and produces a carbon dioxide-rich stream and a carbon dioxide-lean stream, wherein the apparatus is configured to feed the carbon dioxide-lean stream to a physical solvent, membrane, or carbon dioxide recovery process.




i

Coal liquefaction

Systems and methods for coal liquefaction are provided. According to one embodiment, coal is introduced into a plasma furnace. A plasma energy field is generated within the plasma furnace by causing an electrical discharge between a pair of arc rods located within the plasma furnace and positioned above the coal. Hydrocarbons contained within the coal are separated from the coal by causing the plasma energy field to penetrate the coal and heat the coal to a temperature sufficient to liquefy the hydrocarbons by focusing and drawing the plasma energy field through the coal with a magnetic field created proximate to the coal. The liquefied hydrocarbons are then captured.




i

Treatment of hydrocarbon fluids with ozone

A system for separating contaminants from wellbore cuttings that includes a processing chamber, a heat source connected to the processing chamber adapted to vaporize hydrocarbons and other contaminants disposed on the material, a condenser operatively connected to an outlet of the process chamber and adapted to condense the vaporized hydrocarbons and other contaminants, and an ozone source operatively connected to the condenser.




i

Tailings solvent recovery unit

A tailings solvent recovery vessel substantially without conventional internals utilizes nozzles for forming very fine solvent-containing hydrocarbon droplets from a solvent-containing tailings feedstream. The hydrocarbon droplets are discrete from water droplets. The hydrocarbon droplets are small enough to result in a large surface area and a desired fall residence time but sufficiently large that they are not entrained with the rising vapor in the vessel. The feedstream is introduced to the vessel with a pressure drop to result in an initial flashing of the solvent from the solvent-containing droplets. Heat from the vessel atmosphere or from steam flowing countercurrent to the falling hydrocarbon droplets is transferred to the falling hydrocarbon droplets resulting in vaporization of any residual solvent therefrom. A substantially solvent-depleted pool is collected in the bottom of the vessel and retained only so long as is required to pump the underflow stream from the vessel.




i

Method for removing solute from a solid solute-bearing product

The process and apparatus are for removing a solute from a solute-bearing solid product by means of a solvent which remains in liquid state throughout the entire oil extraction process. In one embodiment, the solvent is normally in gaseous state at ambient temperature and pressure values, but is used mainly in liquid state within the method and apparatus of the present invention by maintaining such pressure and temperature values within the apparatus so that the solvent will remain in this liquid state.




i

Refinery desalter improvement

The improved methods relate to desalting hydrocarbon feeds using a separator with a stacked disk centrifuge to separate an emulsified oil and water rag layer. This method is effective for desalting heavy, high ionic, and non-traditional crude oils.




i

Apparatus and methods for utilizing heat exchanger tubes

In one aspect, the present techniques include a heat exchange apparatus including: a) a body comprising an interior cavity, the body including: a first surface and a second surface defining at least a portion of the body and the first surface positioned exterior with respect to the second surface and the interior cavity, and the second surface positioned exterior with respect to the interior cavity and interior with respect to the first surface; b) a first conduit for conveying a fluid to the body; c) a second conduit in fluid communication with the first conduit wherein the second conduit is positioned at least partially within the interior cavity of the body; and d) a joint between the first conduit and the second conduit, wherein the joint moves between a first location and a second location based on the temperature within the interior cavity, wherein at least one of said first location and said second location is positioned intermediate the first surface and the second surface.




i

Optimizing feed mixer performance in a paraffinic froth treatment process

The invention relates to improved bitumen recovery processes and systems. One process provides for operation of a bitumen froth treatment plant at optimum shear rates in the feed pipe carrying the bitumen froth to the froth settling unit. Another process provides for optimizing the design of a bitumen froth treatment plant by optimizing the diameter of the feed pipe to impart an optimum shear rate to the bitumen froth mixture and further optimizing the volume of the feed pipe to impart an optimum residence time for the bitumen froth stream in the feed pipe. An optimal plant design is also disclosed, the plant including optimal diameter and volume of the feed pipe.




i

Integrated hydrocarbon cracking and product olefin cracking

Processing scheme and arrangement for increasing the relative yield of light olefins involves integration of the cracking a heavy hydrocarbon feedstock to produce an effluent comprising a range of hydrocarbon products including C4-C7 olefins and the subsequent cracking at least a portion of the C4-C7 olefins to produce additional light olefins.




i

Intertwined tube coil arrangement for a delayed coker heater

A tube coil for a double fired coker heater wherein the tube coil has at least two independent flow passes in an intertwined serpentine pattern. The tubes are located in a common plane and plumbed in parallel with one another. These tube coils can be used in a number of configurations within the radiant section of a coker heater.




