i

Polyester fabrics for airbag and preparation method thereof

Disclosed is a fabric for an airbag including a polyester fiber, and particularly to a polyester fabric for an airbag of which toughness is 3.5 to 6.0 kJ/m3 and tearing strength measured according to the ASTM D 2261 TONGUE method is 18 to 30 kgf, wherein the fabric includes polyester fiber of which toughness is 70 to 95 J/m3, a method of preparing the same, and an airbag for a car including the same.




i

Woven fabric having composite yarns for endoluminal devices

A woven fabric for a low profile implantable medical device includes a plurality of textile strands of a composite yarn aligned in a first direction interlaced with a plurality of textile strands of the composite yarn aligned in a second direction. The composite yarn includes a combination of a first material and a second material. The textile strands have a size between about 10 denier to about 20 denier. The first material has at least one characteristic different from the second material and the second material reacts favorably with blood when placed within an artery.




i

Stent graft having floating yarns

An implantable graft device is disclosed. The device comprises a graft body forming a lumen defining a longitudinal axis and comprising proximal and distal ends. The graft body comprises a woven fabric having warp yarns aligned in a first direction and weft yarns aligned in a second direction. The weft yarns are woven with the warp yarns. A portion of the warp yarns along the longitudinal axis of the graft body are not interwoven with the weft yarns, defining floating yarns having loops aligned in one of the first direction and the second direction. The device further comprises an expandable stent disposed circumferentially about the longitudinal axis and received through the loops of the floating yarns to attach the stent to the graft body.




i

Multiple layer weaving

A weaving apparatus is provided herein for simultaneously weaving fine denier panels and coarse denier panels. The weaving apparatus includes a first warp beam that holds in tension a first number of small denier warp threads and a second warp beam that holds in tension a second number of large denier warp threads. The first number of small denier warp threads is greater than the second number of large denier warp threads.




i

Multidirectional fiber-reinforced tape/film articles and the method of making the same

High tenacity, high elongation multi-filament polymeric tapes as well as ballistic resistant fabrics, composites and articles made therefrom. The tapes are fabricated from multi-filament fibers/yarns that are twisted together, bonded together, compressed and flattened.




i

Industrial two-layer fabric

An industrial two-layer fabric includes a first warp set and a second warp set that are placed alternately and form a weave design of the upper side fabric. The first warp set contains two upper side warps. At least one of the upper side warps of the first warp set functions as a warp binding yarn that binds the upper side fabric and the lower side fabric. The second warp set contains one of upper side warps and one of lower side warps placed below the one of the upper side warps. At a position where two adjacent lower side warps are woven with one of the lower side wefts, the warp binding yarn placed between the two adjacent lower side warps is woven with the same one of the lower side wefts.




i

Paint dispensing nozzle arrangement

A paint dispensing nozzle arrangement for dispensing paint into a paint applicator, the paint applicator having a base plate, an interface material to allow the paint to adhere to the base plate, and a removable paint mold, the nozzle arrangement comprising a dispensing nozzle for dispensing paint into the paint mold, and a displacement member, the displacement member arranged relative to the dispensing nozzle such that the nozzle can dispense paint into the paint mold without coming into contact with the interface material.




i

Reinforcing tape, cloth produced by sewing said reinforcing tape, and web structure utilizing said reinforcing tape

Provided are a lightweight, compact reinforcing tape capable of improving a tensile strength. A reinforcing tape for reinforcing a tensile strength of a cloth includes weft threads which constitute a weave structure of the reinforcing tape, and warp threads which constitute a weave structure of the reinforcing tape, wherein a part of the warp threads are made of a high-strength fiber.




i

Fabric straps with tubular structure containing free-floating yarns and varied width

Fabric strap having at least two different segments. The first segment is wider and less elastic, providing a comfortable contacting area to the skin and the other segment is narrower and more elastic which is aesthetically more pleasing and easier for applying sewing process in the garment production. Preferably, the first segment is a sealed tubular structure and contains internally free-floating yarns, making it exert less stress to the skin and thus more comfortable to the wearer. In addition, the different segments of the strap are made in a single integral weaving process and thus is conducive to industry automation.




