i

Pressure powered impeller system and related method of use

This invention is directed to a system that generates a sufficient level of electricity through access to a municipal water supply line to run a furnace during below freezing temperatures. The system includes an inlet that draws water from a water supply line. A first conduit, in communication with the inlet, transports the water into a DC generator that includes an impeller to generate electricity. Water is then routed through a second conduit which then returns the water to the water supply line through an outlet. A solenoid valve may be positioned between the inlet and first conduit which remains closed when the electric grid runs normally but will open during a power outage to supply water to the DC generator. A lithium battery stores power created by the DC generator, which may include a voltage regulator and inverter to convert to DC.




i

Wind turbine

A wind turbine is provided. The wind turbine includes a generator, an output thereof being connectable to a power grid via a power transmission path, the power transmission path comprising a generator side converter coupled to the output of the generator, a grid side converter coupled to the power grid, and a DC link coupled between the generator side converter and the grid side converter. For diverting the generator power, a load dump arrangement is provided which includes at least one resistor, a plurality of switches, and a plurality of electrical connections which electrically connect the at least one resistor to the output of the generator and across the DC link via the plurality of switches. One common and configurable load dump is used for both converter system failures and grid failures. As compared to two separate load dumps for converter failures and grid failures, the single load dump will require a smaller space for a wind turbine. Thus, the weight and size of the power converter system may be reduced.




i

Magnetic controlled power generator

A magnetic controlled power generator provides a magnetic controlled loading device, power generator and flywheel device to form two independent modules which are easily assembled and disassembled for easy manufacture and maintenance. Besides, the magnetic controlled power generator has simple installation and lightweight components to generate a radial displacement for magnetic flux control, achieving continuous adjustment of the load resistance, thereby having the effect of reducing the cost and weight.




i

Method of controlling speed of a variable speed generator

Some embodiments relate to a method of controlling speed of a variable speed generator. The method includes detecting a load of the variable speed generator and determining a target speed for the variable speed generator based on the load supplied by the variable speed generator. The method further includes using a controller to adjust the speed of the variable speed generator based on the target speed. The method may further include correcting the target speed by calculating a correction factor that corrects the target speed based on a voltage produced by the variable speed generator.




i

Method and device to compensate for a dip in the output voltage of a motor-vehicle alternator

A dip in the output voltage of a motor-vehicle alternator, owing to a connecting of a load or a change in speed, is compensated with the aid of an alternator regulator which provides a control signal that has a duty factor and increases the excitation current of the motor-vehicle alternator. After the occurrence of the voltage dip, in a first step, the duty factor of the control signal is increased by a differential amount, and in a subsequent second step, the rate of correction is limited. After the occurrence of the voltage dip, parameters describing the instantaneous working point of the motor-vehicle alternator are determined, and in the first step, the differential amount is set as a function of the working point.




i

Acyclic exciter for an alternator

A self-excited alternator for generating electrical energy. The alternator includes a stator, a rotor, and an exciter. The rotor includes conductors which are integrated within the rotor via one of a casting process, a welding process, or a fastening process. The exciter includes a magnet producing a static magnetic field, and a rotatable conductive member coupled to the shaft and electrically coupled to the one or more conductors. The rotatable conductive member is operable to output the direct current to the one or more conductors upon rotation within the static magnetic field, thus exciting the alternator.




i

Methods and systems for monitoring excitation of a generator based on a faulty status of a generator breaker

Systems and methods for monitoring excitation of a generator based on a faulty status of a generator breaker are provided. According to one embodiment, a system may include a controller and a processor communicatively coupled to the controller. The processor may be configured to receive, from a contact associated with a generator breaker, a reported status of the generator breaker, receive operational data associated with one or more parameters of a generator associated with the generator breaker, and correlate the reported status of the generator breaker and the operational data. Based on the correlation, the processor may establish an actual status of the generator breaker, and, based on the actual status, selectively modify a mode of excitation of the generator.




i

Temperature detection device that detects temperature of rotor of motor

A temperature detection device that detects a temperature of a rotor of a motor. The temperature detection device has a current detection unit configured to detect a current value of a current flowing through a winding with which any one of a stator and the rotor of the motor is provided, an iron loss estimation unit configured to estimate an iron loss of the rotor using the current value, and a rotor temperature estimation unit configured to estimate the temperature of the rotor using the iron loss.




i

Method of operating a wind turbine, wind turbine, wind turbine controlling system, and processing system

