i

Small overlap frontal impact countermeasure

A countermeasure assembly for an automotive vehicle includes a front side rail extending in a generally longitudinal direction; a bumper having a main bumper member and a bumper extension forming an end portion of the bumper; and a pivot link having front and rear mounting portions. The front mounting portion is pivotably engaged with the bumper extension member to define a front pivot joint, and the rear mounting portion is pivotably engaged with the front side rail to define a rear pivot joint. The rear pivot joint is located rearward and inward from the front pivot joint. The bumper extension is bolted to the forward end of the front side rail. The bumper extension has a front member and a rear member, of which the rear member is bolted to the front side rail. The front member and the rear member of the bumper extension define a hollow box structure.




i

Vehicle frame component

A body on frame vehicle includes a vehicle frame having a small offset impact load management system including upper and lower rear blocker structures and a reinforcement blocker structure for managing impact loads applied to the wheel and tire of the vehicle from being directed further toward the body. The reinforcement blocker structure includes a base member welded to openings in the frame side rail and extending angularly outwardly and located rearward and distal the wheel and tire and proximal a longitudinal cross frame member for transferring the small offset impact loads transferred by the wheel and tire in a cross vehicle direction.




i

Laminate bumper for material handling vehicles

A material handling vehicle includes a laminated bumper that provides both durability and reduced energy transmissibility. The laminated bumper includes at least a first bumper layer and a second bumper layer, such that at least one of the first bumper layer and second bumper layer of the laminate bumper are allowed to translate upon bumper contact with an object.




i

Bumper made using a resistive implant welding process

A bumper (10) created using a resistive implant welding process. The bumper includes a mounting plate portion (12) and a composite bumper portion (14). The mounting plate portion (12) is connected to the composite bumper portion (14) using a resistive implant welding process. In one embodiment, the present invention includes a bumper for a vehicle having a mounting plate (12) and a bumper portion (14). The bumper portion (14) includes at least one flange (24) formed as part of the bumper portion (14), a first contact area (28) formed as part of the mounting plate (12), and a second contact area (30) formed as part of the flange (24). A connection point is used to bond the first contact area (28) and the second contact area (30) such that the mounting plate (12) is connected to the bumper portion (14).




i

Vehicle-body structure of vehicle

A panel member having a U-shaped cross section includes step portions at an upper face portion and a lower face portion, and a distance, in a vehicle longitudinal direction, of the step potions from a panel member formed substantially in a flat-plate shape, is configured such that the distance at a central portion, in the vehicle width direction, of a bumper reinforcement is the maximum and the distance decreases gradually toward an outward direction of the vehicle. Accordingly, the vehicle-body structure which can properly ensure the bending strength and also attain the light weight of the bumper reinforcement, improving the load transmission from the bumper reinforcement to crash cans, can be provided.




i

System for pedestrian leg protection in vehicle impact

A system for protecting a pedestrian during impact with a vehicle, the system having a bumper adapted for attachment to an end of the vehicle, wherein the bumper is comprised of a plurality of air sacs, wherein the bumper has a horizontal thickness extends from the end of the vehicle, wherein at least some of the plurality of air sacs stretch and then burst during impact between the bumper and a pedestrian causing deceleration along the horizontal width of the bumper during the impact, wherein the bumper undergoes plastic deformation during impact with the pedestrian as the at least some of the air sacs burst during impact, and wherein the bursting of some of the plurality of air sacs reduces spring back of the bumper on the pedestrian.




i

Passively deployed small overlap rigid barrier deflector

A front bumper assembly including a bumper beam and two deflectors are provided on right and left sides of the front bumper assembly. The deflectors include hook-shaped portions and telescopic portions. The telescopic portions are received within the front bumper assembly. The hook-shaped portion of the deflector may be engaged by a rigid barrier aligned with the deflectors. In the event of a collision, the rigid barrier engages one of the hook-shaped portions and withdraws the telescopic portion from the front bumper assembly. The deflector is pulsed outwardly to move the front wheel and tire assembly to a tow-in orientation.