i

Fabric for forming a paper web having an embossed surface

A fabric for forming a fibrous paper web having an embossed surface is provided that includes at least longitudinal and transverse threads interwoven with one another in a weave repeat defining a machine side and a paper side. Some of the longitudinal threads form embossing threads having projecting paper side floats on the paper side of the fabric passing over more than one transverse thread. The fabric includes at least a first woven fabric layer forming the paper side on its outside and having longitudinal and transverse first threads interwoven with one another and a second woven fabric layer forming the machine side on its outside and having longitudinal and transverse second threads interwoven with one another. At least some of the longitudinal second threads form embossing threads, which penetrate the first woven fabric layer for forming the paper side floats and connect the two woven fabric layers.




i

Textile sleeve with twisted hybrid fill yarn and method of construction thereof

A textile sleeve for routing and protecting elongate members and method of construction thereof is provided. The sleeve includes an elongate wall having opposite edges extending parallel to a central axis. The wall is woven with warp yarns extending parallel to the axis and hybrid fill yarns extending transversely to the warp yarns. The hybrid fill yarns are provided having a yarn filament core and non-metallic first and second yarn filaments overlying the yarn filament core. The first yarn filament is twisted about the yarn filament core in a first helical direction and the second multifilament yarn is twisted over the first yarn filament and about the yarn filament core in a second helical direction. The first helical direction and the second helical direction being opposite one another to provide a resultant zero torque on the yarn filament core.




i

Gripper head for the insertion of weft threads on a gripper weaving machine

A gripper head for the insertion of weft threads on a gripper weaving machine as well as a gripper weaving machine with such a gripper head. The gripper head thread clamp for the weft thread is controlled in a contact-free manner and with high transfer reliability of the weft thread even in the machine center.




i

Crimp-imbalanced fabrics

Crimp-imbalanced fabric systems are accomplished by varying the levels of yarn crimp within a single fabric layer and across layers of a multi-layer fabric system. The method includes developing a crimp in the yarn (utilized for producing a fabric layer) by optionally pulling the yarn through a solution that substantially coats the yarn. The optionally removable coating has a thickness that ensures a proper amount of crimp in the yarn. The tension in the yarn is controlled; the yarn is weaved; and a crimp is applied in the yarn. Once the crimp is applied, families of the crimped yarn are utilized as a single layer or multiple layer system to increase performance attributes including enhanced energy absorption.




i

Implantable graft device having treated yarn and method for making same

An implantable graft device having treated yarn is disclosed. The device comprises a graft body forming a lumen defining a longitudinal axis and comprising proximal and distal ends. The graft body comprises a woven fabric having warp yarns aligned in a first direction and a weft yarns aligned in a second direction. At least one of the weft yarns and the warp yarns has an agent applied thereto defining treated yarns of the graft body.




i

Device for manufacturing a fabric, and fabric

A device for manufacturing a fabric has a plurality of automatically working apparatus arranged next to one another on at least one carrier for manufacturing a leno weave (a leno weave apparatus). Two leno threads are fed to each leno weave apparatus. The device has at least one weft thread picking device; wherein the weft thread is introduced into the shed of leno threads raised by a plurality of leno weave apparatus. The weft thread is bound using at least two leno threads at a plurality of points behind the weft thread over the width of the fabric. At least one of the leno weave apparatus arranged in the end region of the fabric carries out a higher number of interlacings for achieving a homogenized warp tension distribution over the width of the fabric; and/or the lowering of the shed is carried out by the leno weave apparatus over the width of the fabric at different times for achieving a homogenized warp tension distribution.




i

Apparatus and method for loading tufts into a tuft carrier

A tuft carrier loading apparatus (10) for loading individual tufts (17) into tuft retention sites (9a) spaced along an elongate tuft carrier (9). The apparatus (10) includes a guide for guiding longitudinal movement of the tuft carrier along a path of travel and a plurality of individually and selectively operable tuft feeders (50) spaced along the path of travel, each tuft feeder (50) being operable when selected to feed an individual tuft to a tuft retention site (9a) of the tuft carrier (9). A driver (70) is drivingly connected to the tuft carrier (9) for moving the tuft carrier (9) along the path of travel, the driver (70) being operable to intermittently move the tuft carrier (9) through a series of successive positions whereat predefined tuft retention sites (9a) are moved temporarily into registry with each tuft feeder (50). A controller (60) is provided for controlling selection of the tuft feeders (50), the controller (60) being operable to actuate selected tuft feeders (50) to feed tufts to those tuft retention sites (9a) in registry therewith whilst the carrier (9) is located at each successive position. A detector is associated with each tuft retention site (9a) to detect the presence of a tuft. The driver (70), on detection of an absent tuft in a tuft retention site (9a) following actuation of one or more selected tuft feeders (50) resulting in failure to feed a tuft to the absent tuft retention site (9a), is operable to move the tuft carrier (9) into a position whereat the absent tuft retention site (9a) is moved temporarily back into registry with the or one selected tuft feeder (50) and the controller (60) re-actuates the selected tuft feeder (50) to feed a tuft to the absent tuft retention site (9a).




