r

Process for increasing the carbon monoxide content of a syngas mixture

The invention relates to a process for increasing the carbon monoxide content of a feed gas mixture comprising carbon dioxide, hydrogen and carbon monoxide via a catalytic reversed water gas shift reaction, comprising the steps of (1) heating the feed gas mixture having an initial feed temperature of at most 350° C. in a first zone to a temperature within a reaction temperature range in the presence of a first catalyst; and (2) contacting the heated feed gas in a second zone within the reaction temperature range with a second catalyst. This process shows relatively high conversion of carbon dioxide, and virtually no methane or coke is being formed, allowing stable operation.




r

Fischer-Tropsch catalysts

A method of producing an alumina-supported catalyst for use in a Fischer-Tropsch synthesis reaction, which comprises: calcining an initial γ-alumina support material at a temperature of at least 550° C. to produce a modified alumina support material; impregnating the modified alumina support material with a source cobalt; calcining the impregnated support material at a temperature of 700° C. to 1200° C., and activating the catalyst.




r

Apparatus and process for treating offshore natural gas

A process for treating offshore natural gas includes processing the natural gas on an off-shore processing facility by, (i) liquefying and fractionating the natural gas to generate a liquefied natural gas stream and a higher hydrocarbon stream, (ii) vaporizing at least a portion of the higher hydrocarbon stream, (iii) passing the vaporized higher hydrocarbon stream and steam over a steam reforming catalyst to generate a reformed gas mixture comprising methane, steam, carbon oxides and hydrogen, (iv) passing the reformed gas mixture over a methanation catalyst to generate a methane rich gas, and (v) combining the methane-rich gas with the natural gas prior to the liquefaction step.




r

Method for processing fischer-tropsch off-gas

A method for producing a gas comprising at least 80 vol % carbon monoxide from a Fischer-Tropsch off-gas comprises: (1) feeding Fischer-Tropsch off-gas through a column comprising an adsorbent bed at high pressure and discharging effluent; (2) reducing the pressure in the column and the bed slightly; (3) rinsing the column and the adsorbent bed with methane or a mixture of methane and carbon dioxide; (4) reducing the pressure of the column and adsorbent bed to a low pressure; (5) rinsing the column and adsorbent bed with a mixture of hydrogen and nitrogen; (6) pressurizing the column and adsorbent bed to a high pressure using a mixture of hydrogen and nitrogen. The product stream obtained in step (3) comprising at least 80 vol % carbon monoxide can be sent as feed to a Fischer-Tropsch reaction. In an embodiment, a gas comprising at least 80 vol % hydrogen is also produced.




r

Methanol synthesis process

A methanol synthesis process includes reacting a process gas containing hydrogen, carbon dioxide and carbon monoxide over a catalyst including shaped units formed from a reduced and passivated catalyst powder the powder including copper in the range 10-80% by weight, zinc oxide in the range 20-90% by weight, alumina in the range 5-60% by weight and optionally one or more oxidic promoter compounds selected from compounds of Mg, Cr, Mn, V, Ti, Zr, Ta, Mo, W, Si and rare earths in the range 0.01-10% by weight, to form a product gas, and condensing methanol, water and oxygenate by-products therefrom, wherein the total oxygenate by-product level in the condensate is below 500 ppm.




r

Integrated bioprocessing for fuel production

Systems and methods are provided for enhancing the integration of processes for recovering products from algae-derived biomass. The enhanced process integration allows for increased use of input streams and other reagents that are derived from renewable sources. This increases the overall renewable character of the products extracted from the algae-derived biomass. The process integration can include exchange of input streams or energy between an algae processing system and a system for processing non-algal biomass. One example of improving process integration is using oxygenates that are generated in a renewable manner as a reagent for enhancing the algae processing system.




r

Mixed oxide based catalyst for the conversion of carbon dioxide to syngas and method of preparation and use

The invention relates to a catalyst and process for making syngas mixtures including hydrogen, carbon monoxide and carbon dioxide. The process comprises contacting a gaseous feed mixture containing carbon dioxide and hydrogen with the catalyst, where the catalyst comprises Mn oxide and an auxiliary metal oxide selected from the group consisting of La, Ca, K, W, Cu, Al and mixtures or combinations thereof. The process enables hydrogenation of carbon dioxide into carbon monoxide with high selectivity, and good catalyst stability over time and under variations in processing conditions. The process can be applied separately, but can also be integrated with other processes, both up-stream and/or down-stream including methane reforming or other synthesis processes for making products like alkanes, aldehydes, or alcohols.