i

External airbag apparatus

Disclosed is an external airbag apparatus. The apparatus includes, a back beam disposed on one surface directed toward a bumper on which an airbag module is disposed. The apparatus additionally includes a deployment guide disposed between the bumper and the back beam, both ends of which are coupled to the back beam, and a middle end of which is supported on the bumper. Furthermore, the apparatus includes a sensor disposed between the deployment guide and the back beam to sense impact when pressed by the deployment guide during impact to the bumper.




i

Deflector-catcher for small overlap vehicle impacts

A front-end assembly including a deflector and a catcher bracket. The V-shaped deflector is attached to a bumper of a vehicle, a rear leg of the deflector has a distal end disposed adjacent to the frame rail. In a collision, the distal end of the rear leg engages the catcher bracket to reduce intrusion into the passenger compartment of the vehicle.




i

Vehicle attachable carrier device

The vehicle attachable carrier device includes a mounting bracket assembly for movably mounting a guard frame to a vehicle that includes a bracket coupled to the vehicle. A frame is movably coupled to the bracket. The frame may guard the vehicle. The frame is positionable between a stored position and an extended position.




i

Front air dam for truck

An air dam for a semi-truck tractor in accordance with an aspect of the present disclosure includes a rigid upper panel affixed to a bumper of the semi-truck tractor and a lower flexible panel affixed to the upper panel.




i

Airflow control device for an automotive vehicle

An airflow control device is mounted to the front end of an automotive vehicle and includes an upper air scoop section having a scoop channel disposed rearward of a bumper assembly and oriented to direct airflow entering a bumper intake opening toward an air-receiving powertrain component. A lower air dam section extends downwardly from the upper section to be positioned below a lower extent of the bumper assembly to deflect airflow away from an underside of the vehicle.




i

Front rail mounted airbag

An airbag system mitigates intrusion in the event of an offset rigid barrier impact to a forward corner of a motor vehicle. An airbag is attached proximate a distal end of a front rail. When in the inflated condition, the airbag has an angular leading edge. An impact detection sensor generates a signal upon a corner impact event, whereby a controller processes the signal generated by the detection sensor and electrically actuates an inflator upon a predetermined impact severity. The angular leading edge of the airbag in the inflated condition acts against the offset rigid barrier to generate a lateral force against the offset rigid barrier to push the motor vehicle away from the barrier and thereby redirect impact energy by lateral movement of the motor vehicle.




i

Compliant solid-state bumper for robot

A robot bumper including a bumper body having a forward surface and a top surface angling away from the forward surface. The bumper body conforms to a shape of a received robot chassis. The robot bumper also includes a force absorbing layer disposed on the bumper body, a membrane switch layer comprising a plurality of electrical contacts arranged along the top surface of the bumper body, and a force transmission layer disposed between the force absorbing layer and the membrane switch layer. The force transmission layer includes a plurality of force transmitting elements configured to transmit force to the membrane switch layer.




i

Telescoping vehicle safety guard

A safety guard for a vehicle, such as a school or transit bus, tractor trailer or the like-type vehicle, includes a front guard positioned at an angle in front of a wheel of the vehicle that will function to push individuals and other animate objects lying in the path of the vehicle out of the path of the wheels for safety purposes, while being mounted for telescoping movement to protect the safety guard from damage upon abutting an inanimate object during operation of the vehicle.




i

Vehicle front structure

When a collision load is transmitted to a gusset, the load is transmitted to an inner side in a vehicle width direction via an inclined wall. Accordingly, moment that causes a front side member to be projected and bent inward to the inner side in the vehicle width direction with an intersection being a starting point acts on the front side member. Then, the front side member, which has been projected and bent inward, collides with a power unit that is disposed in an engine compartment from an outer side in the vehicle width direction. Accordingly, a lateral force to the inner side in the vehicle width direction can be obtained for a vehicle.




