mode

Spatial modeling of trends in crime over time in Philadelphia

Cecilia Balocchi, Shane T. Jensen.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2235--2259.

Abstract:
Understanding the relationship between change in crime over time and the geography of urban areas is an important problem for urban planning. Accurate estimation of changing crime rates throughout a city would aid law enforcement as well as enable studies of the association between crime and the built environment. Bayesian modeling is a promising direction since areal data require principled sharing of information to address spatial autocorrelation between proximal neighborhoods. We develop several Bayesian approaches to spatial sharing of information between neighborhoods while modeling trends in crime counts over time. We apply our methodology to estimate changes in crime throughout Philadelphia over the 2006-15 period while also incorporating spatially-varying economic and demographic predictors. We find that the local shrinkage imposed by a conditional autoregressive model has substantial benefits in terms of out-of-sample predictive accuracy of crime. We also explore the possibility of spatial discontinuities between neighborhoods that could represent natural barriers or aspects of the built environment.




mode

Microsimulation model calibration using incremental mixture approximate Bayesian computation

Carolyn M. Rutter, Jonathan Ozik, Maria DeYoreo, Nicholson Collier.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2189--2212.

Abstract:
Microsimulation models (MSMs) are used to inform policy by predicting population-level outcomes under different scenarios. MSMs simulate individual-level event histories that mark the disease process (such as the development of cancer) and the effect of policy actions (such as screening) on these events. MSMs often have many unknown parameters; calibration is the process of searching the parameter space to select parameters that result in accurate MSM prediction of a wide range of targets. We develop Incremental Mixture Approximate Bayesian Computation (IMABC) for MSM calibration which results in a simulated sample from the posterior distribution of model parameters given calibration targets. IMABC begins with a rejection-based ABC step, drawing a sample of points from the prior distribution of model parameters and accepting points that result in simulated targets that are near observed targets. Next, the sample is iteratively updated by drawing additional points from a mixture of multivariate normal distributions and accepting points that result in accurate predictions. Posterior estimates are obtained by weighting the final set of accepted points to account for the adaptive sampling scheme. We demonstrate IMABC by calibrating CRC-SPIN 2.0, an updated version of a MSM for colorectal cancer (CRC) that has been used to inform national CRC screening guidelines.




mode

Prediction of small area quantiles for the conservation effects assessment project using a mixed effects quantile regression model

Emily Berg, Danhyang Lee.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2158--2188.

Abstract:
Quantiles of the distributions of several measures of erosion are important parameters in the Conservation Effects Assessment Project, a survey intended to quantify soil and nutrient loss on crop fields. Because sample sizes for domains of interest are too small to support reliable direct estimators, model based methods are needed. Quantile regression is appealing for CEAP because finding a single family of parametric models that adequately describes the distributions of all variables is difficult and small area quantiles are parameters of interest. We construct empirical Bayes predictors and bootstrap mean squared error estimators based on the linearly interpolated generalized Pareto distribution (LIGPD). We apply the procedures to predict county-level quantiles for four types of erosion in Wisconsin and validate the procedures through simulation.




mode

Joint model of accelerated failure time and mechanistic nonlinear model for censored covariates, with application in HIV/AIDS

Hongbin Zhang, Lang Wu.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2140--2157.

Abstract:
For a time-to-event outcome with censored time-varying covariates, a joint Cox model with a linear mixed effects model is the standard modeling approach. In some applications such as AIDS studies, mechanistic nonlinear models are available for some covariate process such as viral load during anti-HIV treatments, derived from the underlying data-generation mechanisms and disease progression. Such a mechanistic nonlinear covariate model may provide better-predicted values when the covariates are left censored or mismeasured. When the focus is on the impact of the time-varying covariate process on the survival outcome, an accelerated failure time (AFT) model provides an excellent alternative to the Cox proportional hazard model since an AFT model is formulated to allow the influence of the outcome by the entire covariate process. In this article, we consider a nonlinear mixed effects model for the censored covariates in an AFT model, implemented using a Monte Carlo EM algorithm, under the framework of a joint model for simultaneous inference. We apply the joint model to an HIV/AIDS data to gain insights for assessing the association between viral load and immunological restoration during antiretroviral therapy. Simulation is conducted to compare model performance when the covariate model and the survival model are misspecified.




mode

Estimating abundance from multiple sampling capture-recapture data via a multi-state multi-period stopover model

Hannah Worthington, Rachel McCrea, Ruth King, Richard Griffiths.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2043--2064.

Abstract:
Capture-recapture studies often involve collecting data on numerous capture occasions over a relatively short period of time. For many study species this process is repeated, for example, annually, resulting in capture information spanning multiple sampling periods. To account for the different temporal scales, the robust design class of models have traditionally been applied providing a framework in which to analyse all of the available capture data in a single likelihood expression. However, these models typically require strong constraints, either the assumption of closure within a sampling period (the closed robust design) or conditioning on the number of individuals captured within a sampling period (the open robust design). For real datasets these assumptions may not be appropriate. We develop a general modelling structure that requires neither assumption by explicitly modelling the movement of individuals into the population both within and between the sampling periods, which in turn permits the estimation of abundance within a single consistent framework. The flexibility of the novel model structure is further demonstrated by including the computationally challenging case of multi-state data where there is individual time-varying discrete covariate information. We derive an efficient likelihood expression for the new multi-state multi-period stopover model using the hidden Markov model framework. We demonstrate the significant improvement in parameter estimation using our new modelling approach in terms of both the multi-period and multi-state components through both a simulation study and a real dataset relating to the protected species of great crested newts, Triturus cristatus .




mode

A semiparametric modeling approach using Bayesian Additive Regression Trees with an application to evaluate heterogeneous treatment effects

Bret Zeldow, Vincent Lo Re III, Jason Roy.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1989--2010.

Abstract:
Bayesian Additive Regression Trees (BART) is a flexible machine learning algorithm capable of capturing nonlinearities between an outcome and covariates and interactions among covariates. We extend BART to a semiparametric regression framework in which the conditional expectation of an outcome is a function of treatment, its effect modifiers, and confounders. The confounders are allowed to have unspecified functional form, while treatment and effect modifiers that are directly related to the research question are given a linear form. The result is a Bayesian semiparametric linear regression model where the posterior distribution of the parameters of the linear part can be interpreted as in parametric Bayesian regression. This is useful in situations where a subset of the variables are of substantive interest and the others are nuisance variables that we would like to control for. An example of this occurs in causal modeling with the structural mean model (SMM). Under certain causal assumptions, our method can be used as a Bayesian SMM. Our methods are demonstrated with simulation studies and an application to dataset involving adults with HIV/Hepatitis C coinfection who newly initiate antiretroviral therapy. The methods are available in an R package called semibart.




mode

Bayesian modeling of the structural connectome for studying Alzheimer’s disease

Arkaprava Roy, Subhashis Ghosal, Jeffrey Prescott, Kingshuk Roy Choudhury.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1791--1816.