i

Distillation apparatus

A modular distillation apparatus including at least one heat exchanger that preheats contaminated liquids: a heater that heats the contaminated liquid from the heat exchanger; an evaporator condenser adapted o boil the contaminated liquid coming out of the heater to produce water vapor and contaminant concentrate, and condenser the water vapor into distilled water; a vacuum chamber capable of operating at below atmospheric pressure, the vacuum chamber housing the evaporator condenser and including at least one partition to separate the distilled water from the contaminate concentrate; a vapor compressor operably associated with the vacuum chamber to receive water vapor from the evaporator condenser in the vacuum chamber and pump the water vapor at pressure back through the evaporator condenser, wherein the heat exchanger recovers sensible heat from outgoing condensed distilled water and contaminant concentrate recycled from the vacuum chamber.




i

Hydrocarbon resource processing apparatus including a load resonance tracking circuit and related methods

A device for processing a hydrocarbon resource may include a hydrocarbon processing container configured to receive the hydrocarbon resource therein and having a pair of opposing ends with an enlarged width medial portion therebetween. The device may also a spirally wound electrical conductor surrounding the hydrocarbon processing container, and a radio frequency (RF) circuit coupled to the spirally wound electrical conductor and configured to supply RF power to the hydrocarbon resource while tracking a load resonance of the RF circuit. The RF circuit may be configured to generate magnetic fields within the hydrocarbon processing container parallel with an axis thereof.




i

Method for producing vacuum in a vacuum oil-stock distillation column and a plant for carrying out the method

A method is provided for producing vacuum in a vacuum oil-stock distillation column and includes pumping a gas-vapor medium out of a column by an ejector into a condenser; feeding a gas mixture and a high-pressure gas into a second gas-gas ejector from which the vapor-gas mixture is fed into a second condenser. A condensate is directed from the condensers into a separator in which the condensate is separated into a water-containing condensate and a hydrocarbon-containing condensate. The hydrocarbon-containing condensate is removed while the water-containing condensate is fed into a steam generator in which heat is supplied to the water-containing condensate from a hot distillate removed from the vacuum column and steam is produced from the water-containing condensate, the steam is fed as a high-pressure gas into the gas-gas ejectors. A plant for carrying out the method is also provided.




i

Process for the treatment of crude oil, process for the separation of a water-in-oil hydrocarbon emulsion and apparatus for implementing the same

The invention relates to a process for the purification of crude and apparatus for its implementation. This process comprises a separation into gas and degassed emulsion and separation of the degassed emulsion into water and oil. The invention also relates to a process of separating a hydrocarbon emulsion and apparatus for implementing this. This process comprises washing of the emulsion at an oil/water interface.




i

Methods and extraction units employing vapor draw compositional analysis

Embodiments of extraction unit and an analysis method are provided. In one embodiment, the analysis method includes the steps of providing a feed stream and a species-selective solvent to the distillation column, drawing a vapor sample from the distillation column, condensing the vapor sample, and analyzing at least a portion of the condensed vapor sample.




i

Method and apparatus for excitation of resonances in molecules

A method is described to excite molecules at their natural resonance frequencies with sufficient energy to break or form chemical bonds using electromagnetic radiation in the radio frequency (RF) and microwave frequency range. Liquid, solid, or gaseous materials are prepared and injected into a resonant structure where they are bombarded with electromagnetic energy in the RF or microwave range at resonant frequencies of the molecules of the materials. Alternatively, electromagnetic energy tuned to dielectric particles prepared from the materials may also be supplied to further enhance the reaction.




i

Hydrocarbon resource processing device including spirally wound electrical conductors and related methods

A device for processing a hydrocarbon resource may include a hydrocarbon processing container configured to receive the hydrocarbon resource therein and having a pair of opposing ends with an enlarged width medial portion therebetween. The device may also include a radio frequency (RF) source, and a first spirally wound electrical conductor surrounding the hydrocarbon processing container and coupled to the RF source. The device may further include a second spirally wound electrical conductor carried within the hydrocarbon processing container. The first spirally wound electrical conductor may be configured to generate magnetic fields with the hydrocarbon processing container that are parallel with an axis thereof.




i

Dividing wall distillation column

Provided is a dividing wall distillation column. The dividing wall distillation column includes a main column having a dividing wall. The main column includes a pressure equalization unit for pressure equalization between a preliminary divisional section and a main divisional section which are divided by the dividing wall. The dividing wall distillation column has an effect of enabling easier operations due to the uniform pressure drop between the two divisional sections divided by the dividing wall.




i

Apparatus for removing heavy polynuclear aromatic compounds from a hydroprocessed stream

An improved apparatus strips HPNA's from hydroprocessed streams in a fractionation column having a split shell configuration. Only one vapor stripping feed is required to the split shell of the fractionation column. The resulting reduction in steam requirement provides a superior fractionation in the column.