According to an embodiment, a method of operating a wind turbine comprising a DC-to-AC voltage converter is provided, the wind turbine being connectable to a grid via the DC-to-AC voltage converter, the method comprising: determining a line voltage of a power line connecting the DC-to-AC voltage converter to the grid; if the determined line voltage exceeds a predefined voltage threshold value, injecting reactive current into the power line, wherein the amount of reactive current injected is chosen such that an output voltage of the DC-to-AC voltage converter is kept within a predetermined voltage range.




i

Overvoltage limiter in an aircraft electrical power generation system

A generator includes a permanent magnet generator, an exciter and a main generator mounted for rotation on a shaft. The main generator is configured to produce a voltage output. A generator control unit includes a circuit configured to provide current from the permanent magnet generator to the exciter. A switch is provided in the circuit and is configured to change between open and closed conditions. The switch is configured to flow current in the circuit in the closed condition and interrupt current flow in the open condition. An overvoltage limit controller is programmed to determine an amount of overvoltage of the output voltage exceeding a desired voltage. Either a fixed reference threshold is used or a reference threshold voltage is calculated based upon the duration in over voltage condition, and the switch is modulated between the open and closed conditions according to error between the actual output voltage and the reference threshold voltage to limit the output voltage to the desired reference threshold voltage.




i

Method of controlling rotating main field converter

A generator system includes a generator having a stationary portion and a rotating portion. An exciter field winding and a main armature winding are disposed on the stationary portion. An exciter armature winding and a main field winding are disposed on the rotating portion. A frequency demodulator is configured to extract a frequency modulated control signal from the exciter armature winding and to demodulate the frequency modulated control signal to generate a demodulated control signal. The generator includes a main field rotating power converter to selectively control current in the main field winding in response to the demodulated command signal. The generator system includes a generator control unit in electrical communication with the generator to monitor the output voltage at the main armature winding and to output an exciter current including the frequency modulated control signal to the exciter field winding based on the output voltage.




i

DC motor assembly with soft starting capability

A DC motor assembly (10) with soft starting capability is provided. The assembly (10) comprises a DC motor (12) including an armature (14) and a field winding (16) adapted to be excited separately from the armature; and circuitry configured to controllably increase current flow through the field winding of the DC motor as a function of time during starting of the DC motor.




i

Switched reluctance generator integrated controls

A method of controlling a generator (110) of an electric drive (104) associated with an engine (102) is provided. The method may determine an operational state of the electric drive (104) based on a speed of the engine (102), and selectively engage one of a map-lookup control scheme (150) and a fixed-theta off control scheme (152) for operating the generator (110) based on the operational state of the electric drive (104).




i

Charging and distribution control

A system configured for charging and distribution control is provided. The system includes a switching regulator, a control circuit and a first converter. The switching regulator is configured to be selectively operable in one of a first operative state and a second operative state based on a control signal. The first operative state and the second operative state are associated with a maximum level of an alternator output power corresponding to at least one alternator operational feature, at least one alternator operational feature being associated with the alternator output voltage and an alternator speed. The control circuit is configured to generate the control signal based at least on the at least one alternator operational feature. The first converter is configured to generate a first converter output voltage based on the regulated DC output voltage. The first converter output voltage is lower than the regulated DC output voltage.




i

Power supply system for motor vehicle provided with control device of voltage applied to field coil of generator

A power supply system for a motor vehicle includes a generator that includes a rotor having a field coil and a stator having an armature coil; a rectifier that rectifies AC power generated in the armature coil; an excitation control circuit that takes control of a voltage applied to the field coil; a capacitor that is connected to the DC side of the rectifier, and receives and transfers the rectified power; a battery connected to an electric load of the motor vehicle; a DC-DC converter that is connected between the capacitor and the battery and capable of converting unidirectionally or bidirectionally an input DC voltage into any DC voltage; and a selection switch which connects the capacitor or the battery to the excitation control circuit as a power supply source.




i

Regulator/brush-holder assembly for a motor-vehicle alternator, manufacturing process and corresponding alternator

The regulator/brush-holder assembly (1) comprises a support (2) and an electrical circuit (5, 6) comprising a regulating element (5) connected by microwires to a trace circuit (6). The electrical circuit further includes a filtering circuit (10) separate from the regulating element and connected by microwires to the trace circuit. According to one particular embodiment, the filtering circuit comprises an insulating substrate (11) and surface-mounted components (C1, C2, S1, S2, V). A ground plane (19) and/or one or more ground pads may be provided for connection to a ground trace of the trace circuit. The filtration frequencies of the filter circuit extend from 100 kHz to 1 GHz.