i

Joining loop structure of industrial multilayer fabric

A multilayer fabric is joined by engaging joining loops formed at both ends of a disjoined industrial multilayer fabric having wefts and warps in layers. The joining loops are formed by folding back some or all the end portions of warps. The both ends of the fabric are joined by engaging the loops to form a common hole and inserting a core wire into the common hole. At least one upper side weft remains while a lower side weft below the remaining upper side weft is removed at the both ends of the fabric. The common hole and the core wire inserted therein are located below the remaining upper side weft. The folded portions of the warps are interwoven with wefts of a normal portion of the fabric.




i

Manufacturing method of medical textiles woven from chitosan containing high wet modulus rayon fibre

An anti-“Methicillin-Resistant Staphylococcus Aureus (MRSA)” chitosan containing antibacterial High Wet Modulus (HWM) rayon fiber textile for medical usage is made of the steps as following: chitin flakes made from natural shrimp or crab shells are deacetylated to generate chitosan with a high deacetylation degree of 90% or more. Next chitosan is dissolved in acetic acid and regenerated by caustic soda to form a chitosan antibacterial nanoparticles slurry, then added to HWM viscose rayon process, and spinning to produce a chitosan containing antibacterial HWM rayon fiber. The antibacterial amino groups of chitosan and the hydroxyl groups of rayon cellulose combine together via hydrogen bonding. Therefore, the fiber becomes the anti-MRSA antibacterial HWM rayon fiber containing amino groups (—NH3+). Finally the resulting HWM rayon fiber is conducted via a yarn spinning or/and weaving process to procure a medical textile with chitosan content.




i

High strength ultra-high molecular weight polyethylene tape articles

Processes for the production of high strength polyethylene tape articles from high strength ultra-high molecular weight multi-filament yarns, and to the tape articles, fabrics, laminates and impact resistant materials made therefrom.




i

X weave of composite material and method of weaving thereof

An X weave of composite material has multiple latitudinal fibers, multiple longitudinal fibers, and a woven center. Each longitudinal fiber is layered on two of the latitudinal fibers and then is woven through and layered under two of the latitudinal fibers. The longitudinal fibers are each woven by shifting in relative alignment position from one of the latitudinal fibers sequentially and woven radially with respect to the woven center, such that the longitudinal fibers form an X woven structure. Therefore, the intensity of the X weave can be enhanced by the X woven structure.




i

Flexible, abrasion resistant textile sleeve and method of construction thereof

A textile sleeve for routing and protecting elongate members and method of construction thereof is provided. The sleeve includes an elongate wall having opposite edges extending parallel to a central axis of the sleeve. The wall is woven with warp yarns extending parallel to the axis and fill yarns extending transverse to the warp yarns. The warp yarns include monofilament yarns within an intermediate region of the wall and multifilament yarns within opposite edge regions of the wall to enhance abrasion resistance and curl, respectively, and the fill yarns include monofilament yarns larger in diameter than the fill monofilament yarns to provide further abrasion resistance, enhanced curl strength and multifilament yarns to provide increased coverage, maintain flexibility, and to maintain the warp monofilaments in their intended position.




i

Weaving machine having movable shed opening limiter device

A weaving machine for producing a woven fabric has a shedding device to form a loom shed of warp material, a weft insertion device for inserting a preferably tape-shaped or band-shaped weft material into the loom shed, a drawing-off device for drawing off the finished fabric in a drawing-off direction, fabric movement device for moving the fabric back and forth in the warp direction to bring the last inserted weft material into contact with the binding point or fabric edge. A shed limiter device limits the opening of the loom shed from above and below the warp, and is movable back and forth in the warp direction. The shed limiter device only loosely bounds the fabric and essentially without actively clamping or pinching or contacting the fabric and/or the last inserted weft material, at least while moving in the direction opposite the drawing-off direction.