i

Dual-mode dividing wall column

A dual-mode dividing wall column capable of mode switching between a dividing wall column operating mode and a conventional column operating mode, and a distillation method using the dual-mode dividing wall column, wherein when compared to the existing conventional column, the invention can reduce device costs and energy and improve productivity is described. Furthermore, since a mutual conversion between a dividing wall column operating mode and a conventional column operating mode is enabled without shutting down a process, an economic loss which can occur during shutdown caused by the malfunction of a device can be prevented.




i

Hydrocarbon resource processing device including spirally wound electrical conductor and related methods

A device for processing a hydrocarbon resource may include a hydrocarbon processing container configured to receive the hydrocarbon resource therein and having a pair of opposing ends with an enlarged width medial portion therebetween. The device may also include a radio frequency (RF) source, and a spirally wound electrical conductor surrounding the hydrocarbon processing container and coupled to the RF source. The spirally wound electrical conductor may be configured to generate magnetic fields within the hydrocarbon processing container that are parallel with an axis thereof.




i

Systems and processes for improving distillate yield and quality

Systems and processes for improving quality and yield of one or more distillate products generated in a distillation column are disclosed. The system comprises a feed inlet distributor that reduces the amount of liquid entrained in vapor rising from the feed zone of the distillation column, a wash zone collection apparatus having an improved design for collecting slop wax falling from a liquid/vapor contacting structure provided in the wash zone, a recirculation subsystem for recirculating at least a portion of the collected slop wax to the top of the wash zone for distribution as wash oil, and a control subsystem. The feed inlet distributor ensures a horizontal fluid flow path free of transverse surfaces thereby minimizing atomization of liquid droplets entrained in vapor in the feed stream.




i

Reaction system and products therefrom

A reaction system and method for removing heteroatoms from oxidized-heteroatom-containing hydrocarbon streams and products derived therefrom are disclosed. An oxidized-heteroatom-containing hydrocarbon feed is reacted in a reaction system thereby forming non-ionic hydrocarbon products. The products derived therefrom are useful as transportation fuels, lubricants, refinery intermediates, or refinery feeds.




i

Split-shell fractionation columns and associated processes for separating aromatic hydrocarbons

Split-shell fractionation columns and associated processes for separating aromatic hydrocarbons. A split-shell fractionation column includes a housing shell having a first height and a partition having a second height and disposed within the housing shell. The partition includes first and second vertically oriented baffles separated by a gap region, a seal plate connecting top ends of the baffles, a first input port formed to extend through the partition for the introduction of a gas into the gap region, and a first output port formed to extend outwardly from a bottom of the gap region and through the housing shell. The partition defines a first distillation zone and a second distillation zone within the housing shell.




i

In-line treatment of hydrocarbon fluids with ozone

A system for treating recovered fluids in-line that includes a thermal reactor for separating contaminated drill cuttings into drill cuttings and contaminants by applying heat to the contaminated drill cuttings so as to vaporize contaminants from the contaminated drill cuttings; a first condenser in fluid connection with the thermal reactor for condensing the vaporized contaminants; a separator in fluid connection with the first condenser for separating the condensed vapors into an oleaginous liquid and an aqueous liquid, wherein at least a portion of one of the aqueous liquid and oleaginous liquid is fed back into the first condenser via a feedback line; and an ozone generator operatively coupled to the feedback line, wherein at least the portion of the fed back liquid is ozonated by the ozone generator and fed into the condenser is disclosed.




i

Ethylene cracking furnace with multi-pass radiant coil

The invention relates to an ethylene cracking furnace having a multi-pass radiant coil, comprising at least one radiant section. In the radiant section there are provided with bottom burners and/or sidewall burners, and at least one set of multi-pass radiant coil longitudinally arranged in the radiant section. The multi-pass radiant coil is a four- to ten-pass type radiant coil. At least one tube of the multi-pass radiant coil is arranged to be spatially adjacent to a tube which is not consecutive to said at least one tube. With this arrangement, the thermal radiation influence between tubes with high temperature can be reduced, so that the tubes with low temperature can absorb the radiation heat from the tubes with high temperature. Therefore, the surface temperature of the tubes with high temperature can be reduced, thus extending the lifetime of the radiant coil and the operational cycle of the cracking furnace.




i

Two-stage hydroprocessing apparatus with common fractionation

Two-stage hydroprocessing uses a common dividing wall fractionator. Hydroprocessed effluents from both stages of hydroprocessing are fed to opposite sides of the dividing wall.




i

Feed section of a separation column

A feed distribution device in separation columns and a method of operation for such a device. In particular, distillation columns in which the feed stream is substantially liquid phase, or a mixture of gas and liquid upstream of the column, but where the feed vaporizes or partially vaporizes prior to or as it enters the column. More specifically, the feed distribution device contains a plurality of opening which allow the feed to vaporize prior to or as it enters the column and where the openings are maintained in critical condition during operation. Significant advantage is achieved through the implementation and use of the present feed distribution devices.