i

Method and apparatus for generating electricity by thermally cycling an electrically polarizable material using heat from various sources and a vehicle comprising the apparatus

A method for converting heat to electric energy is described which involves thermally cycling an electrically polarizable material sandwiched between electrodes. The material is heated using thermal energy obtained from: a combustion reaction; solar energy; a nuclear reaction; ocean water; geothermal energy; or thermal energy recovered from an industrial process. An apparatus is also described which includes an electrically polarizable material sandwiched between electrodes and a heat exchanger for heating the material. The heat source used to heat the material can be: a combustion apparatus; a solar thermal collector; or a component of a furnace exhaust device. Alternatively, the heat exchanger can be a device for extracting thermal energy from the earth, the sun, ocean water, an industrial process, a combustion reaction or a nuclear reaction. A vehicle is also described which comprises an apparatus for converting heat to electrical energy connected to an electric motor.




i

Thermionic generator

A thermionic generator for converting thermal energy to electric energy includes: an emitter electrode for emitting thermal electrons from a thermal electron emitting surface when heat is applied to the emitter electrode; a collector electrode facing the emitter electrode spaced apart from the emitter electrode by a predetermined distance, and receiving the thermal electrons from the emitter electrode via a facing surface of the collector electrode; and a substrate having one surface. The emitter electrode and the collector electrode are disposed on the one surface of the substrate, and are electrically insulated from each other. The thermal electron emitting surface and the facing surface are perpendicular to the one surface.




i

Method and arrangement for operating a wind turbine converter

A method of operating a converter of a wind turbine for providing electric energy to a utility grid includes determining a grid voltage. If the grid voltage is between a nominal voltage and a first voltage threshold, i.e. higher than the nominal voltage, a normal procedure for lowering the grid voltage is performed. If the grid voltage is above the first voltage threshold, another procedure for keeping the wind turbine connected is performed, wherein the other procedure is different from the normal procedure. Further a corresponding arrangement is described.




i

Power control method and device

The present invention discloses a method and an apparatus for power control. An apparatus for power control in accordance with an embodiment of the present invention can include: a voltage comparing part configured to compute an error voltage by using a measured voltage measured at the generator and a reference voltage that is designated; a control module configured to compute a first reactive power value for power control of the generator by being inputted with the error voltage; and a driving module configured to compute a reference reactive power value by using the first reactive power value and a second reactive power value computed using an active power value of the power converter and configured to control the power converter in correspondence with the computed reference reactive power value.




i

Method and system for automatically adapting end user power usage

A system, method and apparatus for automatically adapting power grid usage by controlling internal and/or external power-related assets of one or more users in response to power regulation and/or frequency regulation functions in a manner beneficial to both the power grid itself and the users of the power grid.




i

Electromagnetic device for generating electrical current and methods thereof

An AC current generator for generating an CA current and method therefor and includes a stator and a rotor. The stator includes an outer shell of non-magnetic material enclosing an evacuated chamber and having a distribution of a plurality of ferromagnets attached thereto. The rotor includes an inner core of non-magnetic material located at a stability location within said evacuated chamber and having a distribution of a plurality of diamagnets attached thereto. In addition, the AC current generator includes at least one magnetic flux detection unit located within at least one magnetic field generated by at least one group of ferromagnets of the plurality of ferromagnets. Displacing the rotor from the stability location towards the at least one group of ferromagnets generates a change in magnetic flux in the magnetic field thereby generating an AC current in the at least one magnetic flux detection unit.




i

Rotary electrical machine with excitation provided with a digital regulator device

The rotary electrical machine is capable of functioning as a generator and outputs a continuous output voltage (Ub+) that is adjustable by an excitation current. The digital regulator (2) of the machine comprises an excitation current control means (7) and a control loop (6) that includes a device (10) for measurement, by sampling, of the output voltage (Ub+), the measurement device generating a signal sampled at a predetermined first sampling frequency (F1 e). The machine has a bandwidth that is limited by a predetermined first cutoff frequency (F1 c). The measurement device includes an apparatus for oversampling such that the first sampling frequency (F1 e) is greater than twice the first cutoff frequency (F1 c), and the control loop also includes an apparatus (12) for decimating the sampled signal.