r

Preparation of iron/carbon nanocomposite catalysts for Fischer-Tropsch synthesis reaction and related production of liquid hydrocarbons

Iron/carbon (Fe/C) nanocomposite catalysts are prepared for Fischer-Tropsch synthesis reaction. A preparation method includes steps of mixing iron hydrate salts and a mesoporous carbon support to form a mixture, infiltrating the iron hydrate salts into the carbon support through melt infiltration of the mixture near a melting point of the iron hydrate salts, forming iron-carbide particles infiltrated into the carbon support through calcination of the iron hydrate salts infiltrated into the carbon support under a first atmosphere, and vacuum-drying the iron-carbide particles after passivation using ethanol. Using such catalysts, liquid hydrocarbons are produced.




r

Fuel processing system and related methods

A fuel processing system for converting a logistical fuel and air into a liquid product comprising methanol. One such system comprises a fuel injection system configured to combine a logistical fuel and ambient air to produce a logistical fuel and air mixture, a synthesis gas production system configured to convert the logistical fuel and air mixture to synthesis gas, and a methanol synthesis system configured to convert the synthesis gas to a crude methanol liquid. Related methods are additionally disclosed.




r

Method, system and equipment for gasification-liquefaction disposal of municipal solid waste

A gasification-liquefaction disposal method, system and equipment for MSW are disclosed. The method involves the MSW pretreatment of dehydrating and separating, thus reducing water and inorganic substance content of the waste. Then, the MSW is introduced into a plasma gasifier (23) by a carbon dioxide air-sealed feeding device (13) and gasified therein to obtain hydrogen-rich syngas. The hydrogen-rich syngas is then cooled, deacidified, dedusted and separated to obtain carbon dioxide. Then, the hydrogen-rich syngas is catalyzed to produce methanol product in a methanol synthesis reactor (52). The separated carbon dioxide is sent back to a carbonation reaction chamber (2007) of a gasification system to perform carbonation reaction with calcium oxide, thereby releasing heat to provide assistant heat energy for gasification and avoiding greenhouse gas from being discharged into environment. Exhaust gas is returned to the plasma gasifier (23) for remelting treatment, thus forming a closed-loop circulation production system and realizing the disposal of the MSW with zero discharge and no pollution, thereby avoiding dioxin pollution and converting the MSW to chemical raw materials and fuel needed by mankind. The method, system and equipment are suitable for harmless and recycling disposal of MSW, industrial high polymer waste, composting waste and waste in waste sorting sites.




r

Process for the production of substitute natural gas

In a process for the production of substitute natural gas, a feed gas is provided to a first and/or second and/or subsequent bulk methanator. The feed gas is subjected to methanation in the presence of a suitable catalyst. An at least partially reacted stream from the first bulk methanator is removed and supplied to the second and/or subsequent bulk methanator where it is subjected to further methanation. A product stream from the final bulk methanator is passed to a trim methanator train where it is subjected to further methanation. A recycle stream is removed downstream of the first, second or subsequent bulk methanator, and, in any order, passed through a compressor, subjected to cooling and then supplied to a trim and/or recycle methanator for further methanation before being recycled to the first and/or second and/or subsequent methanator.




r

Method for upgrading hydrocarbon compounds and a hydrocarbon compound distillation separation apparatus

There is provided a method for upgrading hydrocarbon compounds, in which hydrocarbon compounds synthesized in a Fisher-Tropsch synthesis reaction are fractionally distillated, and the fractionally distillated hydrocarbon compounds are hydrotreated to produce liquid fuel products. The method includes fractionally distilling heavy hydrocarbon compounds synthesized in the Fisher-Tropsch synthesis reaction as a liquid into a first middle distillate and a wax fraction, and fractionally distilling light hydrocarbon compounds synthesized in the Fisher-Tropsch synthesis reaction as a gas into a second middle distillate and a light gas fraction.




r

Synthesis gas methanation process and apparatus

In a synthesis gas methanation process, at least one first fraction of synthesis gas to treat is fed, together with steam, to a shift reactor where a shift reaction occurs; the gas flow produced in the shift reactor is then fed to a first methanation reactor where a methanation reaction occurs and then to further second methanation reactors in series, where further methanation reactions, performed with the addition of fresh synthesis gas which has not been subjected to the shift reaction.