i

Bumper assembly and side support linking members

Vehicle structures for dissipating energy associated with a collision are described herein. In one embodiment, a vehicle includes a side support extending in a vehicle longitudinal direction, a bumper assembly coupled to the side support and extending in a vehicle lateral direction that is transverse to the vehicle longitudinal direction, and a repositionable joint assembly extending between and pivotally coupled to the side support and the bumper assembly, the repositionable joint assembly including an outboard linking member pivotally coupled to the bumper assembly at a bumper securement location, an inboard linking member pivotally coupled to the side support at a side support securement location, and a fulcrum portion, where the outboard linking member is pivotally coupled to the inboard linking member at the fulcrum portion.




i

Compressive sensor packaging techniques

A sensor assembly for a motor vehicle adapted for sensing impacts including pedestrian impacts. The sensor assembly includes first and second energy absorbing elements formed of differing materials which couple an applied force to the vehicle to a compressive force acting on a compressive sensor element. The first and second energy absorbers are combined in a manner to tune the response between the applied force and forces acting on the compressive sensor to provide desired response characteristics. The first and second energy absorbers can be configured to produce force flow paths which further aid in response tuning. Another embodiment utilizes an energy absorber having a shaped cross section which focuses and balances impact force is applied to the compressive sensor.




i

Vehicle-body front structure of vehicle

A first projection portion projecting outward, in a vehicle width direction, from a front side frame is provided. A front end of the first projection portion is located at the same position, in the vehicle longitudinal direction, as a connection portion of a crash can to the front side frame or located in back of the connection portion. An outward side face of the first projection portion is configured to slant rearward and inward in a plan view. The first projection portion and a power unit are arranged to overlap each other in the vehicle longitudinal direction. Accordingly, an impact transmitted to a vehicle-compartment side in a small overlap collision can be reduced, restraining repair costs of the crash can broken in a low-speed collision as well as maintaining appropriate design flexibility of a vehicle-body front portion.




i

Bumper fastening clip

A bumper fixing clip includes a leg portion engaging with a vehicle body panel; engagement claws engaging with a plurality of engagement holes formed on a bumper side; and an engagement member including a second engagement claw engageable with or retractable from one of the engagement holes formed on the bumper side by operating an operation portion, and fixing the bumper to the vehicle body panel. The engagement member is integrally formed with a fixing clip main body, and includes an approximately rod-like operation portion; the second engagement claw formed in a vicinity of a turning center of the operation portion; and an abutment piece formed on a side opposite to the second engagement claw. Also, the fixing clip main body includes a control portion abutting against the abutment piece of the operation portion, and controlling a moving range of the operation portion so as to reduce a force operating the operation portion, and even if an excessive force is applied, the moving range is controlled so as to prevent a breakage.




i

Energy absorber with staggered, vertically oriented crush lobes

A thermoplastic energy absorber having a horizontal axis and a vertical axis, and comprise: an array of energy absorbing lobes protruding from a base, the lobes arranged in two or more rows. The energy absorbing lobes can have a vertical length (L) and a horizontal width (D), and wherein a ratio of L:D is greater than 1. The energy absorbing lobes in each row can be disposed in a staggered manner with respect to energy absorbing lobes in an adjacent row. The energy absorber can be configured to be installed on a vehicle for absorption of impact energy. An energy absorbing system can comprise the thermoplastic energy absorber disposed between a bumper beam and a fascia. The fascia can optionally be configured to envelope the thermoplastic energy absorber and the bumper beam. This system passes EuroNCAP lower-leg impact requirements, version 5.1, June 2011, for lower leg impact requirement.




i

Vehicle bumper mounting structure

A fender front-side step portion has first and second fender front-side fixing portions that engage with and fasten a bumper spacer. The bumper spacer is provided with: a spacer body; a bumper-spacer reinforcing portion that extends toward a fender lower-end portion of a fender panel from the bottom end of the spacer body; and a bumper-spacer rear-side fixing portion which is disposed on the bumper-spacer reinforcing portion, and which overlaps with and fastens the front of the fender lower-end portion. The bumper-spacer rear-side fixing portion is disposed in a position further to the rear than the fender front-side step portion in the longitudinal direction of a vehicle.