Abstract:
We study possible relations between Alzheimer’s disease progression and the structure of the connectome which is white matter connecting different regions of the brain. Regression models in covariates including age, gender and disease status for the extent of white matter connecting each pair of regions of the brain are proposed. Subject inhomogeneity is also incorporated in the model through random effects with an unknown distribution. As there is a large number of pairs of regions, we also adopt a dimension reduction technique through graphon ( J. Combin. Theory Ser. B 96 (2006) 933–957) functions which reduces the functions of pairs of regions to functions of regions. The connecting graphon functions are considered unknown but the assumed smoothness allows putting priors of low complexity on these functions. We pursue a nonparametric Bayesian approach by assigning a Dirichlet process scale mixture of zero to mean normal prior on the distributions of the random effects and finite random series of tensor products of B-splines priors on the underlying graphon functions. We develop efficient Markov chain Monte Carlo techniques for drawing samples for the posterior distributions using Hamiltonian Monte Carlo (HMC). The proposed Bayesian method overwhelmingly outperforms a competing method based on ANCOVA models in the simulation setup. The proposed Bayesian approach is applied on a dataset of 100 subjects and 83 brain regions and key regions implicated in the changing connectome are identified.




mode

Incorporating conditional dependence in latent class models for probabilistic record linkage: Does it matter?

Huiping Xu, Xiaochun Li, Changyu Shen, Siu L. Hui, Shaun Grannis.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1753--1790.

Abstract:
The conditional independence assumption of the Felligi and Sunter (FS) model in probabilistic record linkage is often violated when matching real-world data. Ignoring conditional dependence has been shown to seriously bias parameter estimates. However, in record linkage, the ultimate goal is to inform the match status of record pairs and therefore, record linkage algorithms should be evaluated in terms of matching accuracy. In the literature, more flexible models have been proposed to relax the conditional independence assumption, but few studies have assessed whether such accommodations improve matching accuracy. In this paper, we show that incorporating the conditional dependence appropriately yields comparable or improved matching accuracy than the FS model using three real-world data linkage examples. Through a simulation study, we further investigate when conditional dependence models provide improved matching accuracy. Our study shows that the FS model is generally robust to the conditional independence assumption and provides comparable matching accuracy as the more complex conditional dependence models. However, when the match prevalence approaches 0% or 100% and conditional dependence exists in the dominating class, it is necessary to address conditional dependence as the FS model produces suboptimal matching accuracy. The need to address conditional dependence becomes less important when highly discriminating fields are used. Our simulation study also shows that conditional dependence models with misspecified dependence structure could produce less accurate record matching than the FS model and therefore we caution against the blind use of conditional dependence models.




mode

A hierarchical Bayesian model for single-cell clustering using RNA-sequencing data

Yiyi Liu, Joshua L. Warren, Hongyu Zhao.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1733--1752.

Abstract:
Understanding the heterogeneity of cells is an important biological question. The development of single-cell RNA-sequencing (scRNA-seq) technology provides high resolution data for such inquiry. A key challenge in scRNA-seq analysis is the high variability of measured RNA expression levels and frequent dropouts (missing values) due to limited input RNA compared to bulk RNA-seq measurement. Existing clustering methods do not perform well for these noisy and zero-inflated scRNA-seq data. In this manuscript we propose a Bayesian hierarchical model, called BasClu, to appropriately characterize important features of scRNA-seq data in order to more accurately cluster cells. We demonstrate the effectiveness of our method with extensive simulation studies and applications to three real scRNA-seq datasets.




mode

A Bayesian mark interaction model for analysis of tumor pathology images

Qiwei Li, Xinlei Wang, Faming Liang, Guanghua Xiao.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1708--1732.

Abstract:
With the advance of imaging technology, digital pathology imaging of tumor tissue slides is becoming a routine clinical procedure for cancer diagnosis. This process produces massive imaging data that capture histological details in high resolution. Recent developments in deep-learning methods have enabled us to identify and classify individual cells from digital pathology images at large scale. Reliable statistical approaches to model the spatial pattern of cells can provide new insight into tumor progression and shed light on the biological mechanisms of cancer. We consider the problem of modeling spatial correlations among three commonly seen cells observed in tumor pathology images. A novel geostatistical marking model with interpretable underlying parameters is proposed in a Bayesian framework. We use auxiliary variable MCMC algorithms to sample from the posterior distribution with an intractable normalizing constant. We demonstrate how this model-based analysis can lead to sharper inferences than ordinary exploratory analyses, by means of application to three benchmark datasets and a case study on the pathology images of $188$ lung cancer patients. The case study shows that the spatial correlation between tumor and stromal cells predicts patient prognosis. This statistical methodology not only presents a new model for characterizing spatial correlations in a multitype spatial point pattern conditioning on the locations of the points, but also provides a new perspective for understanding the role of cell–cell interactions in cancer progression.




mode

Sequential decision model for inference and prediction on nonuniform hypergraphs with application to knot matching from computational forestry

Seong-Hwan Jun, Samuel W. K. Wong, James V. Zidek, Alexandre Bouchard-Côté.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1678--1707.

Abstract:
In this paper, we consider the knot-matching problem arising in computational forestry. The knot-matching problem is an important problem that needs to be solved to advance the state of the art in automatic strength prediction of lumber. We show that this problem can be formulated as a quadripartite matching problem and develop a sequential decision model that admits efficient parameter estimation along with a sequential Monte Carlo sampler on graph matching that can be utilized for rapid sampling of graph matching. We demonstrate the effectiveness of our methods on 30 manually annotated boards and present findings from various simulation studies to provide further evidence supporting the efficacy of our methods.




mode

RCRnorm: An integrated system of random-coefficient hierarchical regression models for normalizing NanoString nCounter data

Gaoxiang Jia, Xinlei Wang, Qiwei Li, Wei Lu, Ximing Tang, Ignacio Wistuba, Yang Xie.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1617--1647.

Abstract:
Formalin-fixed paraffin-embedded (FFPE) samples have great potential for biomarker discovery, retrospective studies and diagnosis or prognosis of diseases. Their application, however, is hindered by the unsatisfactory performance of traditional gene expression profiling techniques on damaged RNAs. NanoString nCounter platform is well suited for profiling of FFPE samples and measures gene expression with high sensitivity which may greatly facilitate realization of scientific and clinical values of FFPE samples. However, methodological development for normalization, a critical step when analyzing this type of data, is far behind. Existing methods designed for the platform use information from different types of internal controls separately and rely on an overly-simplified assumption that expression of housekeeping genes is constant across samples for global scaling. Thus, these methods are not optimized for the nCounter system, not mentioning that they were not developed for FFPE samples. We construct an integrated system of random-coefficient hierarchical regression models to capture main patterns and characteristics observed from NanoString data of FFPE samples and develop a Bayesian approach to estimate parameters and normalize gene expression across samples. Our method, labeled RCRnorm, incorporates information from all aspects of the experimental design and simultaneously removes biases from various sources. It eliminates the unrealistic assumption on housekeeping genes and offers great interpretability. Furthermore, it is applicable to freshly frozen or like samples that can be generally viewed as a reduced case of FFPE samples. Simulation and applications showed the superior performance of RCRnorm.




mode

Modeling seasonality and serial dependence of electricity price curves with warping functional autoregressive dynamics

Ying Chen, J. S. Marron, Jiejie Zhang.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1590--1616.