r

Production of hydrocarbons

A process for producing hydrocarbons and, optionally, oxygenates of hydrocarbons is provided. A synthesis gas comprises hydrogen, carbon monoxide and N-containing contaminants selected from the group consisting of HCN, NH3, NO, RXNH3-X, R1—CN and heterocyclic compounds containing at least one nitrogen atom as a ring member of a heterocyclic ring of the heterocyclic compound. The N-containing contaminants constitute, in total, at least 100 vppb but less than 1 000 000 vppb of the synthesis gas. The synthesis gas is contacted at an elevated temperature and an elevated pressure, with a particulate supported Fischer-Tropsch synthesis catalyst. The catalyst comprises a catalyst support, Co in catalytically active form supported on the catalyst support, and a dopant selected from the group consisting of platinum (Pt), palladium (Pd), ruthenium (Ru) and/or rhenium (Re). The dopant level is expressed by a formula. Hydrocarbons and, optionally, oxygenates of hydrocarbons are obtained.




r

Stacked catalyst bed for Fischer-Tropsch

The present invention pertains to a reactor tube comprising a fixed bed of Fischer-Tropsch catalyst particles, wherein the catalyst particles in 5% to 40% of the fixed bed volume at the upstream end have an average outer surface to volume ratio (S/V) in the range of between 3.0 to 4.5 mm−1, and the catalyst particles in the remaining fixed bed volume have an average outer surface to volume ratio (S/V) in the range of between 4.5 to 8.0 mm−1, and wherein the difference between the average S/V of the particles at the upstream end and the average S/V of the particles in the remaining fixed bed volume is at least 0.5 mm−1.




r

Apparatus and process for three-phase reaction

A system and process for removing catalyst fines from a gas stream overhead the slurry in a Fischer-Tropsch slurry bubble column reactor. The gas phase at the top of the slurry bubble column reactor containing small amounts of entrained liquid and catalyst particles. The unreacted gases are passed through a demister, which removes larger droplets and catalyst particles. Smaller droplets and catalyst fines are conveyed to a secondary gas cleaner, such as a cyclone, whereby substantially all remaining particles are removed from the gas phase. A particle-containing liquid produced in the secondary gas cleaner can be further subjected to a filtrate cleaning unit to filter out fine catalyst particles and produce a substantially particle-free liquid product stream and a slurry stream of liquid product containing catalyst particles.




r

Bulk sulfidic mixed metal catalyst and methods for its manufacture and use in converting syngas to alcohol

A process for sulfiding a cobalt-molybdenum bulk catalyst precursor to form a bulk sulfided alcohol synthesis catalyst. The process steps include contacting an oxidic bulk cobalt-molybdenum catalyst precursor with an amount of a sulfur-containing compound which is in the range of about 1 to about 10 moles of sulfur per mole of metals, at one or more temperatures at or in excess of about 300° C. in a medium which is substantially devoid of added hydrogen, so as to form a sulfided bulk cobalt-molybdenum catalyst product. Also described are processes for forming the catalyst precursor, processes for producing an alcohol using the catalyst product and the catalyst product itself.




r

Conversion of carbon dioxide to methanol using bi-reforming of methane or natural gas

The invention provides for a method of forming methanol by combining a mixture of methane, water and carbon dioxide under reaction conditions sufficient to form a mixture of hydrogen and carbon monoxide. Hydrogen and carbon monoxide are reacted under conditions sufficient to form methanol. The molar ratio of hydrogen to carbon monoxide is at least two moles of hydrogen to one mole of carbon monoxide and the overall molar ratio between methane, water and carbon dioxide is about 3:2:1. Methane, carbon dioxide and water are bi-reformed over a catalyst. The catalyst includes a single metal, a metal oxide, a mixed catalyst of a metal and a metal oxide or a mixed catalyst of at least two metal oxides.




r

Process for improving the hydrogen content of a synthesis gas

A process for improving the hydrogen content of a synthesis gas stream to a synthesis loop, comprising the steps of: (a) removing a purge stream comprising hydrogen and hydrocarbons from a synthesis loop; (b) separating hydrogen from the purge stream; (c) passing the purge stream to a reformer and reacting with steam and oxygen to produce a stream comprising hydrogen and carbon monoxide; (d) subjecting the reformed reaction product stream to a shift reaction to produce a stream comprising carbon dioxide and hydrogen; (e) subjecting the product stream from the shift reaction to separation to separate hydrogen from carbon dioxide; (f) supplying the separated hydrogen to the synthesis loop; and (g) removing the carbon dioxide.