i

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Front fascia or grill support structure and aerodynamic shutter assembly

A fascia support structure and aerodynamic shutter assembly for a vehicle includes a fascia support structure, comprising: a top portion comprising a substantially U-shaped body comprising a top fascia support member, a first side fascia support member and a second side fascia support member, the first side fascia support member having a first side baffle, the second side fascia support member having a second side baffle; and a bottom portion comprising a bottom baffle, the bottom portion attached to the first and second side fascia support members, the top portion and the bottom portion comprising a fascia support structure opening, at least one of the first side baffle, second side baffle or bottom baffle having a seal member disposed on a leading edge. The assembly also includes an aerodynamic shutter system comprising a shutter frame having a shutter frame opening and a plurality of rotatable shutters disposed therein.




i

Middle buffer coupling for rail-bound vehicles

What is described is a middle buffer coupling for rail-bound vehicles, comprising two coupling halves (2, 2') to be coupled together attached to vehicle parts (A, B), each of said coupling halves (2, 2') comprising a coupling rod (8, 8') with a coupling head (12, 12'), and comprising a connecting element (16) for manually connecting the two coupling heads (12, 12'). Disposed at each coupling head (12, 12') is an electrical contact element (32, 34) for contacting with the contact element of the other respective coupling head (12, 12') when the two coupling halves (2, 2') are coupled. Routed within each coupling rod (8, 8') are electrical lines (18, 18') that lead from the contact elements (32, 34) of the associated coupling head (12, 12') to the vehicle part (A, B) to which the coupling halves (2, 2') comprising said coupling rods (8, 8') are attached, respectively.




i

Central datum feature on railroad coupler body and corresponding gauges

A coupler body for a railcar coupler, said coupler body comprising at least one central datum feature that does not wear during coupler use.




i

Railroad freight car draft gear

A railroad freight car multipiece spring seat assembly including a spring seat, a top plate, and a spring. The spring seat is adapted to operably engage one end of a spring assembly in a railroad freight car draft gear. The top plate is adapted to operably engage with each of a plurality of friction shoes arranged in the railroad freight car draft gear. The spring of the multipiece spring seat assembly is operably disposed between the spring seat and the top plate.




i

Coupling unit

A coupling unit for a semi-permanent connection of two wagons of a rail vehicle, which has a first housing and a second housing, which is pivotably and rotatably coupled to the first housing. A bearing outer ring with a hollow spherical inner bearing surface is fastened to the second housing and is guided in sliding fashion on a bearing inner ring with a spherical outer surface. The bearing inner ring is seated with an inner bore on a shaft fastened to the first housing. The shaft has, on a first end, one or two flattened portions and, on a second end, one or two second flattened portions. At least one clamping piece is provided which bears against one of the flattened portions and an opening region in the first housing, thereby preventing the shaft from rotating.




i

Adapter coupler for adapting couplings of different design

An adapter coupler (1) for adapting couplings of different design, wherein the adapter coupler (1) comprises a first connecting mechanism for releasably connecting the adapter coupler (1) to a first coupling, a second connecting mechanism for releasably connecting the adapter coupler (1) to the drawhook (50) of a second coupling, and a coupler housing (2) for connecting the first connecting mechanism to the second connecting mechanism, and wherein the second connecting mechanism comprises a tension yoke (8) with which to engage with the drawhook (50) of the second coupling. The adapter coupler (1) having a mechanism for height centering, comprising a drawbar eye (14) connected to the coupler housing (2), wherein the drawbar eye (14) is arranged and configured relative the tension yoke (8) such that upon the adapter coupler (1) being inserted into the jaw of the drawhook (50) of the second coupling, the drawhook (50) can engage in one joint process with both the accommodation formed by the tension yoke (8) as well as with the drawbar eye (14).




i

Draft sill with special rear draft lug for a railcar

A draft sill with special rear draft lug for a railcar is disclosed. In some embodiments, a rear draft lug comprises a metallic body. The rear draft lug further comprises a boss extending along a transverse portion of the metallic body. The boss is configured to be coupled to a first vertical reinforcement plate. The rear draft lug also comprises an overhang portion extending from the boss along the transverse portion. The overhang portion configured to be coupled to the first vertical reinforcement plate. In some embodiments, the boss and the overhang portion are configured to be coupled to the first vertical reinforcement plate with a weld.




