con

TORQUE CONVERTER WITH AN EMBOSSED COVER FOR RECEIVING A CARRIER PLATE

A torque converter, including: an axis of rotation; a cover arranged to receive torque from an engine and including a first indentation; an impeller shell fixedly secured to the cover; at least one impeller blade fixedly secured to the impeller shell; a turbine including a turbine shell and at least one turbine blade fixedly secured to the turbine shell; and a lock-up clutch including a first carrier plate fixedly secured to the cover and including a first protrusion disposed in the first indentation and a clutch plate non-rotatably connected to the first carrier plate.




con

CONTROL APPARATUS FOR VEHICLE

A vehicle includes a continuously variable transmission, a gear mechanism and a controller. The continuously variable transmission and the gear mechanism are provided in parallel with each other between an input shaft and an output shaft. The controller is configured to i) when the vehicle travels in a state where both a first clutch and a third clutch provided on the gear mechanism side are released, gradually increase a hydraulic pressure of the first clutch such that the first clutch is engaged, ii) calculate a command hydraulic pressure for setting the first clutch to a pressure regulating state on the basis of a command hydraulic pressure of the first clutch at a timing at which the amount of change in an output-side rotation speed of the first clutch becomes larger than a predetermined value, and iii) control the first clutch by using the calculated command hydraulic pressure.




con

LOCKUP APPARATUS FOR TORQUE CONVERTER

The present invention relates to a lockup apparatus for a torque converter and aims to obtain a smooth relative movement of a equalizer plate with respect to a deformation of a drive plate. The drive plate 26 as an inlet sided rotating member is connected to a driven plate 22 as an outlet sided rotating member by means of damper springs 28 in a rotating direction. The damper spring 28 is constructed by a pair of divided parts 28A and 28B. An equalizer plate as an intermediate member 29 is arranged so as to slide rotatably on bearing parts 26-1 of the drive plate 26 and supporting parts 40 fixed to the equalizer plate 29 are arranged between the divided parts 28A and 28B of the damper springs 28. The bearing part 26-1 of the drive plate 26 has an outer peripheral surface 26-1a', of which arc shape has a center C' of a curvature which is offset from the center C of the arc shape of the inner peripheral surface 29a of the equalizer plate 29.




con

Hydraulic System for a Torque Converter

A hydraulic circuit supplies pressurized hydraulic fluid to and from a torque converter that is operatively associated with a lockup clutch. The torque converter is disposed upstream of an outlet regulator that maintains a predetermined pressure in the torque converter. Power transmission in a powertrain can be directed through the torque converter during a hydrodynamic mode and can be directed through the lockup clutch during lockup mode. To switch between the hydrodynamic mode and the lockup mode, the hydraulic circuit includes a diverter valve to selectively direct pressurized hydraulic fluid between the torque converter and the lockup clutch. When operating in the lockup mode, the diverter valve further diverts hydraulic fluid discharged for the torque converter to bypass the outlet regulator disposed downstream of the torque converter.




con

DISCONNECT SYSTEM FOR AN AXLE

An axle disconnect system for drive axles that utilizes an engagement spring, an electric motor and a slidable gear. The motor is connected to the slidable gear which moves along threads thereby engaging or disengaging clutch teeth on a first side gear which selectively engages a second side gear. The engagement spring is located between a bearing and the first side gear wherein when engagement is desired, but blocked by misalignment of the teeth, the engagement spring can apply a load to allow for engagement once alignment of the teeth is achieved. The use of a second engagement spring allows for the disengagement of the system when disengagement is typically blocked due to high driveline torques without having to reapply current to the motor




con

DEVICE FOR ACTUATING A CLUTCH-CONTROLLED TRANSFER CASE HAVING A TWO-STAGE INTERMEDIATE GEARING AND CLUTCH-CONTROLLED TRANSFER CASE THAT HAS A TWO-STAGE INTERMEDIATE GEARING AND THAT IS EQUIPPED WITH SAID DEVICE

The invention relates to a device for actuating a clutch-controlled transfer case having a two-stage intermediate gearing and a clutch-controlled transfer case that has a two-stage intermediate gearing and that is equipped with such a device. The device comprises: a rotatably driven selector shaft,a drive for rotating the selector shaft,a clutch cam disk, which can be rotated about a clutch cam disk axis by means of the selector shaft, andat least one scissor lever, wherein: one end (06) of at least one scissor lever is guided in a gate provided on the clutch cam disk,the gate has a curved path for each scissor lever, in which curved path the end of the scissor lever associated with the curved path is guided,the curved path winds around the clutch cam disk axis by at least 360°,the curved path has at least one helical segment having a continuously increasing or decreasing distance from the clutch cam disk axis, along which segment one end of a scissor lever guided therein experiences a continuously increasing or decreasing change in deflection with respect to the clutch cam disk axis during a rotation of the clutch cam disk with increasing angle of rotation, andthe clutch cam disk is disposed in such a way that the clutch cam disk can be rotated with respect to the selector shaft between two stops by an angle-of-rotation range such that, by means of rotation of the selector shaft within the angle-of-rotation range situated between said stops, shifting back and forth between the shifting stages of the intermediate gearing occurs, and, by means of rotation of the selector shaft beyond the angle-of-rotation range, the end of the at least one scissor lever experiences a deflection for actuating the clutch while a selected shifting stage is maintained.