i

Method and device for the manufacturing of fabrics with at least two different pile heights in a same pile row

A method weaves pile fabrics with at least two different pile heights (a, b) in the same pile row, wherein the fabrics have weft threads, ground warp threads and pile-warp threads (1, 2), wherein these pile-warp threads are interlaced in the fabric, according to a pattern, in a figure-forming manner or are inwoven in a non-figure-forming manner, and which, when they are figure-forming, form pile with a well-defined pile height. The method includes a first set of pile warp threads, under light strain and at least a second set of pile warp threads under a higher strain. A device for manufacturing such fabrics is described.




i

Weaving method and loom for implementing this method

The loom includes a weaving area (18) into which weft threads are inserted into at least one upper channel and one lower channel, each of these weft threads being inserted between at least two warp threads by at least one weft insertion element: first element for focusing on one of these channels and determining the position of the warp threads relative to the weft thread, and second element for inserting at least one binding thread (16) above, between and below these channels. The loom includes at least one element for gripping the at least one binding thread and element for moving the at least one gripping element out of and into the weaving area (18) so as to place the at least one gripping element in contact with the at least one binding thread and to allow the drawing of the at least one binding thread.




i

Blind of united blind by weaving

The present invention provides a textile blind united by weaving, which is formed as a single body by weaving slat textiles along a width between a front textile and a back textile in parallel with each other, wherein the slat textiles are arranged along the height of the front and back textiles to make the textile blind easily block lights.




i

Three-dimensional woven fabric and method for producing the same

A three-dimensional woven fabric including front layer, rear layer, and light-shielding layer connecting front layer to rear layer and a method thereof are disclosed. The light-shielding layer is formed by repeatedly overlapping first, second, and third light-shielding layers with another light-shielding layer with adjacent ones among the first to the third light-shielding layers overlapped. The front layer includes front parts formed by weaving front layer wrap threads and weft threads, the front parts have front layer-connecting parts formed by sequentially and repeatedly weaving front layer wrapwrap threads and weft threads and light-shielding layer wrap threads, the rear layer includes rear layer-connecting parts formed by weaving sequentially and repeatedly the rear layer wrap threads and weft threads and light-shielding layer wrap threads. The light-shielding layers are formed by weaving light-shielding layer wrap threads and the weft threads, and the light-shielding layers are sequentially and repeatedly connected to front layer-connecting parts and rear layer-connecting parts. Three-dimensional shapes are implemented without adhesive. Various designs and light-shielding control are available.




i

Group of reflection optic sensors in a weft feeder for weaving looms

Group of optic sensors (S) in a weft feeder, in particular for weaving looms, comprising one or more pairs of emitting sensors (E) and receiving sensors (R) arranged on a portion of the weft feeder (C) which extends laterally to the drum (T) of the weft feeder whereon the coils of the weft thread are wound, so as to form optic radiation going-paths from each of said emitting sensors (E) to a reflecting surface (9) provided on said drum (T) and optic radiation back-paths, from said reflecting surface (9) to corresponding receiving sensors (R), for detecting the presence/absence of a thread which crosses said paths. The optic sensors (E, R) are of the SMT type and are wired on a printed-circuit board (8) with an optic axis parallel to the plane of said board (8). A first group of total-reflection mirrors (V), one for each pair of emitting/receiving sensors (E, R), is inclined so as to deviate the optic radiation from the plane of the board (8) to a plane perpendicular to or inclined with respect to the same. A second group of partial-reflection mirrors (H), one for each pair of emitting/receiving sensors (E, R), is inclined so as to deviate the optic radiation in the same plane as board 8.




i

Safety lanyard and manufacturing method thereof

This lanyard, which is movable by elasticity between a rest position and a stretched position, comprises a tubular sheath made from non-stretchable material, and a set of elastic threads joined to the sheath. According to the invention, the elastic threads define at least one longitudinal weaving zone in which they are woven on one surface of the sheath only, each weaving zone being proper to form a bending zone of the lanyard, in the rest position, in which the elastic threads are folded onto themselves.