r

Method for producing hydrocarbon oil, fischer-tropsch synthesis reaction device, and hydrocarbon oil production system

The present invention provides a process for producing a hydrocarbon oil by performing a Fischer-Tropsch synthesis reaction using a reactor for a Fischer-Tropsch synthesis including a reaction apparatus having a slurry containing catalyst particles and a gaseous phase located above the slurry to obtain a hydrocarbon oil, wherein the Fischer-Tropsch reaction is performed while controlling a temperature of the slurry so that a difference T2−T1 between the average temperature T1 of the slurry and a temperature T2 at the liquid level of the slurry in contact with the gaseous phase is 5 to 30° C.




r

Carbon-supported catalysts for production of higher alcohols from syngas

Catalyst compositions comprising molybdenum, sulfur and an alkali metal ion supported on a nanofibrous, mesoporous carbon molecular sieve are useful for converting syngas to higher alcohols. The compositions are produced via impregnation and may enhance selectivity to ethanol in particular.




r

Process for producing synthetic hydrocarbons from carbonaceous materials

A method for producing synthetic hydrocarbons from at least one carbonaceous material is provided. The method includes evaluating the resources of the carbonaceous material available on a determined territory; determining from the resources a total production capacity of synthetic hydrocarbons; determining from the total production capacity, a number of elementary production units required for obtaining the total production capacity, each elementary production unit having an elementary production capacity between a 100 and a 1,000 barrels a day of synthetic hydrocarbons; building the number of elementary production units on the territory; transporting the carbonaceous material from the territory as far as the elementary production units; producing the synthetic hydrocarbons in the elementary production units from the transported carbonaceous material.




r

Stacked catalyst bed for Fischer-Tropsch

The invention pertains to a reactor tube comprising a fixed bed of Fischer-Tropsch catalyst particles, wherein the catalyst particles in 5%-40% of the fixed bed volume at the upstream end have an average outer surface to volume ratio (S/V) of between 3.0 to 4.5 mm-1, and the remaining catalyst particles have an average S/V of between 4.5 to 8.0 mm-1, and wherein the difference between the average S/V of the particles at the upstream end and the remaining fixed bed volume is at least 0.5 mm-1. Additionally the fixed bed volume at the upstream end shows a full-bed apparent catalytic activity per volume unit lower than the full-bed apparent catalytic activity per volume unit in the remaining fixed bed volume and/or the weight of catalytically active metal per weight unit at the upstream end is more than 70% lower than in the remaining fixed bed volume.




r

Fischer tropsch method for offshore production risers or oil and gas wells

A method and an apparatus is disclosed that uses a gas lift tubing arrangement to produce synthetic hydrocarbon related products. Using the Fischer Tropsch process as an example, the tubing is packed with a suitable catalyst and then hydrogen and carbon monoxide are injected into the top of the tubing in a fashion similar to a gas lift process. As the gases travel past the catalyst, synthetic hydrocarbons are formed and heat is rejected. The synthetic hydrocarbons and water flow out of the bottom of the tubing and travel up the annulus to the surface. In some embodiments, this process is carried out in a producing well or a in producing riser. In a producing well or a producing riser, the production from the well which flows up the annulus cools the synthetic hydrocarbon derived products. In additional and alternate embodiments, this process can be used in non-flowing wells.




r

Fischer tropsch method for offshore production risers for oil and gas wells

A method and an apparatus is disclosed that uses a gas lift tubing arrangement to produce synthetic hydrocarbon related products. Using the Fischer Tropsch process as an example, the tubing is packed with a suitable catalyst and then hydrogen and carbon monoxide are injected into the top of the tubing in a fashion similar to a gas lift process. As the gases travel past the catalyst, synthetic hydrocarbons are formed and heat is rejected. The synthetic hydrocarbons and water flow out of the bottom of the tubing and travel up the annulus to the surface. In some embodiments, this process is carried out in a producing well or a in producing riser. In a producing well or a producing riser, the production from the well which flows up the annulus cools the synthetic hydrocarbon derived products. In additional and alternate embodiments, this process can be used in non-flowing wells.