i

Doubly-fed induction generator wind turbine system having solid-state stator switch

Wind turbine systems and methods are provided. An exemplary system includes a wind driven doubly fed induction generator having a rotor and a stator, the stator providing AC power to a stator bus. The system further includes a power converter coupled to the rotor of the doubly fed induction generator, the power converter providing an output to a line bus, and a transformer coupled to the stator bus. The system further includes a solid-state switch coupled between the stator bus and the transformer.




i

Generator drive system for an internal combustion engine

A generator drive system for the generator (3) of an internal combustion engine (1), including a flexible drive having a traction mechanism (5) which is guided across a generator pulley (6) driving the generator (3). The generator (3) is configured and electrically wired such that the generator (3) can be temporarily driven as a motor, and the generator (3) is coupled to the generator pulley (6) or the crankshaft pulley (7) is coupled to the crankshaft (8) via an overrunning clutch (4) which allows the generator (3), when operated as a motor, running faster than the generator pulley (6) or, taking into consideration a gear ratio, the crankshaft (8).




i

Direct current brushless motor

A motor includes a frame, a shaft rotatably mounted onto the frame, and at least one disc mounted onto the shaft. At least one permanent magnet is mounted on the disc, and at least one electromagnet and at least one coil are mounted to the frame in rotational magnetic proximity to the permanent magnet. A battery is connectable to the electromagnet and the coil for energizing the electromagnet and for receiving electrical current from the coil for charging the battery. A relay switch controls the transmission of electrical power from the battery to the electromagnet. A sensor generates a signal to the relay switch to activate electrical power to the electromagnet upon sensing that the permanent magnet is positioned with respect to the electromagnet such that a magnetic force generated by the electromagnet would be effective for inducing movement of the permanent magnet and consequent rotation of the disc.




i

Current balance control in converter for doubly fed induction generator wind turbine system

Systems and methods for reducing current imbalance between parallel bridge circuits used in a power converter of a doubly fed induction generator (DFIG) system are provided. A control system can monitor the bridge current of each of the bridge circuits coupled in parallel and generate a feedback signal indicative of the difference in bridge current between the parallel bridge circuits. Command signals for controlling the bridge circuits can then be developed based on the feedback signal to reduce current imbalance between the bridge circuits. For instance, the pulse width modulation of switching devices (e.g. IGBTs) used in the bridge circuits can be modified to reduce current imbalance between the parallel bridge circuits.




i

Wind turbine and method for operating a wind turbine

A method is employed for operating a wind turbine. Electrical energy is produced by means of a generator and is fed into an electrical power network. The electrical energy is fed to the secondary side of a transformer at a low voltage and is output on the primary side of the transformer at a higher voltage. The potential on the primary side of the transformer is undefined. In the method, a measured value of the voltage between the primary side of the transformer and the earth potential is first recorded. The measured value is compared with a predefined limit value. The electrical energy produced by the generator is changed if the measured value exceeds the limit value. A wind turbine is designed to carry out the method. Faults in the medium voltage network can be reacted to without an additional star point on the primary side of the transformer being required.




i

Double fed induction generator (DFIG) converter and method for improved grid fault ridethrough

A double fed induction generator (DFIG) converter method are presented in which rotor side current spikes are attenuated using series-connected damping resistance in response to grid fault occurrences or grid fault clearances.




i

System adapted for one or more electrically propellable vehicles (letting water pass by electrical conductors)

An arrangement adapted for letting water pass by electrical conductors and their contact surfaces related to a track of a system adapted for electrically driving a vehicle along a roadway. The vehicle is provided with a current collector which is displaceable up and down and sideways in relation to the direction of transportation, in order to be brought into mechanical and electrical contact with elongated tracks positioned below the roadway and comprising a conductor adapted to be supplied with current and put under voltage. At least two or three tracks are disposed parallel to each other in a common rail structure, with at least two of these tracks being adapted to support and contain individual electrical conductors with contact surfaces put under voltage, and wherein at least one track is disposed closer to the highest point of the roadway and adjacent to a track containing one of said conductors with contact surfaces, which may be put under voltage.




i

System adapted for one or more vehicles, which may be driven forward electrically