Abstract:
Electricity prices are high dimensional, serially dependent and have seasonal variations. We propose a Warping Functional AutoRegressive (WFAR) model that simultaneously accounts for the cross time-dependence and seasonal variations of the large dimensional data. In particular, electricity price curves are obtained by smoothing over the $24$ discrete hourly prices on each day. In the functional domain, seasonal phase variations are separated from level amplitude changes in a warping process with the Fisher–Rao distance metric, and the aligned (season-adjusted) electricity price curves are modeled in the functional autoregression framework. In a real application, the WFAR model provides superior out-of-sample forecast accuracy in both a normal functioning market, Nord Pool, and an extreme situation, the California market. The forecast performance as well as the relative accuracy improvement are stable for different markets and different time periods.




mode

Network modelling of topological domains using Hi-C data

Y. X. Rachel Wang, Purnamrita Sarkar, Oana Ursu, Anshul Kundaje, Peter J. Bickel.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1511--1536.

Abstract:
Chromosome conformation capture experiments such as Hi-C are used to map the three-dimensional spatial organization of genomes. One specific feature of the 3D organization is known as topologically associating domains (TADs), which are densely interacting, contiguous chromatin regions playing important roles in regulating gene expression. A few algorithms have been proposed to detect TADs. In particular, the structure of Hi-C data naturally inspires application of community detection methods. However, one of the drawbacks of community detection is that most methods take exchangeability of the nodes in the network for granted; whereas the nodes in this case, that is, the positions on the chromosomes, are not exchangeable. We propose a network model for detecting TADs using Hi-C data that takes into account this nonexchangeability. In addition, our model explicitly makes use of cell-type specific CTCF binding sites as biological covariates and can be used to identify conserved TADs across multiple cell types. The model leads to a likelihood objective that can be efficiently optimized via relaxation. We also prove that when suitably initialized, this model finds the underlying TAD structure with high probability. Using simulated data, we show the advantages of our method and the caveats of popular community detection methods, such as spectral clustering, in this application. Applying our method to real Hi-C data, we demonstrate the domains identified have desirable epigenetic features and compare them across different cell types.




mode

A hidden Markov model approach to characterizing the photo-switching behavior of fluorophores

Lekha Patel, Nils Gustafsson, Yu Lin, Raimund Ober, Ricardo Henriques, Edward Cohen.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1397--1429.

Abstract:
Fluorescing molecules (fluorophores) that stochastically switch between photon-emitting and dark states underpin some of the most celebrated advancements in super-resolution microscopy. While this stochastic behavior has been heavily exploited, full characterization of the underlying models can potentially drive forward further imaging methodologies. Under the assumption that fluorophores move between fluorescing and dark states as continuous time Markov processes, the goal is to use a sequence of images to select a model and estimate the transition rates. We use a hidden Markov model to relate the observed discrete time signal to the hidden continuous time process. With imaging involving several repeat exposures of the fluorophore, we show the observed signal depends on both the current and past states of the hidden process, producing emission probabilities that depend on the transition rate parameters to be estimated. To tackle this unusual coupling of the transition and emission probabilities, we conceive transmission (transition-emission) matrices that capture all dependencies of the model. We provide a scheme of computing these matrices and adapt the forward-backward algorithm to compute a likelihood which is readily optimized to provide rate estimates. When confronted with several model proposals, combining this procedure with the Bayesian Information Criterion provides accurate model selection.




mode

Imputation and post-selection inference in models with missing data: An application to colorectal cancer surveillance guidelines

Lin Liu, Yuqi Qiu, Loki Natarajan, Karen Messer.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1370--1396.

Abstract:
It is common to encounter missing data among the potential predictor variables in the setting of model selection. For example, in a recent study we attempted to improve the US guidelines for risk stratification after screening colonoscopy ( Cancer Causes Control 27 (2016) 1175–1185), with the aim to help reduce both overuse and underuse of follow-on surveillance colonoscopy. The goal was to incorporate selected additional informative variables into a neoplasia risk-prediction model, going beyond the three currently established risk factors, using a large dataset pooled from seven different prospective studies in North America. Unfortunately, not all candidate variables were collected in all studies, so that one or more important potential predictors were missing on over half of the subjects. Thus, while variable selection was a main focus of the study, it was necessary to address the substantial amount of missing data. Multiple imputation can effectively address missing data, and there are also good approaches to incorporate the variable selection process into model-based confidence intervals. However, there is not consensus on appropriate methods of inference which address both issues simultaneously. Our goal here is to study the properties of model-based confidence intervals in the setting of imputation for missing data followed by variable selection. We use both simulation and theory to compare three approaches to such post-imputation-selection inference: a multiple-imputation approach based on Rubin’s Rules for variance estimation ( Comput. Statist. Data Anal. 71 (2014) 758–770); a single imputation-selection followed by bootstrap percentile confidence intervals; and a new bootstrap model-averaging approach presented here, following Efron ( J. Amer. Statist. Assoc. 109 (2014) 991–1007). We investigate relative strengths and weaknesses of each method. The “Rubin’s Rules” multiple imputation estimator can have severe undercoverage, and is not recommended. The imputation-selection estimator with bootstrap percentile confidence intervals works well. The bootstrap-model-averaged estimator, with the “Efron’s Rules” estimated variance, may be preferred if the true effect sizes are moderate. We apply these results to the colorectal neoplasia risk-prediction problem which motivated the present work.




mode

Introduction to papers on the modeling and analysis of network data—II

Stephen E. Fienberg

Source: Ann. Appl. Stat., Volume 4, Number 2, 533--534.




mode

Local law and Tracy–Widom limit for sparse stochastic block models

Jong Yun Hwang, Ji Oon Lee, Wooseok Yang.

Source: Bernoulli, Volume 26, Number 3, 2400--2435.

Abstract:
We consider the spectral properties of sparse stochastic block models, where $N$ vertices are partitioned into $K$ balanced communities. Under an assumption that the intra-community probability and inter-community probability are of similar order, we prove a local semicircle law up to the spectral edges, with an explicit formula on the deterministic shift of the spectral edge. We also prove that the fluctuation of the extremal eigenvalues is given by the GOE Tracy–Widom law after rescaling and centering the entries of sparse stochastic block models. Applying the result to sparse stochastic block models, we rigorously prove that there is a large gap between the outliers and the spectral edge without centering.




mode

A refined Cramér-type moderate deviation for sums of local statistics

Xiao Fang, Li Luo, Qi-Man Shao.