r

Fischer-Tropsch process

The disclosed invention relates to a process for conducting a Fischer-Tropsch reaction, comprising flowing a reactant mixture comprising fresh synthesis gas and tail gas in a microchannel reactor in contact with a catalyst to form at least one hydrocarbon product, the catalyst being derived from a catalyst precursor comprising cobalt and a surface modified catalyst support.




r

Hydromethanation of a carbonaceous feedstock

The present invention relates generally to processes for hydromethanating a carbonaceous feedstock in a hydromethanation reactor to a methane product stream and a char by-product, and more specifically to removal of the char by-product from the hydromethanation reactor.




r

Hybrid fischer-tropsch catalysts and processes for use thereof

Disclosed are hybrid Fischer-Tropsch catalysts containing cobalt deposited on hybrid supports. The hybrid supports contain an acidic zeolite component and a silica-containing material. It has been found that the use of the hybrid Fischer-Tropsch catalysts in synthesis gas conversion reactions results in high C5+ productivity, high CO conversion rates and low olefin formation.




r

Fischer-Tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor

Disclosed is a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. Also disclosed is a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.




r

System, process and reactor for conducting a synthesis gas conversion reaction

A synthesis gas conversion process and system are disclosed. Fresh syngas from a methane reformer is used as a sweep zone gas feed which is caused to flow across a water permselective membrane in a membrane reactor. The water permselective membrane is adjacent a synthesis gas conversion reaction zone in which synthesis gas is contacted with a catalyst and converted to effluent including water. Water is removed from the reaction zone through the membrane and passes out of the reactor with the sweep zone gas. The water is then removed from the sweep zone gas forming a modified gas feed which is fed to the reaction zone. The modified gas feed has a preferred H2/CO ratio to feed into the reaction zone.




r

Fischer-tropsch process

The present invention is directed to a process for the production of hydrocarbon product from two different hydrocarbonaceous feedstocks comprising the steps of preparing a feed syngas having a hydrogen/carbon monoxide [H2/CO] molar feed ratio suitable for Fischer-Tropsch synthesis, wherein the feed syngas is prepared by combining a first syngas having a H2/CO molar ratio below the molar feed ratio and a second syngas having a H2/CO molar ratio above the molar feed ratio; the first syngas is prepared from a liquid hydrocarbon comprising feedstock as the sole source of carbon in a first syngas manufacturing process comprising a non-catalytic partial oxidation step; the second syngas is prepared from a methane comprising feedstock as the sole source of carbon in a second syngas manufacturing process comprising a heat exchange reforming step and an auto-thermal reforming step; and the first and second syngas manufacturing processes are operated in parallel.




r

Process and plant for the production of methanol with isothermal catalytic beds

A process for the synthesis of methanol, comprising the steps of reforming a hydrocarbon source obtaining a make-up gas feed (101), feeding said make up gas to a synthesis loop (L), converting said make up gas to methanol (108) in a substantially isothermal catalytic environment, wherein said catalytic environment comprises a plurality of isothermal catalytic beds (11, 12, 21) preferably arranged in series, and at least a portion of make-up gas (101) is mixed with recycle gas (112) from the loop (L), obtaining a gaseous mixture of fresh gas and recycle gas, and at least a portion of said gaseous mixture is directed between two consecutive catalytic beds acting as a quench gas. A related plant is also disclosed.




r

Method for designing a natural laminar flow wing of a supersonic aircraft

In designing supersonic aircrafts, a method of designing a natural laminar flow wing is provided which reduces friction drag by delaying boundary layer transition under flight conditions of actual aircrafts. A target Cp distribution on wing upper surface, suited to natural laminarization in which boundary layer transition is delayed rearward in desired Reynolds number states, is defined by a functional type having as coefficients parameters depending on each spanwise station, a sensitivity analysis employing a transition analysis method is applied to the parameters, and a search is performed for the optimum combination of parameters to delay transition rearward.




r

Adaptive multiple shooting optimization method for determining optimal spacecraft trajectories

Disclosed herein is a method for determining a trajectory for a transfer of a spacecraft from a starting space body to a target space body with respect to a given central space body, wherein the determined trajectory is optimal with respect to a given space mission requirement to be met by the transfer of the spacecraft. The method comprises providing, according to the Pontryagin maximum principle, a physical-mathematical model relating model quantities and physical quantities representing the transfer of the spacecraft with respect to the given central space body.