i

Railway car yoke

A railway car yoke includes a nose end and at least two straps adjoining the nose end. At least one top strap adjoins a top portion of the nose end and at least one bottom strap adjoins a bottom portion of the nose end. The railway car yoke also includes a butt end adjoining the at least two straps such that the nose end and the butt end are separated by the at least two straps. The butt end comprises at least one concave contour along an outside surface of the butt end. The outside surface is a surface along the butt end opposite the nose end that extends from a top surface of the at least one top strap to a bottom surface of the at least one bottom strap.




i

Over-center spring coupler

A mating cam coupler device includes a coupler head having a first lateral portion and a second lateral portion. A male cam is associated with the first lateral portion. A male cam locking mechanism is disposed within the first lateral portion and is operably connected with the male cam. A female cam is associated with the second lateral portion. A female cam locking mechanism is disposed within the second lateral portion and is operably connected with the female cam. The male cam is positioned to engage the female cam of an opposing coupler and the female cam is positioned to engage the male cam of the opposing coupler and operation of the male cam locking mechanism is triggered by engagement of the male cam with the opposing female cam and operation of the female cam locking mechanism is triggered by engagement of the female cam with the opposing male cam.




i

Knuckle formed without a finger core

A railcar coupler knuckle includes a tail section, a hub section, and a nose section. The tail, hub, and nose sections define internal cavities including (i) a kidney cavity, (ii) a pivot pin cavity, and (ii) a finger cavity. The kidney and pivot pin cavities are formed using at least one internal core during manufacturing of the coupler knuckle. The finger cavity is formed from a finger section of cope and drag mold portions of a mold used during manufacturing of the coupler knuckle, wherein the finger section of the mold defines the entirety of the finger cavity of the coupler knuckle.




i

Knuckle formed from pivot pin and kidney core and isolated finger core

A railroad coupler knuckle includes a single, solid rib at a horizontal centerline of the knuckle that passes through a pivot pin hub thereof. The single, solid rib extends generally from a flag hole of a finger cavity of the knuckle to an opposite side of the knuckle from the flag hole. In another aspect, a railcar coupler knuckle includes a tail section, a hub section, and a nose section. The tail, hub, and nose sections define internal cavities including (i) a combined void that defines a pivot pin hub cavity and a kidney cavity and (ii) an isolated finger cavity. The combined void is formed using a first internal core during manufacturing of the coupler knuckle. The isolated finger cavity is formed using a second internal core during manufacturing of the coupler knuckle, such that molten alloy substantially separates the combined void and the isolated finger cavity.




i

Electrical contact coupling for a track-borne vehicle, particularly a railway vehicle

An electrical contact coupling for a track-borne vehicle has a coupling housing and a protective flap articulated to the coupling housing. In order to ensure a reliable sealing of the coupling housing in the closed state of the electrical contact coupling, a seal is utilized which exhibits an upper sealing area running parallel to the axis of rotation and a lower sealing area running parallel to the axis of rotation. The upper sealing area associates with a sealing face aligned perpendicular to the housing end face and the lower sealing area associates with a sealing face aligned substantially parallel to the housing end face.




i

Consist communication system having inductive transmission

A consist communication system is disclosed for use with a train consist. The consist communication system may have a fluid conduit, at least a first cable disposed within the fluid conduit and configured to transmit communication signals, and at least a second cable disposed within the fluid conduit and configured to transmit electrical power. The communication conduit may also have a coupling fixedly connected to an end of the fluid conduit, a first transformer coil connected to the at least a first cable, and a second transformer coil connected to the at least a second cable and disposed in an orthogonal orientation relative to the first transformer coil.




i

Railway coupler core structure for increased strength and fatigue life of resulting knuckle

A finger core for forming the front part of a knuckle for a railcar, said finger core comprising a single opening to form a single rib at the horizontal center line of the resulting knuckle.