Source: Bernoulli, Volume 26, Number 3, 2319--2352.

Abstract:
We prove a refined Cramér-type moderate deviation result by taking into account of the skewness in normal approximation for sums of local statistics of independent random variables. We apply the main result to $k$-runs, U-statistics and subgraph counts in the Erdős–Rényi random graph. To prove our main result, we develop exponential concentration inequalities and higher-order tail probability expansions via Stein’s method.




mode

A fast algorithm with minimax optimal guarantees for topic models with an unknown number of topics

Xin Bing, Florentina Bunea, Marten Wegkamp.

Source: Bernoulli, Volume 26, Number 3, 1765--1796.

Abstract:
Topic models have become popular for the analysis of data that consists in a collection of n independent multinomial observations, with parameters $N_{i}inmathbb{N}$ and $Pi_{i}in[0,1]^{p}$ for $i=1,ldots,n$. The model links all cell probabilities, collected in a $p imes n$ matrix $Pi$, via the assumption that $Pi$ can be factorized as the product of two nonnegative matrices $Ain[0,1]^{p imes K}$ and $Win[0,1]^{K imes n}$. Topic models have been originally developed in text mining, when one browses through $n$ documents, based on a dictionary of $p$ words, and covering $K$ topics. In this terminology, the matrix $A$ is called the word-topic matrix, and is the main target of estimation. It can be viewed as a matrix of conditional probabilities, and it is uniquely defined, under appropriate separability assumptions, discussed in detail in this work. Notably, the unique $A$ is required to satisfy what is commonly known as the anchor word assumption, under which $A$ has an unknown number of rows respectively proportional to the canonical basis vectors in $mathbb{R}^{K}$. The indices of such rows are referred to as anchor words. Recent computationally feasible algorithms, with theoretical guarantees, utilize constructively this assumption by linking the estimation of the set of anchor words with that of estimating the $K$ vertices of a simplex. This crucial step in the estimation of $A$ requires $K$ to be known, and cannot be easily extended to the more realistic set-up when $K$ is unknown. This work takes a different view on anchor word estimation, and on the estimation of $A$. We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates $K$ from the observed data. We derive new finite sample minimax lower bounds for the estimation of $A$, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any $n,N_{i},p$ and $K$, and both $p$ and $K$ are allowed to increase with $n$, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics $K$, while we provide the competing methods with the correct value in our simulations.




mode

Efficient estimation in single index models through smoothing splines

Arun K. Kuchibhotla, Rohit K. Patra.

Source: Bernoulli, Volume 26, Number 2, 1587--1618.

Abstract:
We consider estimation and inference in a single index regression model with an unknown but smooth link function. In contrast to the standard approach of using kernels or regression splines, we use smoothing splines to estimate the smooth link function. We develop a method to compute the penalized least squares estimators (PLSEs) of the parametric and the nonparametric components given independent and identically distributed (i.i.d.) data. We prove the consistency and find the rates of convergence of the estimators. We establish asymptotic normality under mild assumption and prove asymptotic efficiency of the parametric component under homoscedastic errors. A finite sample simulation corroborates our asymptotic theory. We also analyze a car mileage data set and a Ozone concentration data set. The identifiability and existence of the PLSEs are also investigated.




mode

Reliable clustering of Bernoulli mixture models

Amir Najafi, Seyed Abolfazl Motahari, Hamid R. Rabiee.

Source: Bernoulli, Volume 26, Number 2, 1535--1559.

Abstract:
A Bernoulli Mixture Model (BMM) is a finite mixture of random binary vectors with independent dimensions. The problem of clustering BMM data arises in a variety of real-world applications, ranging from population genetics to activity analysis in social networks. In this paper, we analyze the clusterability of BMMs from a theoretical perspective, when the number of clusters is unknown. In particular, we stipulate a set of conditions on the sample complexity and dimension of the model in order to guarantee the Probably Approximately Correct (PAC)-clusterability of a dataset. To the best of our knowledge, these findings are the first non-asymptotic bounds on the sample complexity of learning or clustering BMMs.




mode

A new McKean–Vlasov stochastic interpretation of the parabolic–parabolic Keller–Segel model: The one-dimensional case

Denis Talay, Milica Tomašević.

Source: Bernoulli, Volume 26, Number 2, 1323--1353.

Abstract:
In this paper, we analyze a stochastic interpretation of the one-dimensional parabolic–parabolic Keller–Segel system without cut-off. It involves an original type of McKean–Vlasov interaction kernel. At the particle level, each particle interacts with all the past of each other particle by means of a time integrated functional involving a singular kernel. At the mean-field level studied here, the McKean–Vlasov limit process interacts with all the past time marginals of its probability distribution in a similarly singular way. We prove that the parabolic–parabolic Keller–Segel system in the whole Euclidean space and the corresponding McKean–Vlasov stochastic differential equation are well-posed for any values of the parameters of the model.




mode

Strictly weak consensus in the uniform compass model on $mathbb{Z}$

Nina Gantert, Markus Heydenreich, Timo Hirscher.

Source: Bernoulli, Volume 26, Number 2, 1269--1293.

Abstract:
We investigate a model for opinion dynamics, where individuals (modeled by vertices of a graph) hold certain abstract opinions. As time progresses, neighboring individuals interact with each other, and this interaction results in a realignment of opinions closer towards each other. This mechanism triggers formation of consensus among the individuals. Our main focus is on strong consensus (i.e., global agreement of all individuals) versus weak consensus (i.e., local agreement among neighbors). By extending a known model to a more general opinion space, which lacks a “central” opinion acting as a contraction point, we provide an example of an opinion formation process on the one-dimensional lattice $mathbb{Z}$ with weak consensus but no strong consensus.




mode

Consistent structure estimation of exponential-family random graph models with block structure

Michael Schweinberger.

Source: Bernoulli, Volume 26, Number 2, 1205--1233.

Abstract:
We consider the challenging problem of statistical inference for exponential-family random graph models based on a single observation of a random graph with complex dependence. To facilitate statistical inference, we consider random graphs with additional structure in the form of block structure. We have shown elsewhere that when the block structure is known, it facilitates consistency results for $M$-estimators of canonical and curved exponential-family random graph models with complex dependence, such as transitivity. In practice, the block structure is known in some applications (e.g., multilevel networks), but is unknown in others. When the block structure is unknown, the first and foremost question is whether it can be recovered with high probability based on a single observation of a random graph with complex dependence. The main consistency results of the paper show that it is possible to do so under weak dependence and smoothness conditions. These results confirm that exponential-family random graph models with block structure constitute a promising direction of statistical network analysis.




mode

Distances and large deviations in the spatial preferential attachment model

Christian Hirsch, Christian Mönch.