The present invention has its application to a system for driving an electric and by one or more batteries powered vehicle along a roadway, comprising “a” one or more vehicles, which may be driven by an individual electric motor or motors and where in the respective vehicles exhibit a power-controlling control circuit for creating the necessary power and/or speed control and wherein required power i.a. can be provided primarily by a chargeable can be provided primarily by a chargeable battery set associated with the vehicle and “b” a plurality of road sections road portions divisible for the roadway, each being allotted one or more vehicle external electric stations for charging the battery set thereby and/or for supplying necessary power and energy for driving the vehicle. The underneath side of the mentioned vehicle is provided with a contact means displaceably positioned up and down and sideways, counted in the direction of transportation. Said roadway and its road sections or portions exhibits an elongated track or groove, each road section is supporting two rails in the groove and disposed under the driving path of the road section or portion. The rails being supplied with current and voltage. Said contact means is coordinated with a control equipment for creating simple adaptation of the contact means for registering the contact means for mechanical and electrical contact against said two rails.




i

Wireless power feeder and wireless power receiver

A wireless power feeder 116 feeds power from a feeding coil L2 in the ground to a receiving coil L3 incorporated in an EV by wireless using a magnetic field resonance phenomenon between the feeding coil L2 and receiving coil L3. A plurality of feeding coils L2a to L2d are buried in the ground. Receivers 112a to 112d are buried in corresponding respectively with the feeding coils L2a to L2d. The plurality of receivers 112 each receive a position signal transmitted from a transmitter 110 of the EV. A feeding coil circuit 120 supplies AC power to the feeding coil L2 corresponding to the receiver 112 that has received the position signal to allow the feeding coil L2 to feed power to the receiving coil L3 by wireless.




i

Spooling apparatus for survey wire

A spooling apparatus includes a spool for holding wire, the spool having a wire-retaining section and end plates, the end plates having one or more apertures. A conductive plate is positioned on an end plate of the spool opposite the wire-retaining section, and at least one conductive extension that extends through a corresponding aperture of the end plate such that the conductive extension is adjacent to the wire retaining section. Wire is spooled onto the wire-retaining section, at least a portion of the wire being uninsulated and in electrical contact with the conductive extensions of the conductive plate.




i

Mobile device case with retractor reel assembly for user-provided headphones

A mobile device case includes a reel assembly, including a reel, a supporting plate, and a hub between the reel and the supporting plate. The hub includes a first cavity between the hub and the supporting plate for housing a spring, and a second cavity between the hub and the reel for housing a flat flexible cable (FFC). The spring is wound in a first direction, while the FFC is wound in a second direction. The FFC includes a first end for electrically coupling to a female jack connector of a device. A female connector is electrically coupled to a second end of the FFC for engaging a male jack connector of user-provided headphones. When the reel rotates in the first direction, the spring tightens and the FFC loosens. When the reel rotates in the second direction, the spring loosens and the FFC tightens.




i

Power supply device, power acquisition device and safety system for electromagnetic induction-powered electric vehicle

It is provided a power supply device and a power acquisition device for an electromagnetic induction-powered electric vehicle that increase a power transfer efficiency by maximizing a lateral deviation tolerance and by minimizing a gap between the power acquisition device and the power supply device while preventing the power acquisition device from colliding with an obstacle present on a road and being damaged by the collision.




i

Device and method for inductively transmitting electric energy to displaceable consumers

The invention relates to a device for inductively transmitting electrical energy to displaceable consumers (F1-F13) that can be moved along a track, having a primary conductor arrangement (2) divided into route segments (3-7) that are electrically separated from each other, and extending along the track, wherein individual route segments (3-7) are each associated with at least one current source (3'-7') for imprinting a continuous current into each of the route segments (3-7), and to a corresponding method. The aim of the invention is to supply the displaceable consumers in an energy-saving manner with electric energy matched to demand, and to allow short reaction times when operating the device. This aim is achieved by providing the device with a means (11) for determining the total power of the displaceable consumers (F1-F13) present in each of the individual route segments (3-7) and with a means (11) for actuating the current sources (3'-7') for applying the electrical continuous current corresponding to the total power required for each route segment (3-7), or by determining, according to the method, the required total power of the displaceable consumers (F1-F13) present in each route segment and applying an electrical continuous current to each route segment (3-7) by means of the associated current source (3'-7'), said current corresponding to the total power required therein.