i

Elastomeric draft gear for a railcar

A draft gear assembly includes housing and an elastomeric spring stack disposed therewithin and including a plurality of compressible elastomeric springs disposed in series with each other. Each compressible elastomeric spring includes a compressible elastomeric pad, a rigid member positioned in direct contact with one end surface of the compressible elastomeric pad, a central aperture through a thickness of the rigid member, an abutment upstanding axially on the end surface of the compressible elastomeric pad, the abutment having a peripheral surface thereof sized to be received within the central aperture formed through the thickness of the rigid member, and an annular lip disposed on a distal end of the axial abutment in a plane being substantially transverse to the central axis, whereby an annular thickness portion of the rigid member is caged between the end surface of the compressible elastomeric pad and an inner surface of the annular lip.




i

Casting process for railcar coupler throwers

A method for casting a thrower for a railcar coupler includes creating a mold box that is vertically parted in halves, each half defining a side of a thrower cavity and that includes at least a portion of a sprue at a location above the thrower cavity, the thrower cavity also being oriented vertically; pouring molten metal into the mold box through the sprue and into the thrower cavity while the mold is oriented vertically; and shaking out the mold box to release the thrower after the thrower has cooled. Creating the mold box may be executed through a cold shell process. The halves of the mold box may include reflective images of the sides of two thrower cavities and an ingate connected between the sprue and one of the two thrower cavities.




i

Railcar coupler knuckle cores and knuckles produced by said cores

A core assembly for forming the interior spaces of a railcar coupler knuckle has a first transition section between the C-10 portion of the core and the finger portion of the core. The first transition section has a first side, a second side, a third side and a fourth side and the first and second sides form the vertical axis of the first transition section and the third and fourth sides form the horizontal axis of said first transition section. The vertical axis of the first transition section has a height along a horizontal plane of the vertical axis of at least 2.5″ and the horizontal axis of said first transition section has a width along a vertical plane of the horizontal axis of at least 0.925″.




i

Method of making compressible elastomeric spring

A method of making a compressible elastomeric spring including at least one compressible elastomeric pad enclosed by a pair of metal plates includes the steps of forming plates with a center aperture and a plurality of prongs positioned about a peripheral edge thereof, forming each end of the pad with an axial projection and abutting groove, aligning the plurality of prongs with each respective projection and respective groove and applying axial force to one end of the spring to frictionally interlock the plurality of prongs with such projection and groove. The method also provides for making a multi-tiered stack of pads separated by plates in the above described manner and pre-shortening the spring prior to installation into the conventional yoke. The above described method additionally improves axial straightness and lateral stability of the multi-tiered spring assembly.




i

Moving body separating device

The moving body separating device includes a separating device main body, which separates an upstream-side moving body disposed on a base plate to be movable in a straight-line direction and a downstream-side moving body connected to the upstream-side moving body on the base plate at a prescribed separating point when moving to a downstream side. The separating device main body includes a rotary body for pushing out the downstream-side moving body towards the downstream side through a rotary action, a supporting shaft held by the upstream-side moving body for supporting the rotary body to be freely rotatable, and an original-position returning spring held by the supporting shaft for returning the rotary body to an original position. A protrusion member which applies a rotary pressure force to the rotary body is fixed at a prescribed separating point on the base plate by corresponding to one end part of the rotary body.




i

Heavy-duty pivot plate adjusting joint

A heavy-duty pivot plate adjusting joint for railroad freight cars connects multi-part car sections. To this end, the adjusting joint is configured such that each drawbar end is provided with only one end coupling rod part having a spring column, and the drawbar is connected by way of the drawbar end plates to the support bearing plates of an under frame provided on a car side. Each adjusting joint is provided with an adjusting point pivot plate, wherein a pivot plate roll surface is present directly at the pivot plate or at the adjoining contact surfaces transmitting pressure force, the surfaces having a spherical or two-dimensional shape. A configuration of the adjusting joints in a “regular embodiment” is proposed, wherein the distance of the transmission end points of balance is smaller than the distance of the spring travel limiters.