Source: Bernoulli, Volume 26, Number 2, 927--947.

Abstract:
This paper considers two asymptotic properties of a spatial preferential-attachment model introduced by E. Jacob and P. Mörters (In Algorithms and Models for the Web Graph (2013) 14–25 Springer). First, in a regime of strong linear reinforcement, we show that typical distances are at most of doubly-logarithmic order. Second, we derive a large deviation principle for the empirical neighbourhood structure and express the rate function as solution to an entropy minimisation problem in the space of stationary marked point processes.




mode

Robust estimation of mixing measures in finite mixture models

Nhat Ho, XuanLong Nguyen, Ya’acov Ritov.

Source: Bernoulli, Volume 26, Number 2, 828--857.

Abstract:
In finite mixture models, apart from underlying mixing measure, true kernel density function of each subpopulation in the data is, in many scenarios, unknown. Perhaps the most popular approach is to choose some kernel functions that we empirically believe our data are generated from and use these kernels to fit our models. Nevertheless, as long as the chosen kernel and the true kernel are different, statistical inference of mixing measure under this setting will be highly unstable. To overcome this challenge, we propose flexible and efficient robust estimators of the mixing measure in these models, which are inspired by the idea of minimum Hellinger distance estimator, model selection criteria, and superefficiency phenomenon. We demonstrate that our estimators consistently recover the true number of components and achieve the optimal convergence rates of parameter estimation under both the well- and misspecified kernel settings for any fixed bandwidth. These desirable asymptotic properties are illustrated via careful simulation studies with both synthetic and real data.




mode

Stochastic differential equations with a fractionally filtered delay: A semimartingale model for long-range dependent processes

Richard A. Davis, Mikkel Slot Nielsen, Victor Rohde.

Source: Bernoulli, Volume 26, Number 2, 799--827.

Abstract:
In this paper, we introduce a model, the stochastic fractional delay differential equation (SFDDE), which is based on the linear stochastic delay differential equation and produces stationary processes with hyperbolically decaying autocovariance functions. The model departs from the usual way of incorporating this type of long-range dependence into a short-memory model as it is obtained by applying a fractional filter to the drift term rather than to the noise term. The advantages of this approach are that the corresponding long-range dependent solutions are semimartingales and the local behavior of the sample paths is unaffected by the degree of long memory. We prove existence and uniqueness of solutions to the SFDDEs and study their spectral densities and autocovariance functions. Moreover, we define a subclass of SFDDEs which we study in detail and relate to the well-known fractionally integrated CARMA processes. Finally, we consider the task of simulating from the defining SFDDEs.




mode

On frequentist coverage errors of Bayesian credible sets in moderately high dimensions

Keisuke Yano, Kengo Kato.

Source: Bernoulli, Volume 26, Number 1, 616--641.

Abstract:
In this paper, we study frequentist coverage errors of Bayesian credible sets for an approximately linear regression model with (moderately) high dimensional regressors, where the dimension of the regressors may increase with but is smaller than the sample size. Specifically, we consider quasi-Bayesian inference on the slope vector under the quasi-likelihood with Gaussian error distribution. Under this setup, we derive finite sample bounds on frequentist coverage errors of Bayesian credible rectangles. Derivation of those bounds builds on a novel Berry–Esseen type bound on quasi-posterior distributions and recent results on high-dimensional CLT on hyperrectangles. We use this general result to quantify coverage errors of Castillo–Nickl and $L^{infty}$-credible bands for Gaussian white noise models, linear inverse problems, and (possibly non-Gaussian) nonparametric regression models. In particular, we show that Bayesian credible bands for those nonparametric models have coverage errors decaying polynomially fast in the sample size, implying advantages of Bayesian credible bands over confidence bands based on extreme value theory.




mode

Consistent semiparametric estimators for recurrent event times models with application to virtual age models

Eric Beutner, Laurent Bordes, Laurent Doyen.

Source: Bernoulli, Volume 26, Number 1, 557--586.

Abstract:
Virtual age models are very useful to analyse recurrent events. Among the strengths of these models is their ability to account for treatment (or intervention) effects after an event occurrence. Despite their flexibility for modeling recurrent events, the number of applications is limited. This seems to be a result of the fact that in the semiparametric setting all the existing results assume the virtual age function that describes the treatment (or intervention) effects to be known. This shortcoming can be overcome by considering semiparametric virtual age models with parametrically specified virtual age functions. Yet, fitting such a model is a difficult task. Indeed, it has recently been shown that for these models the standard profile likelihood method fails to lead to consistent estimators. Here we show that consistent estimators can be constructed by smoothing the profile log-likelihood function appropriately. We show that our general result can be applied to most of the relevant virtual age models of the literature. Our approach shows that empirical process techniques may be a worthwhile alternative to martingale methods for studying asymptotic properties of these inference methods. A simulation study is provided to illustrate our consistency results together with an application to real data.




mode

Joint Modeling of Longitudinal Relational Data and Exogenous Variables

Rajarshi Guhaniyogi, Abel Rodriguez.

Source: Bayesian Analysis, Volume 15, Number 2, 477--503.

Abstract:
This article proposes a framework based on shared, time varying stochastic latent factor models for modeling relational data in which network and node-attributes co-evolve over time. Our proposed framework is flexible enough to handle both categorical and continuous attributes, allows us to estimate the dimension of the latent social space, and automatically yields Bayesian hypothesis tests for the association between network structure and nodal attributes. Additionally, the model is easy to compute and readily yields inference and prediction for missing link between nodes. We employ our model framework to study co-evolution of international relations between 22 countries and the country specific indicators over a period of 11 years.




mode

Bayesian Inference in Nonparanormal Graphical Models

Jami J. Mulgrave, Subhashis Ghosal.

Source: Bayesian Analysis, Volume 15, Number 2, 449--475.

Abstract:
Gaussian graphical models have been used to study intrinsic dependence among several variables, but the Gaussianity assumption may be restrictive in many applications. A nonparanormal graphical model is a semiparametric generalization for continuous variables where it is assumed that the variables follow a Gaussian graphical model only after some unknown smooth monotone transformations on each of them. We consider a Bayesian approach in the nonparanormal graphical model by putting priors on the unknown transformations through a random series based on B-splines where the coefficients are ordered to induce monotonicity. A truncated normal prior leads to partial conjugacy in the model and is useful for posterior simulation using Gibbs sampling. On the underlying precision matrix of the transformed variables, we consider a spike-and-slab prior and use an efficient posterior Gibbs sampling scheme. We use the Bayesian Information Criterion to choose the hyperparameters for the spike-and-slab prior. We present a posterior consistency result on the underlying transformation and the precision matrix. We study the numerical performance of the proposed method through an extensive simulation study and finally apply the proposed method on a real data set.




mode

Additive Multivariate Gaussian Processes for Joint Species Distribution Modeling with Heterogeneous Data

Jarno Vanhatalo, Marcelo Hartmann, Lari Veneranta.