i

Extraction of hydrocarbons from hydrocarbon-containing materials

A method of extracting hydrocarbon-containing organic matter from a hydrocarbon-containing material includes the steps of providing a first liquid comprising a turpentine liquid; contacting the hydrocarbon-containing material with the turpentine liquid to form an extraction mixture; extracting the hydrocarbon material into the turpentine liquid; and separating the extracted hydrocarbon material from a residual material not extracted.




i

Method for hydrocarbon removal and recovery from drill cuttings

The present invention relates to a system and a method for the extraction of hydrocarbons from drill cuttings in drilling mud. The system for extracting hydrocarbons from drill cuttings includes at least one extraction tank, a carbon dioxide tank fluidly connected to the at least one extraction tank, and at least one separation tank in fluid communication with the at least one extraction tank. The method for extracting hydrocarbons from drill cuttings consists of exposing the drill cuttings to liquid carbon dioxide, solubilizing hydrocarbons from the drill cuttings with the liquid carbon dioxide, heating the liquid carbon dioxide and the soluble hydrocarbons to convert liquid carbon dioxide to carbon dioxide vapor, separating the hydrocarbons from the carbon dioxide vapor, and collecting the separated hydrocarbons.




i

System and process for producing high quality gasoline by catalytic hydrocarbon recombination

A system and process for the preparation of high quality gasoline through recombination of catalytic hydrocarbon includes fractionator and extractor. The upper part of the fractionator is equipped with light petrol pipeline, the lower part of the fractionator is equipped with heavy petrol pipeline, the middle part of the fractionator is equipped with medium petrol pipeline. The medium petrol pipeline is connected with a medium petrol extractor, the upper part of the medium petrol extractor is connected with the medium petrol raffinate oil hydrogenation unit through the pipeline, the lower part of the medium petrol extractor is connected with the medium petrol aromatic hydrocarbon hydrogenation unit through the pipeline. The medium petrol aromatic hydrocarbon hydrogenation unit is then connected with the light petrol pipeline in the upper part of the fractionator through the pipeline, the lower part of the heavy petrol extractor is connected with the medium petrol aromatic hydrocarbon hydrogenation unit through the pipeline, the upper part of the heavy petrol extractor is connected with the medium petrol raffinate oil hydrogenation unit through the pipeline.




i

Water recovery system SAGD system utilizing a flash drum

A water recovery process for a steam assisted gravity drainage system for a heavy oil recovery facility, the process comprising a flash drum and a flash drum heat exchanger/condenser, wherein the water recovery process receives hot water produced by a facility at a temperature above the water atmospheric boiling point and cools it to a temperature below the water atmospheric boiling point before transferring it to the remaining section of the water recovery process.




i

Separation and extraction of hydrocarbons from source material

Systems and methods for extracting recoverable materials from source materials are provided. Source materials are introduced into a furnace. A condition is created within the furnace in which a gaseous pressure within the furnace is less than an atmospheric pressure outside of the furnace by removing air from within the furnace with a vacuum pump. Hydrocarbons contained within the source material are separated from the source material without using a significant amount of water by heating the source material to a temperature sufficient to cause the hydrocarbons to liquefy or vaporize. The liquefied hydrocarbons or vaporized hydrocarbons are then captured.




i

Filter device, method for its operation and use thereof

A filter device for filtering a suspension includes at least one filter for continuous creation of a filter cake including particles from the suspension, at least one dispensing device configured to apply at least one first wash liquid to the filter cakes, at least one steaming unit configured to steam the filter cake using steam; at least one removal device configured to remove a surface layer of the filter cake facing away from the at least one filter, wherein the filter device is configured to convey the filter cake to the at least one removal device, the at least one dispensing device and the at least one steaming device, and at least one transport device configured to transport the removed surface layer of the filter cake away from the filter device.




i

Method for fabricating divided wall columns

The invention relates to a method producing a portioned column by forming a first segment and a third segment into arcuate segments, and attaching these arcuate segments to a second z-shaped segment to from two contiguous volumes with approximately semi-circular cross-sections that combine to form a partitioned, approximately cylindrical segment.




i

Method and apparatus for converting coal to petroleum product

The present invention provides a method of converting coal to a petroleum product. The method includes the steps of mixing the coal and water to form a mixture, and heating the mixture to approximately 500 degrees Fahrenheit. The method further includes separating the mixture in a first separator into a liquid stream of a water bearing minerals and a solid stream of coal, and transferring the coal from the first separator to a coking reactor wherein the temperature is raised to approximately 1,000 degrees Fahrenheit to drive off lighter fractions of the coal as a gas. The method also includes transferring the gas to a fourth separator to separate water and liquid petroleum product from the gas.