i

Electrical appliance holder system

An appliance holder system for electrical handheld appliances of the type having a flexible electrical power cord attached thereto is provided. The appliance holder system includes an appliance holder assembly having at least one receptacle for receiving and storing at least one electrical handheld appliance having a flexible electrical power cord attached thereto. A power cord storage assembly of the system has a pair of spaced apart cord wrapping elements about which the flexible electrical power cord may be wrapped for storage. At least one of the cord wrapping elements is movable between a storage and release position. The cord wrapping elements are configured to retain the wrapped power cord upon the power cord storage assembly when the at least one of the cord wrapping elements is in the storage position and wherein the wrapped power cord may be removed from the power cord storage assembly without unwrapping the wrapped power cord when the at least one of the cord wrapping elements is moved to the release position.




i

Umbilical cart and system

Disclosed is a conduit cart for supporting conduits above at least one rail. The conduit cart has a base; and at least two right-side protrusions, namely, a right-side sub-rail protrusion extending horizontally from the base; and a right-side super-rail protrusion extending horizontally from the base. The right-side sub-rail protrusion and right-side super-rail protrusion are adapted to straddle a flange of a first rail and the first rail is one among the at least one rail. Further, the base has at least two left-side protrusions, namely, a left-side sub-rail protrusion extending in a direction opposite to the right-side sub-rail protrusion from the base; and a left-side super-rail protrusion extending to the right-side super-rail protrusion from the base. The left-side sub-rail protrusion and left-side super-rail protrusion can straddle a substantially horizontal flange of a second rail, and the second rail is among the at least one rail.




i

Auxiliary and motive electric power pick-up structure for land vehicles

An auxiliary and motive electric power pick-up structure for articulated and non-articulated land vehicles, such as electric public transport vehicles, that pass close to a collector-shoe-type power supply member mounted on a stationary support (17) along the route of the vehicle and positioned at intervals along the length of the route in order to provide auxiliary and motive electric power to the vehicle by way of the shoe (16). The structure comprises at least one conductor rail mounted on insulating supports (11) attached to the vehicle by suspension points (34), each including an elastic suspension unit (30) and a pneumatic, hydraulic or other type active suspension unit (33). In the case of articulated vehicles, the pick-up structure is divided into power supply segments (14) separated by a conducting link (19) at each articulated unit of the vehicle.




i

Article transport facility

An article transport facility in which driving electric power can be supplied from an electricity supply line to an article transport vehicle so that it can travel through a crossing portion properly regardless of whether it is traveling along a first path or a second path. The switching device of the article transport facility is configured to switch a position change rail to a first position and a second position. The electricity supply line is supported by a first travel rail such that electric power can be supplied to the article transport vehicle traveling along the first travel rail and along the position change rail in the first position and is supported by the second travel rail such that electric power can be supplied to the article transport vehicle traveling along the second travel rail and along the position change rail in the second position.




i

Inductively receiving electric energy for a vehicle

The invention relates to an arrangement for providing a vehicle, in particular a track bound vehicle, with electric energy, wherein the arrangement comprises a receiving device (200) adapted to receive an alternating electromagnetic field and to produce an alternating electric current by electromagnetic induction. The receiving device (200) comprises a plurality of windings and/or coils (9, 10, 11) of electrically conducting material, wherein each winding or coil (9, 10, 11) is adapted to produce a separate phase of the alternating electric current.




i

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Low friction sheave bracket

An electrically powered mining vehicle including a frame rollingly supported on a surface for movement over the surface. An electric motor is coupled to the frame for proving power to the vehicle. A cable is electrically coupled to the electric motor for supplying electricity thereto and a cable management system is coupled to the frame and arranged to receive and payout the cable as the vehicle moves over the surface. A sheave bracket is coupled to the frame and arranged to direct the cable into the cable management system and includes a lower plate arranged substantially horizontally, a plurality of vertical rollers that are coupled to the lower plate and are arranged to guide the cable into the cable management system, and a horizontal roller that is coupled to the lower plate and arranged to elevate the cable above the lower plate.




i

Methods and systems for charging vehicles

This disclosure provides systems and methods for charging a vehicle. A vehicle and charging station can be designed such that an electric or hybrid vehicle can operate in a fashion similar to a conventional vehicle by being opportunity charged throughout a known route.




i

Ultra slim power supply device and power acquisition device for electric vehicle

An ultra slim power supply device for supplying power to an electric vehicle in a contactless manner includes at least one power supply track buried in a road. Each power supply track includes a plate-shaped magnetic core extending along the road, a plate or strip shaped magnetic field generator arranged above the magnetic core through which an alternating current is supplied to generate a magnetic field, a plate or strip shaped insulating body positioned between the magnetic core and the magnetic field generator to isolate them from each other, and a housing for enclosing the magnetic core, the magnetic field generator and the insulating body.