r

Method for creating a 3D model of a hydrocarbon reservoir, and method for comparative testing of hydrocarbon recovery techniques

A method of modelling a hydrocarbon-containing reservoir which is representative of such reservoir in at least one physical characteristic such as reservoir porosity or permeability. Data, such as reservoir porosity is firstly determined. Such data is then transformed into printing instructions for a 3D printer. The 3D printer is used to print a reduced-scale model which is representative of the reservoir in respect of the at least one physical characteristic, such as reservoir porosity. A method of comparative testing of different hydrocarbon recovery techniques on a single hydrocarbon-containing reservoir is also disclosed and claimed.




r

Production simulator for simulating a mature hydrocarbon field

A production simulator (2), for simulating a mature hydrocarbon field, providing quantity produced (Qφktb) per phase, per well, per layer (or group of layers) and per time as a function of production parameters (PP), wherein the production simulator (2) matches history data (HD) of the mature hydrocarbon field and verifies a Vapnik condition.




r

System and method for use in simulating a subterranean reservoir

A computer-implemented method, system, and computer program product are disclosed for updating simulation models of a subterranean reservoir. An ensemble of reservoir models representing a subterranean reservoir having non-Gaussian characteristics is provided and the ensemble of reservoir models is updated using a subspace ensemble Kalman filter. Kemal principle component analysis parameterization or K-L expansion parameterization can be used to update the ensemble of reservoir models.




r

Systems and methods for subsurface oil recovery optimization

Systems and methods for subsurface secondary and/or tertiary oil recovery optimization based on either a short term, medium term or long term optimization analysis of selected zones, wells, patterns/clusters and/or fields.




r

Real-time predictive systems for intelligent energy monitoring and management of electrical power networks

A system for intelligent monitoring and management of an electrical system is disclosed. The system includes a data acquisition component, a power analytics server and a client terminal. The data acquisition component acquires real-time data output from the electrical system. The power analytics server is comprised of a real-time energy pricing engine, virtual system modeling engine, an analytics engine, a machine learning engine and a schematic user interface creator engine. The real-time energy pricing engine generates real-time utility power pricing data. The virtual system modeling engine generates predicted data output for the electrical system. The analytics engine monitors real-time data output and predicted data output of the electrical system. The machine learning engine stores acid processes patterns observed from the real-time data output and the predicted data output to forecast an aspect of the electrical system.




r

Statistical circuit simulation

Method and system are disclosed for statistical circuit simulation. In one embodiment, a computer implemented method for statistical circuit simulation includes providing descriptions of a circuit for simulation, wherein the descriptions include variations of statistical parameters of the circuit, partitioning the circuit into groups of netlists according to variations of statistical parameters of the circuit, simulating the groups of netlists using a plurality of processors in parallel to generate a plurality of output data files, and storing the plurality of output data files in a memory. The method of partitioning the circuit into groups of netlists includes forming the groups of netlists to be simulated in a single instruction multiple data environment, and forming the groups of netlists according to proximity of variations of statistical parameters of the circuit.




r

Method and apparatus for simulating operation in a data processing system

Methods and systems are provided for executing a simulation of an operation in a data processing system. In one implementation, the method includes executing an operation under a first set of conditions, determining a characteristic associated with the execution of the operation under the first set of conditions, and executing a simulation of the operation under a second set of conditions different from the first set of conditions. The simulation of the operation is constrained by the determined characteristic. The method can further include determining a cost/benefit of executing the operation under a set of conditions different from the first set of conditions based at least in part on the simulation.




r

Routing device having multiple logical routers

Techniques are described for implementing one or more logical routers within a single physical routing device. These logical routers, as referred to herein, are logically isolated in the sense that they achieve operational and organizational isolation within the routing device without requiring the use of additional or redundant hardware, e.g., additional hardware-based routing controllers. The routing device may, for example, include a computing platform, and a plurality of software process executing within the computing platform, wherein the software processes operate as logical routers. The routing device may include a forwarding component shared by the logical routers to forward network packets received from a network in accordance with the forwarding tables.




r

Prioritization of three dimensional dental elements

The present disclosure includes methods, systems, and devices for prioritization of three dimensional dental elements. One method for prioritizing three dimensional dental elements includes receiving a virtual initial dental data set (IDDS) of teeth having spatial information regarding the positions of a number of teeth in the virtual IDDS with respect to each other for presentation of the teeth in a virtual three dimensional space to be viewed on a user interface, setting prioritization values of a number of elements of one or more of the number of teeth, and prioritizing the number of elements to be selected by a user based upon their prioritization values.