Source: Bayesian Analysis, Volume 15, Number 2, 415--447.

Abstract:
Species distribution models (SDM) are a key tool in ecology, conservation and management of natural resources. Two key components of the state-of-the-art SDMs are the description for species distribution response along environmental covariates and the spatial random effect that captures deviations from the distribution patterns explained by environmental covariates. Joint species distribution models (JSDMs) additionally include interspecific correlations which have been shown to improve their descriptive and predictive performance compared to single species models. However, current JSDMs are restricted to hierarchical generalized linear modeling framework. Their limitation is that parametric models have trouble in explaining changes in abundance due, for example, highly non-linear physical tolerance limits which is particularly important when predicting species distribution in new areas or under scenarios of environmental change. On the other hand, semi-parametric response functions have been shown to improve the predictive performance of SDMs in these tasks in single species models. Here, we propose JSDMs where the responses to environmental covariates are modeled with additive multivariate Gaussian processes coded as linear models of coregionalization. These allow inference for wide range of functional forms and interspecific correlations between the responses. We propose also an efficient approach for inference with Laplace approximation and parameterization of the interspecific covariance matrices on the Euclidean space. We demonstrate the benefits of our model with two small scale examples and one real world case study. We use cross-validation to compare the proposed model to analogous semi-parametric single species models and parametric single and joint species models in interpolation and extrapolation tasks. The proposed model outperforms the alternative models in all cases. We also show that the proposed model can be seen as an extension of the current state-of-the-art JSDMs to semi-parametric models.




mode

Dynamic Quantile Linear Models: A Bayesian Approach

Kelly C. M. Gonçalves, Hélio S. Migon, Leonardo S. Bastos.

Source: Bayesian Analysis, Volume 15, Number 2, 335--362.

Abstract:
The paper introduces a new class of models, named dynamic quantile linear models, which combines dynamic linear models with distribution-free quantile regression producing a robust statistical method. Bayesian estimation for the dynamic quantile linear model is performed using an efficient Markov chain Monte Carlo algorithm. The paper also proposes a fast sequential procedure suited for high-dimensional predictive modeling with massive data, where the generating process is changing over time. The proposed model is evaluated using synthetic and well-known time series data. The model is also applied to predict annual incidence of tuberculosis in the state of Rio de Janeiro and compared with global targets set by the World Health Organization.




mode

Learning Semiparametric Regression with Missing Covariates Using Gaussian Process Models

Abhishek Bishoyi, Xiaojing Wang, Dipak K. Dey.

Source: Bayesian Analysis, Volume 15, Number 1, 215--239.

Abstract:
Missing data often appear as a practical problem while applying classical models in the statistical analysis. In this paper, we consider a semiparametric regression model in the presence of missing covariates for nonparametric components under a Bayesian framework. As it is known that Gaussian processes are a popular tool in nonparametric regression because of their flexibility and the fact that much of the ensuing computation is parametric Gaussian computation. However, in the absence of covariates, the most frequently used covariance functions of a Gaussian process will not be well defined. We propose an imputation method to solve this issue and perform our analysis using Bayesian inference, where we specify the objective priors on the parameters of Gaussian process models. Several simulations are conducted to illustrate effectiveness of our proposed method and further, our method is exemplified via two real datasets, one through Langmuir equation, commonly used in pharmacokinetic models, and another through Auto-mpg data taken from the StatLib library.




mode

Adaptive Bayesian Nonparametric Regression Using a Kernel Mixture of Polynomials with Application to Partial Linear Models

Fangzheng Xie, Yanxun Xu.

Source: Bayesian Analysis, Volume 15, Number 1, 159--186.

Abstract:
We propose a kernel mixture of polynomials prior for Bayesian nonparametric regression. The regression function is modeled by local averages of polynomials with kernel mixture weights. We obtain the minimax-optimal contraction rate of the full posterior distribution up to a logarithmic factor by estimating metric entropies of certain function classes. Under the assumption that the degree of the polynomials is larger than the unknown smoothness level of the true function, the posterior contraction behavior can adapt to this smoothness level provided an upper bound is known. We also provide a frequentist sieve maximum likelihood estimator with a near-optimal convergence rate. We further investigate the application of the kernel mixture of polynomials to partial linear models and obtain both the near-optimal rate of contraction for the nonparametric component and the Bernstein-von Mises limit (i.e., asymptotic normality) of the parametric component. The proposed method is illustrated with numerical examples and shows superior performance in terms of computational efficiency, accuracy, and uncertainty quantification compared to the local polynomial regression, DiceKriging, and the robust Gaussian stochastic process.




mode

Bayesian Design of Experiments for Intractable Likelihood Models Using Coupled Auxiliary Models and Multivariate Emulation

Antony Overstall, James McGree.

Source: Bayesian Analysis, Volume 15, Number 1, 103--131.

Abstract:
A Bayesian design is given by maximising an expected utility over a design space. The utility is chosen to represent the aim of the experiment and its expectation is taken with respect to all unknowns: responses, parameters and/or models. Although straightforward in principle, there are several challenges to finding Bayesian designs in practice. Firstly, the utility and expected utility are rarely available in closed form and require approximation. Secondly, the design space can be of high-dimensionality. In the case of intractable likelihood models, these problems are compounded by the fact that the likelihood function, whose evaluation is required to approximate the expected utility, is not available in closed form. A strategy is proposed to find Bayesian designs for intractable likelihood models. It relies on the development of an automatic, auxiliary modelling approach, using multivariate Gaussian process emulators, to approximate the likelihood function. This is then combined with a copula-based approach to approximate the marginal likelihood (a quantity commonly required to evaluate many utility functions). These approximations are demonstrated on examples of stochastic process models involving experimental aims of both parameter estimation and model comparison.




mode

Scalable Bayesian Inference for the Inverse Temperature of a Hidden Potts Model

Matthew Moores, Geoff Nicholls, Anthony Pettitt, Kerrie Mengersen.

Source: Bayesian Analysis, Volume 15, Number 1, 1--27.

Abstract:
The inverse temperature parameter of the Potts model governs the strength of spatial cohesion and therefore has a major influence over the resulting model fit. A difficulty arises from the dependence of an intractable normalising constant on the value of this parameter and thus there is no closed-form solution for sampling from the posterior distribution directly. There is a variety of computational approaches for sampling from the posterior without evaluating the normalising constant, including the exchange algorithm and approximate Bayesian computation (ABC). A serious drawback of these algorithms is that they do not scale well for models with a large state space, such as images with a million or more pixels. We introduce a parametric surrogate model, which approximates the score function using an integral curve. Our surrogate model incorporates known properties of the likelihood, such as heteroskedasticity and critical temperature. We demonstrate this method using synthetic data as well as remotely-sensed imagery from the Landsat-8 satellite. We achieve up to a hundredfold improvement in the elapsed runtime, compared to the exchange algorithm or ABC. An open-source implementation of our algorithm is available in the R package bayesImageS .




mode

Hierarchical Normalized Completely Random Measures for Robust Graphical Modeling

Andrea Cremaschi, Raffaele Argiento, Katherine Shoemaker, Christine Peterson, Marina Vannucci.