i

Woven preform, composite, and method of making thereof

A three dimensional woven preform, a fiber reinforced composite incorporating the preform, and methods of making thereof are disclosed. The woven preform includes one or more layers of a warp steered fabric. A portion of the warp steered fabric is compressed into a mold to form an upstanding leg. The preform includes the upstanding leg and a joggle in a body portion. The body portion and upstanding leg are integrally woven so there is continuous fiber across the preform. A portion of the warp steered fabric includes stretch broken carbon fibers in the warp direction, and another portion includes conventional carbon fibers. The warp steered fabric can be woven on a loom equipped with a differential take-up mechanism. The warp steered fabric can be a single or multilayer fabric. The preform or the composite can be a portion of an aircraft window frame.




i

Connecting rod for a weaving loom and weaving loom comprising this connecting rod

The connecting rod (6) for two articulations with parallel axes and for transmitting the rocking movements of an output lever of a shedding device to a heald frame belonging to a weaving loom, having a first connecting tip connecting to a first articulation and secured to a longitudinal bar, a second connecting tip (62) connecting to a second articulation and including members for clamping the bar that are accessible from one side of the connecting rod, and members (64) for separating the tips along a longitudinal axis (X6) of the connecting rod. The separating member having a bearing member (640) on an inclined surface (612; 630) whereof the normal is comprised in a plane (P6) perpendicular to the axes of the articulations and is inclined relative to the longitudinal axis (X6) of the connecting rod, while the bearing member (640) can be moved in a direction perpendicular to a plane (P34) containing the axes (X3, X4) of the articulations.




i

Golf swing practice apparatus

A golf swing practice apparatus which includes a rotating drum having an optical sensor mounted inside the drum that is capable of swiveling in a direction perpendicular to the rotational direction of the drum and capable of detecting a change in swivel position or swivel angle; an elongated cord including a proximal end secured to the drum and a distal end secured to a golf ball; a base member having an impact area over which a user may swing a golf club; and a frame structure secured to the base member and to the rotating drum whereby the frame structure holds the rotating drum in an elevated position above the impact area.




i

Industrial two-layer fabric

An industrial two-layer fabric has an inner space between an upper side fabric and a lower side fabric. Some or all of upper side wefts or lower side wefts are secondary wefts interwoven with upper side warps or lower side warps so as to make the number of warps passing on an upper surface of the upper side fabric or passing on a lower surface of the lower side fabric larger than that on an inner space side of the upper or lower side fabric and a long crimp in the inner space is formed by the secondary weft.




i

Innerduct

A seamless and integrated textile innerduct having: a warp composed of polyester monofilament yarns and a weft composed of polyester multifilament yarns, wherein the warp has 70-85 ends per inch, the weft has 14-25 ends per inch, the warp and weft are integrated seamlessly to form an elongated enclosure having breaking strength of at least 1000 pounds, a vertical retraction rate of less than 3% at 150° C. for a duration of one hour, a longitudinal shrinkage rate of less than 3% at −80° C.; a pulling strip is placed inside the enclosure; the pulling strip is made of polyester multifilament yarns; and the inner duct is flexible and stretchable longitudinally.




i

Woven fabric for air bags, air bags and process for production of the woven fabric

An airbag fabric, airbag and method for making the airbag fabric, the fabric consisting of warp and weft yarns of synthetic fiber yarn, characterized by satisfying the following requirements: (1) the total fineness of the synthetic fiber yarn is 100 to 700 dtex;(2) Nf/Nw≧1.10 wherein, Nw represents the weaving density of warp yarns (yarns/2.54 cm) andNf represents the weaving density of weft yarns (yarns/2.54 cm);(3) EC1≧400N and EC2≧400N wherein, EC1 represents the edgecomb resistance (N) in the machine direction, as determined according to ASTM D6479-02, andEC2 represents the edgecomb resistance (N) in the crosswise direction as determined according to ASTM D6479-02;(4) 0.85≦EC2/EC1≦1.15; and(5) the air permeability, as determined according to the Frajour type method specified in JIS L1096 at a test pressure difference of 19.6 kPa, is 1.0 L/cm2·min or less.




i

Multilayer protective textile sleeve and method of construction

A multilayer textile sleeve and method of construction thereof is provided. The sleeve has an outer layer constructed at least in part from a first warp yarn extending along a length direction of the sleeve and a weft yarn extending transversely to the length direction. The sleeve further includes an inner layer constructed at least in part from a second warp yarn extending along the length direction and a weft yarn extending transversely to the length direction, with the second warp yarn being a different type of yarn than the first warp yarn. The outer layer and inner layer are connected to one another by interlinking the weft yarn of the outer layer with at least some of the second warp yarns of the inner layer and by interlinking the weft yarn of the inner layer with at least some of the first warp yarns of the outer layer.