r

Computer simulation of fluid flow and acoustic behavior

A computer-implemented method for simulating flow and acoustic interaction of a fluid with a porous medium includes simulating activity of a fluid in a first volume adjoining a second occupied by a porous medium, the activity of the fluid in the first volume being simulated so as to model movement of elements within the first volume and using a first model having a first set of parameters, simulating activity of the fluid in the second volume occupied by the porous medium, the activity in the second volume being simulated so as to model movement of elements within the second volume and using a second model having a second set of parameters and differing from the first model in a way that accounts for flow and acoustic properties of the porous medium, and simulating movement of elements between the first volume and the second volume at an interface between the first volume and the second volume.




r

Macro model of operational amplifier and circuit design simulator using the same

The present invention aims to simulate a response more similar to a actual machine while inhibiting load increase in analog operation. Program configuration of the present invention is a component of a simulation program for circuit design, which is executed by a computer. The computer includes an operation portion, a storage portion, a manipulation portion, and a display portion, so that the computer exerts a function of a circuit design simulator, and as a macro model of an operational amplifier for use in the circuit design simulator, enabling the computer to act by simulating a response of the operational amplifier on the circuit design simulator. The macro model of the operational amplifier includes a control portion (LMT1) for generating output exception in the event of input exception or power supply exception of the operational amplifier.




r

Systems and methods for solar power equipment

A design system for generating a power equipment proposal for a particular location, comprises an insolation database, a load database, and a processing system. The insolation database comprises insolation values associated with a plurality of geographic data points. The load database associates appropriate power equipment with load requirements. The processing system generates at least one power equipment proposal based on load requirements generated from the insolation database based on the insolation values associated with a geographic data point closest to the particular location and solar power equipment appropriately selected from the load database based on the load requirements generated from the insolation database.




r

Energy usage in injection molding simulations

Methods, systems, and apparatus, including computer program products, for determining energy indicator values for a plurality of thermoplastic materials. An energy indicator value represents expected energy requirements for performing an injection of the material in a mold cavity. An injection of each of a plurality of thermoplastic materials in a first modeled mold cavity is simulated. A respective value of a first expected energy parameter is determined for each of the plurality of thermoplastic materials based on the simulated injections. A respective energy indicator is determined, for each of the plurality of thermoplastic materials, based at least on the corresponding value of the first expected energy parameter. The respective energy indicator value of one or more of the plurality of thermoplastic materials is presented.




r

Flux balance analysis with molecular crowding

Methods are provided herein for: calculating cell growth rates in various environments and genetic backgrounds; calculating the order of substrate utilization from a defined growth medium; calculating metabolic flux reorganization in various environments and at various growth rates; and calculating the maximum metabolic rate and optimal metabolite concentrations and enzyme activities by applying a computational optimization method to a kinetic model of a metabolic pathway. The optimization methods use intracellular molecular crowding parameters and/or well as kinetic rates to assist in modeling metabolic activity.




r

Electrical-thermal co-simulation with joule heating and convection effects for 3D systems

In a method for simulating temperature and electrical characteristics within an circuit, a temperature of at least one volume within the circuit as a function of a resistance within the at least one volume is repeatedly calculated and the resistance as a function of the temperature is repeatedly calculated until the temperature is within a predetermined tolerance of a previous temperature result and until the resistance is within a predetermined tolerance of a previous resistance result. Once the temperature is within a predetermined tolerance of the previous temperature result and the resistance is within a predetermined tolerance of the previous resistance, then an output indicative of the temperature is generated.




r

Systems and methods for phase predictive impedance loss model calibration and compensation

The systems and methods of the present disclosure calibrate impedance loss model parameters associated with an electrosurgical system having no external cabling or having external cabling with a fixed or known reactance, and obtain accurate electrical measurements of a tissue site by compensating for impedance losses associated with the transmission line of an electrosurgical device using the calibrated impedance loss model parameters. A computer system stores voltage and current sensor data for a range of different test loads and calculates sensed impedance values for each test load. The computer system then predicts a phase value for each load using each respective load impedance value. The computer system back calculates impedance loss model parameters including a source impedance parameter and a leakage impedance parameter based upon the voltage and current sensor data, the predicted phase values, and the impedance values of the test loads.