Source: Bayesian Analysis, Volume 14, Number 4, 1271--1301.

Abstract:
Gaussian graphical models are useful tools for exploring network structures in multivariate normal data. In this paper we are interested in situations where data show departures from Gaussianity, therefore requiring alternative modeling distributions. The multivariate $t$ -distribution, obtained by dividing each component of the data vector by a gamma random variable, is a straightforward generalization to accommodate deviations from normality such as heavy tails. Since different groups of variables may be contaminated to a different extent, Finegold and Drton (2014) introduced the Dirichlet $t$ -distribution, where the divisors are clustered using a Dirichlet process. In this work, we consider a more general class of nonparametric distributions as the prior on the divisor terms, namely the class of normalized completely random measures (NormCRMs). To improve the effectiveness of the clustering, we propose modeling the dependence among the divisors through a nonparametric hierarchical structure, which allows for the sharing of parameters across the samples in the data set. This desirable feature enables us to cluster together different components of multivariate data in a parsimonious way. We demonstrate through simulations that this approach provides accurate graphical model inference, and apply it to a case study examining the dependence structure in radiomics data derived from The Cancer Imaging Atlas.




mode

Spatial Disease Mapping Using Directed Acyclic Graph Auto-Regressive (DAGAR) Models

Abhirup Datta, Sudipto Banerjee, James S. Hodges, Leiwen Gao.

Source: Bayesian Analysis, Volume 14, Number 4, 1221--1244.

Abstract:
Hierarchical models for regionally aggregated disease incidence data commonly involve region specific latent random effects that are modeled jointly as having a multivariate Gaussian distribution. The covariance or precision matrix incorporates the spatial dependence between the regions. Common choices for the precision matrix include the widely used ICAR model, which is singular, and its nonsingular extension which lacks interpretability. We propose a new parametric model for the precision matrix based on a directed acyclic graph (DAG) representation of the spatial dependence. Our model guarantees positive definiteness and, hence, in addition to being a valid prior for regional spatially correlated random effects, can also directly model the outcome from dependent data like images and networks. Theoretical results establish a link between the parameters in our model and the variance and covariances of the random effects. Simulation studies demonstrate that the improved interpretability of our model reaps benefits in terms of accurately recovering the latent spatial random effects as well as for inference on the spatial covariance parameters. Under modest spatial correlation, our model far outperforms the CAR models, while the performances are similar when the spatial correlation is strong. We also assess sensitivity to the choice of the ordering in the DAG construction using theoretical and empirical results which testify to the robustness of our model. We also present a large-scale public health application demonstrating the competitive performance of the model.




mode

Estimating the Use of Public Lands: Integrated Modeling of Open Populations with Convolution Likelihood Ecological Abundance Regression

Lutz F. Gruber, Erica F. Stuber, Lyndsie S. Wszola, Joseph J. Fontaine.

Source: Bayesian Analysis, Volume 14, Number 4, 1173--1199.

Abstract:
We present an integrated open population model where the population dynamics are defined by a differential equation, and the related statistical model utilizes a Poisson binomial convolution likelihood. Key advantages of the proposed approach over existing open population models include the flexibility to predict related, but unobserved quantities such as total immigration or emigration over a specified time period, and more computationally efficient posterior simulation by elimination of the need to explicitly simulate latent immigration and emigration. The viability of the proposed method is shown in an in-depth analysis of outdoor recreation participation on public lands, where the surveyed populations changed rapidly and demographic population closure cannot be assumed even within a single day.




mode

Bayes Factors for Partially Observed Stochastic Epidemic Models

Muteb Alharthi, Theodore Kypraios, Philip D. O’Neill.

Source: Bayesian Analysis, Volume 14, Number 3, 927--956.

Abstract:
We consider the problem of model choice for stochastic epidemic models given partial observation of a disease outbreak through time. Our main focus is on the use of Bayes factors. Although Bayes factors have appeared in the epidemic modelling literature before, they can be hard to compute and little attention has been given to fundamental questions concerning their utility. In this paper we derive analytic expressions for Bayes factors given complete observation through time, which suggest practical guidelines for model choice problems. We adapt the power posterior method for computing Bayes factors so as to account for missing data and apply this approach to partially observed epidemics. For comparison, we also explore the use of a deviance information criterion for missing data scenarios. The methods are illustrated via examples involving both simulated and real data.




mode

Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models

Ioannis Ntzoufras, Claudia Tarantola, Monia Lupparelli.

Source: Bayesian Analysis, Volume 14, Number 3, 797--823.

Abstract:
We introduce a novel Bayesian approach for quantitative learning for graphical log-linear marginal models. These models belong to curved exponential families that are difficult to handle from a Bayesian perspective. The likelihood cannot be analytically expressed as a function of the marginal log-linear interactions, but only in terms of cell counts or probabilities. Posterior distributions cannot be directly obtained, and Markov Chain Monte Carlo (MCMC) methods are needed. Finally, a well-defined model requires parameter values that lead to compatible marginal probabilities. Hence, any MCMC should account for this important restriction. We construct a fully automatic and efficient MCMC strategy for quantitative learning for such models that handles these problems. While the prior is expressed in terms of the marginal log-linear interactions, we build an MCMC algorithm that employs a proposal on the probability parameter space. The corresponding proposal on the marginal log-linear interactions is obtained via parameter transformation. We exploit a conditional conjugate setup to build an efficient proposal on probability parameters. The proposed methodology is illustrated by a simulation study and a real dataset.




mode

Semiparametric Multivariate and Multiple Change-Point Modeling

Stefano Peluso, Siddhartha Chib, Antonietta Mira.

Source: Bayesian Analysis, Volume 14, Number 3, 727--751.

Abstract:
We develop a general Bayesian semiparametric change-point model in which separate groups of structural parameters (for example, location and dispersion parameters) can each follow a separate multiple change-point process, driven by time-dependent transition matrices among the latent regimes. The distribution of the observations within regimes is unknown and given by a Dirichlet process mixture prior. The properties of the proposed model are studied theoretically through the analysis of inter-arrival times and of the number of change-points in a given time interval. The prior-posterior analysis by Markov chain Monte Carlo techniques is developed on a forward-backward algorithm for sampling the various regime indicators. Analysis with simulated data under various scenarios and an application to short-term interest rates are used to show the generality and usefulness of the proposed model.




mode

Model Criticism in Latent Space

Sohan Seth, Iain Murray, Christopher K. I. Williams.