i

Device for making woven article

A device for making a woven article from a plurality of strings includes a base, a post, first and second engagement devices and a stabilization device. The base has a plurality of slots formed therein. The first engagement device engages first ends of the strings and is fixedly attached to the base and fixed relative to the slots, thereby fixing the first ends relative to the base. The second engagement device is fixedly attached to the base and includes a plurality of slits each configured to secure a corresponding one of the strings. The slots formed in the base are disposed between and spaced apart from the first and second engagement devices. The stabilization device is removably engageable with a selected one of the slots and is configured to engage a selected portion of the strings between the first and second engagement devices to restrict twisting of the strings.




i

System and method for controlling output of a battery pack

Systems and methods for controlling the output of a battery pack are disclosed. In one example, a battery pack contactor is opened in response to battery pack current. The system and method may reduce battery pack degradation and increase system flexibility.




i

Battery system for vehicle

A battery system for a vehicle is provided with discharge circuits (R1, 129A through 129D, 128A through 128D) that discharge battery cells (BC1 through BC4) via measurement lines of those battery cells (BC1 through BC4). A control circuit transmits to an integrated circuit (3A) a first discharge command that causes discharge of the odd numbered battery cells (BC1 and BC3) of a cell group (GB1), a first transmission command that causes transmission to the control circuit of the terminal voltages of only the odd numbered battery cells (BC1 and BC3) measured during execution of the first discharge command, a second discharge command that causes discharge of the even numbered battery cells (BC2 and BC4) of the cell group (GB1), and a second transmission command that causes transmission to the control circuit of the terminal voltages of only the even numbered battery cells (BC2 and BC4) measured during execution of the second discharge command; and, based on the these various terminal voltages transmitted from the integrated circuit (3A), the control circuit diagnoses abnormalities in the system that includes the battery cells, the measurement lines, and the discharge circuits.




i

Method for transferring energy between at least two energy storage cells in a controllable energy store

In a method for transferring energy between at least two energy storage cells in a controllable energy store that serves to control and to supply electrical energy to an n-phase electric machine, which energy store has n power supply arms which each have at least two series-connected energy storage modules which each include at least one electrical energy storage cell with an associated controllable coupling unit, and are connected to one respective phase of the electric machine, in a charging phase, all coupling units of those energy storage modules which are to be used as an energy source are controlled in such a way that the respectively associated energy storage cells are connected into the respective power supply arm.




i

Parallel circuit of accumulator lines

A circuit for connecting a first accumulator line to a second accumulator line from an accumulator is described. The accumulator is provided for charging and discharging electrical energy via the accumulator lines. Each accumulator line has a positive pole and a negative pole for charging and discharging electrical energy. The circuit has at least one first switch which is provided for disconnecting and connecting two similar poles of the two accumulator lines.




i

Assembled battery charging method, charging control circuit, and power supply system

A method for charging an assembled battery including series circuits connected in parallel, each of the series circuits including series-connected lead storage batteries, using a single charger is provided. The method includes: a first step of obtaining a first index value, corresponding to a resistance value of a first series circuit with a correlative relationship, the first series circuit having a lowest resistance value; a second step of obtaining a second index value corresponding to a resistance value of a second series circuit with a correlative relationship, the second series circuit having a highest resistance value; a third step of performing normal charging, in which the assembled battery is charged with a first amount of charge corresponding to the first index value; and a fourth step of performing refresh charging, in which the assembled battery is charged with a second amount of charge corresponding to the second index value.




i

State based full and empty control for rechargeable batteries

State based full and empty control for rechargeable batteries that will assure a uniform battery empty condition, even in the presence of a load on the battery. A fuel gauge provides a prediction of the open circuit voltage of the battery, and when the predicted open circuit voltage of the battery reaches the predetermined open circuit voltage of an empty battery, the load is terminated, after which the battery will relax back to the predetermined open circuit voltage of an empty battery. A similar technique is disclosed for battery charging, allowing faster battery charging without overcharging. Preferably an RC battery model is used as the fuel gauge to provide the prediction, but as an alternative, a coulomb counter may be used to provide the prediction, with error correction between successive charge discharge cycles.