i

Rolling stock system and control method thereof

A breaker 162 is opened when a pantograph 101 is lowered. The pantograph 101 is connected to an overhead wire 200. Voltage and its phase of the overhead wire are detected by a detector 161. Power is supplied from a power storage device 150c to a tertiary winding 112c via a power converter 14c such that a primary side of the main transformer 110 has the same voltage and phase as the overhead wire so as to reversely excite the main transformer 110. When the voltage of the main transformer 110 has the same phase as the voltage of the overhead wire 200, the breaker 162 is turned on and then the pantograph 101 is raised, to connect the overhead wire 200 and the main transformer 110 to each other, thereby preventing the occurrence of an excitation inrush current to the main transformer 110.




i

Pressure plate assembly and method for power transmission

A pressing device for a current collector moves a contact shoe unit is movable relative to a current rail. The pressing device includes a rocker unit and a spring unit. The spring unit having a helical spring rotatably biasing rocker unit is rotatable such that the contact shoe unit is movable into a sliding contact position in only one direction spring unit.




i

System adapted for one or more electrically propellable vehicles (cleansing means)

A cleaning means related to a vehicle-related system for driving an electrically propellable vehicle along a roadway. The vehicle has three sources of power: a vehicle-related power generator, a set of batteries and vehicle-external electric stations. The vehicle is provided with a current collector which is displaceable up and down and sideways in relation to the direction of transportation, in order to be brought into mechanical and electrical contact with elongated tracks positioned below the roadway and comprising a conductor adapted to be connected with an electric station. The cleaning means is rotatably fastened in an upper area thereof about a horizontally oriented axis of rotation and adapted to clean the track from loose obstacles and/or yield to solid obstacles. The cleaning means and the axis of rotation are movably disposed in vertical direction by means of a resilient member. The cleaning comprises a forwardly directed edge portion oriented in the direction of travel, the edge portion comprising a point which may be brought into contact with the track and the conductor.




i

System adapted for one or more electrically propellable vehicles (battery charging arrangement)

A vehicle-related system adapted for electrically driving a vehicle along a road-way. The vehicle has three sources of power: a vehicle-related power generator, a set of batteries and vehicle-external electric stations. The vehicle is provided with a current collector which is displaceable up and down and sideways in relation to the direction of transportation, in order to be brought into mechanical and electrical contact with elongated tracks positioned below the roadway and comprising a conductor adapted to be connected with an electric station. A circuit, determining instantaneous power content of the set of batteries, is adapted to connect the vehicle-external power source via a switch belonging to the electric station, in order to charge the set of batteries and/or to supply power to the vehicle motor via a control circuit, when the power content of the set of batteries is at a predetermined level of power, lying below a maximum power content, and a supply of power or voltage from the vehicle-external power source is available.




i

360-degree freedom electric cord device and system

A 360-degree freedom electric cord device system contains and manages automatic extension and retraction of an electric cord/cable supplying power to a push/pull-type electric machine, either self-propelled or not, for intended displacement or steering on a surface by a user. The 360-degree freedom electric cord device system, partly mounted on the electric machine, allows the power cord to clear obstacles on the surface and includes a self-retracting spool to automatically extend and rewind the power cord and continuously keeps physical tension therein, in a straight line and a natural position, during the displacement in any direction of the electric machine. With a ratchet mechanism, the device can also suitably be used independently of the machine as an electric retractable extension cord reel.




i

Umbilical cart and system

Disclosed is a conduit cart for supporting conduits above at least one rail. The conduit cart has a base; and at least two right-side protrusions, namely, a right-side sub-rail protrusion extending horizontally from the base; and a right-side super-rail protrusion extending horizontally from the base. The right-side sub-rail protrusion and right-side super-rail protrusion are adapted to straddle a flange of a first rail and the first rail is one among the at least one rail. Further, the base has at least two left-side protrusions, namely, a left-side sub-rail protrusion extending in a direction opposite to the right-side sub-rail protrusion from the base; and a left-side super-rail protrusion extending to the right-side super-rail protrusion from the base. The left-side sub-rail protrusion and left-side super-rail protrusion can straddle a substantially horizontal flange of a second rail, and the second rail is among the at least one rail.