Source: Bayesian Analysis, Volume 14, Number 3, 703--725.

Abstract:
Model criticism is usually carried out by assessing if replicated data generated under the fitted model looks similar to the observed data, see e.g. Gelman, Carlin, Stern, and Rubin (2004, p. 165). This paper presents a method for latent variable models by pulling back the data into the space of latent variables, and carrying out model criticism in that space. Making use of a model's structure enables a more direct assessment of the assumptions made in the prior and likelihood. We demonstrate the method with examples of model criticism in latent space applied to factor analysis, linear dynamical systems and Gaussian processes.




mode

Low Information Omnibus (LIO) Priors for Dirichlet Process Mixture Models

Yushu Shi, Michael Martens, Anjishnu Banerjee, Purushottam Laud.

Source: Bayesian Analysis, Volume 14, Number 3, 677--702.

Abstract:
Dirichlet process mixture (DPM) models provide flexible modeling for distributions of data as an infinite mixture of distributions from a chosen collection. Specifying priors for these models in individual data contexts can be challenging. In this paper, we introduce a scheme which requires the investigator to specify only simple scaling information. This is used to transform the data to a fixed scale on which a low information prior is constructed. Samples from the posterior with the rescaled data are transformed back for inference on the original scale. The low information prior is selected to provide a wide variety of components for the DPM to generate flexible distributions for the data on the fixed scale. The method can be applied to all DPM models with kernel functions closed under a suitable scaling transformation. Construction of the low information prior, however, is kernel dependent. Using DPM-of-Gaussians and DPM-of-Weibulls models as examples, we show that the method provides accurate estimates of a diverse collection of distributions that includes skewed, multimodal, and highly dispersed members. With the recommended priors, repeated data simulations show performance comparable to that of standard empirical estimates. Finally, we show weak convergence of posteriors with the proposed priors for both kernels considered.




mode

Efficient Acquisition Rules for Model-Based Approximate Bayesian Computation

Marko Järvenpää, Michael U. Gutmann, Arijus Pleska, Aki Vehtari, Pekka Marttinen.

Source: Bayesian Analysis, Volume 14, Number 2, 595--622.

Abstract:
Approximate Bayesian computation (ABC) is a method for Bayesian inference when the likelihood is unavailable but simulating from the model is possible. However, many ABC algorithms require a large number of simulations, which can be costly. To reduce the computational cost, Bayesian optimisation (BO) and surrogate models such as Gaussian processes have been proposed. Bayesian optimisation enables one to intelligently decide where to evaluate the model next but common BO strategies are not designed for the goal of estimating the posterior distribution. Our paper addresses this gap in the literature. We propose to compute the uncertainty in the ABC posterior density, which is due to a lack of simulations to estimate this quantity accurately, and define a loss function that measures this uncertainty. We then propose to select the next evaluation location to minimise the expected loss. Experiments show that the proposed method often produces the most accurate approximations as compared to common BO strategies.




mode

Fast Model-Fitting of Bayesian Variable Selection Regression Using the Iterative Complex Factorization Algorithm

Quan Zhou, Yongtao Guan.

Source: Bayesian Analysis, Volume 14, Number 2, 573--594.

Abstract:
Bayesian variable selection regression (BVSR) is able to jointly analyze genome-wide genetic datasets, but the slow computation via Markov chain Monte Carlo (MCMC) hampered its wide-spread usage. Here we present a novel iterative method to solve a special class of linear systems, which can increase the speed of the BVSR model-fitting tenfold. The iterative method hinges on the complex factorization of the sum of two matrices and the solution path resides in the complex domain (instead of the real domain). Compared to the Gauss-Seidel method, the complex factorization converges almost instantaneously and its error is several magnitude smaller than that of the Gauss-Seidel method. More importantly, the error is always within the pre-specified precision while the Gauss-Seidel method is not. For large problems with thousands of covariates, the complex factorization is 10–100 times faster than either the Gauss-Seidel method or the direct method via the Cholesky decomposition. In BVSR, one needs to repetitively solve large penalized regression systems whose design matrices only change slightly between adjacent MCMC steps. This slight change in design matrix enables the adaptation of the iterative complex factorization method. The computational innovation will facilitate the wide-spread use of BVSR in reanalyzing genome-wide association datasets.




mode

A Bayesian Nonparametric Spiked Process Prior for Dynamic Model Selection

Alberto Cassese, Weixuan Zhu, Michele Guindani, Marina Vannucci.

Source: Bayesian Analysis, Volume 14, Number 2, 553--572.

Abstract:
In many applications, investigators monitor processes that vary in space and time, with the goal of identifying temporally persistent and spatially localized departures from a baseline or “normal” behavior. In this manuscript, we consider the monitoring of pneumonia and influenza (P&I) mortality, to detect influenza outbreaks in the continental United States, and propose a Bayesian nonparametric model selection approach to take into account the spatio-temporal dependence of outbreaks. More specifically, we introduce a zero-inflated conditionally identically distributed species sampling prior which allows borrowing information across time and to assign data to clusters associated to either a null or an alternate process. Spatial dependences are accounted for by means of a Markov random field prior, which allows to inform the selection based on inferences conducted at nearby locations. We show how the proposed modeling framework performs in an application to the P&I mortality data and in a simulation study, and compare with common threshold methods for detecting outbreaks over time, with more recent Markov switching based models, and with spike-and-slab Bayesian nonparametric priors that do not take into account spatio-temporal dependence.




mode

Analysis of the Maximal a Posteriori Partition in the Gaussian Dirichlet Process Mixture Model

Łukasz Rajkowski.

Source: Bayesian Analysis, Volume 14, Number 2, 477--494.

Abstract:
Mixture models are a natural choice in many applications, but it can be difficult to place an a priori upper bound on the number of components. To circumvent this, investigators are turning increasingly to Dirichlet process mixture models (DPMMs). It is therefore important to develop an understanding of the strengths and weaknesses of this approach. This work considers the MAP (maximum a posteriori) clustering for the Gaussian DPMM (where the cluster means have Gaussian distribution and, for each cluster, the observations within the cluster have Gaussian distribution). Some desirable properties of the MAP partition are proved: ‘almost disjointness’ of the convex hulls of clusters (they may have at most one point in common) and (with natural assumptions) the comparability of sizes of those clusters that intersect any fixed ball with the number of observations (as the latter goes to infinity). Consequently, the number of such clusters remains bounded. Furthermore, if the data arises from independent identically distributed sampling from a given distribution with bounded support then the asymptotic MAP partition of the observation space maximises a function which has a straightforward expression, which depends only on the within-group covariance parameter. As the operator norm of this covariance parameter decreases, the number of clusters in the MAP partition becomes arbitrarily large, which may lead to the overestimation of the number of mixture components.