i

Energy absorbing coupler

An energy absorbing coupler for railway vehicles includes a coupler anchor, a coupler mechanism supported to the coupler anchor by a deformation tube and draft gear element, and a plurality of energy absorbing devices associated with the coupler anchor. The energy absorbing devices each include two mating components in frictional engagement with one another. Sliding movement between contacting surfaces of the two components occurs when energy is applied to the coupler mechanism, thereby creating friction and dissipating the applied energy at least in part in the form of heat. The two mating components may include a male part, such as a mounting bolt, in mating engagement within a female part, such as a collar. An inside diameter of the collar may be slightly smaller than an outside diameter of the mounting bolt to create a press-fit engagement.




i

Magnetically actuated model railroad coupler

A model railroad car coupler assembly comprises a coupler with an upper shank having a coupler knuckle at a distal portion and a flat proximal portion, a lower shank having a coupler thumb at a distal portion and a flat proximal portion, and a coil spring terminating in first and second end portions, with a first turn of the coupler spring interlocked with the upper shank and a second turn interlocked with the lower shank. A mounting box has a circular mounting post that accepts circular openings in the shanks permitting them to rotate relative to each other between a closed coupled position and an open uncoupling position. The spring end portions engage the mounting box to bias the shanks into their coupled position. The knuckle carries a ferrous actuating pin that cooperates with a magnetic pad along a track to rotate the upper shank into its open position.




i

Railcar coupler core with vertical parting line and method of manufacture

A method of casting a core includes the steps of preparing a first half of a corebox, preparing a second half of a corebox such that the parting line of a core formed from the first and second coreboxes runs along the vertical axis of the core.




i

Railway coupler body improvements to improve knuckle rotation

An improved coupler body having an area of increased material in the upper lock chamber.




i

Railcar coupler knuckle cores with rear core support

A core assembly for creating interior spaces in a railcar coupler knuckle is designed to be set in a cavity with cope and drag sections. The cavity is shaped to form a railcar coupler knuckle and includes a first wall that forms the substantially vertical outside wall of the tail of the knuckle. The core includes a kidney section with a rear core support section that extends at least 0.5″ outside the first wall of the cavity when the core is set in the drag.




i

Coupling and conduit for consist communication system

A coupling for a communication conduit is disclosed for use with a train consist. The coupling may include a nipple configured for insertion within a fluid conduit, a flange configured to engage an end of the fluid conduit, a retention member configured to engage an outer surface of the fluid conduit, a first fitting extending from the flange away from the nipple, and, a retaining tab configured to retain a second fitting of another coupling in engagement with the first fitting. The coupling may further include a closure mechanism configured to close off an end of the first fitting and movable during engagement with the second fitting to open the end of the first fitting.




i

Car equipment protection structure for railcar

A car includes a car equipment protection structure, The car equipment protection structure includes an underframe, couplers and guide members. Each of the guide members is provided on a railcar inner side of an attached flange portion of the underframe to which the couplers are attached. Moreover, the guide members respectively include inclined surfaces, each of which is opposed to at least a part of the coupler. Each of the inclined surfaces is inclined toward the railcar inner side as it extends downward.




i

Coupling arrangement for the front of a tracked vehicle

A coupling arrangement for the front of a tracked vehicle is disclosed, comprising a central buffer coupling having a gladhand, a coupling shaft supporting the gladhand and a bearing, via which the coupling shaft can be joined with the undercarriage of the vehicle pivotable in a horizontal and/or vertical direction. An energy consuming device allocated to the central buffer coupling having at least one energy consuming element with a destructive design is provided. To ensure maximum energy consumption in a crash with a course of events definable in advance, the coupling arrangement additionally comprises a supporting structure with two longitudinal beams arranged on the sides of the central buffer coupling and a crossbeam joined with the two longitudinal beams, said crossbeam beam being arranged above the central buffer coupling such that a vertical deflection of the coupling shaft relative to the undercarriage of the vehicle is limited by the crossbeam.