i

Battery pack and method of controlling the same

A battery pack, and a method of controlling the battery pack are disclosed. The battery pack detects consumption current when a load is not turned on, and shuts off power when a load is turned off or in stand-by mode, thereby preventing consumption current of the load from flowing.




i

Battery cell temperature detection

Temperature characteristics of battery cells are detected. In accordance with one or more embodiments, an intercept frequency is detected for each battery cell, at which frequency an imaginary part of a plot of impedance values of the battery cell exhibits a zero crossing. The impedance values correspond to current injected into the cell. A temperature of the cell is determined based upon the detected intercept frequency for the cell and stored data that models operation of the cell. Various approaches are implemented with different types of circuits coupled to detect the impedance values of the respective cells.




i

Battery protecting circuit, battery protecting device, and battery pack

A disclosed battery protecting circuit includes a battery protecting IC powered by a voltage of a secondary battery; another battery protecting IC powered by a voltage of another secondary battery connected to the secondary battery in series; and a constant voltage output unit which receives a maximum voltage obtained by adding voltages of the secondary battery and the other secondary battery in series and outputs a constant voltage upon receipt of a control signal from an output terminal of the battery protecting IC or the other battery protecting IC.




i

Method and circuitry to calculate the state of charge of a battery/cell

The present inventions, in one aspect, are directed to techniques and/or circuitry to adapt the charging of a battery using data which is representative of an overpotential or relaxation time (full or partial) of the battery. In another aspect the present inventions are directed to techniques and/or circuitry to calculate data which is representative of an overpotential or relaxation time (full or partial) of the battery. In yet another aspect the present inventions are directed to techniques and/or circuitry to calculate data which is representative of a state of charge of the battery using an overpotential or relaxation time (full or partial) of the battery.




i

Charging device with battery management system for rechargeable battery

A charging device with a battery management system which remains a rechargeable battery in full capacity during standby after being fully charged is disclosed. The charging device includes a charging module, electrically connected to a power source, for charging the rechargeable battery; a voltage detecting module, for detecting a voltage of the rechargeable battery; and a determination module, for instructing the charging module to charge the rechargeable battery with a supplementary current, when the voltage of the rechargeable battery detected by the voltage detecting module reduces to a first predetermined voltage, until the voltage of the rechargeable battery reaches a second predetermined voltage. A reduction of the voltage of the rechargeable battery is due to self-discharge of the rechargeable battery during standby after being fully charged.




i

Monitor and control circuitry for charging a battery/cell, and methods of operating same

Circuitry and techniques to measure, at the battery's terminals, characteristic(s) of the charging signal applied to the battery/cell during the recharging operation and, in response to feedback data which indicates the charging signal is out-of-specification, control or instruct the charging circuitry to adjust characteristic(s) of the recharging signal (e.g., the amplitude of the voltage of and/or current applied to or removed from the battery during the charging operation). For example, a rechargeable battery pack comprising a battery, and controllable switch(es), a current meter and voltmeter, all of which are fixed to the battery. Control circuitry generates control signal(s) to adjust a current and/or voltage of the charging signal using the feedback data from the current meter and/or voltmeter, respectively.




i

Method for operating an automated guided, mobile assembly and/or material transport unit and automated guided, mobile assembly and/or material transport unit therefor

A method for operating a driverless, mobile assembly and/or material transport unit as a driverless transport system (DTS) with fixed assembly and/or warehousing stations. In this method, a system control device is used for the entire assembly process. The driverless, mobile assembly and/or material transport units comprises a travel device for the traveling movement of the unit, a drive device for the travel device, an energy storage device for providing the energy for the drive device and a control device for controlling the traveling movement in coordination with the system control device.




i

Systems and methods for detecting ultracapacitor cell short circuits

A system for detecting a short-circuited ultracapacitor cell in a machine is disclosed. The system may have a memory that stores instructions and one or more processors capable of executing the instructions. The one or more processors may be configured to perform cell balancing among ultracapacitor cells arranged within two or more ultracapacitor modules, each ultracapacitor module including at least two ultracapacitor cells connected in series. The one or more processors may be further configured to measure a module voltage generated by each of the plurality of ultracapacitor modules after performing the cell balancing and before applying a load of the machine to the ultracapacitor modules, and determine whether an ultracapacitor cell among the plurality of ultracapacitor cells is short-circuited based on a comparison of the measured module voltages.