con

TORQUE CONVERTER LOCKUP CLUTCH INCLUDING PISTON SHIM

A lockup clutch for a torque converter is provided. The lockup clutch includes a clutch plate and a piston assembly. The piston assembly includes a base section and a shim fixed to the base section. The shim is arranged for contacting the clutch plate to cause engagement of the lockup clutch. A method of forming a lockup clutch is also provided. The method includes fixing a shim to a base section to form a piston assembly; and arranging the piston assembly adjacent to a clutch plate such that the shim is arranged for contacting the clutch plate to cause engagement of the lockup clutch. A torque converter is also provided.




con

METHOD OF OPERATING A POWER PATH WITH CONTINUOUSLY POWER-SPLIT TRANSMISSION AND WITH SECONDARILY COUPLED POWER SPLIT

A method for operating a vehicle drive-train having a continuously power-branched transmission with secondary coupling. In the open operating condition of reversing clutches of a reversing gear unit, torque applied in the area of a drive output can be supported by a range group in the area of a variator. In the event of a command to interrupt the power flow between a drive engine and the drive output, it is checked whether the vehicle is on an inclined surface and if the result of that inquiry is positive, the power flow between the drive engine and the transmission is interrupted at the latest when the rotational speed of the drive output is reduced to zero by opening the reversing clutches, while the active connection between the drive output and the variator is maintained by way of the range group.




con

DUAL RAMP ACTUATOR CONTROLLING A TWO CLUTCH SYSTEM FOR A DRIVELINE

A ball ramp actuator assembly including a control ring, an activation ring including a first section and a second section, two circumferential plate grooves formed between the control ring and the sections of the activation ring which contain rolling elements, two clutches, a gear and an actuator. The first and second sections are splined together allowing for axial movement. The first clutch is connected to the first section of the activation ring and a second clutch is connected to the second section of the activation ring. The rotation of a section of the activation ring axially in one direction allows the corresponding plate groove to expand and apply a load to the corresponding clutch while the other section of the activation ring remains inactive and rotation in the opposite direction activates the other clutch respectively.




con

CONNECTOR

The present disclosure relates to a connector using a ball and a detent and, more particularly, to a connector in a clutch connection structure used in an electrical automobile, which includes: a locking part formed at a body; a latch in contact with the locking part; a first solenoid driving part disposed on one side of the latch; and a second solenoid driving part disposed on the other side of the latch, in which the first solenoid driving part and the second solenoid driving part face each other with the latch being interposed therebetween, such that an operation of a clutch when the clutch operates becomes simple, and thus, noise, vibrations, and durability thereof are improved.




con

Self-contained and wireless device for a washing machine

The invention relates to a self-contained and wireless monitoring device (10) for use in a washing machine (1) to indicate shortage of detergent in said washing machine. The monitoring device comprises a sensor (13) arranged to monitor detergent concentration in washing liquid (5) of said washing machine and to provide an alarm signal (A) when said monitored detergent concentration is below a target value. The monitoring device is capable of floating in said washing liquid and comprises signalling means (11) for indicating said shortage of detergent in response to said alarm signal. The invention further relates to a package containing such a monitoring device and a method for indicating shortage of detergent.




con

Thiophene azo dyes and laundry care compositions containing the same

This application relates to thiophene azo dyes for use as hueing agents, laundry care compositions comprising such thiophene azo dyes, processes for making such thiophene azo dyes, and laundry care compositions and methods of using the same. The thiophene azo dyes contain a formally charged moiety and are generally comprised of at least two components: at least one chromophore component and at least one polymeric component. Suitable chromophore components generally fluoresce blue, red, violet, or purple color when exposed to ultraviolet light, or they may absorb light to reflect these same shades. These thiophene azo dyes are advantageous in providing a hueing effect, for example, a whitening effect to fabrics, while not building up over time and causing undesirable blue discoloration to the treated fabrics. The thiophene azo dyes are also generally stable to bleaching agents used in laundry care compositions.




con

Laundry article having cleaning and conditioning properties

The invention discloses a laundry article used for both cleaning and conditioning fabrics comprising a water-insoluble nonwoven substrate and coated thereon into at least one zone each a detergent composition and a fabric conditioning composition. The fabric conditioning composition comprises a quaternary ammonium cationic surfactant, an alkoxylated fatty alcohol and a fatty acid.




con

Method of controlling drainage of wash water remaining in a washing machine

Disclosed herein is a method of controlling drainage of wash water remaining in a washing machine. The method includes draining wash water from a tub to an outside of the washing machine, supplying wash water into the washing machine after the draining wash water, and re-draining the wash water to the outside of the washing machine after the supplying wash water.




con

Washing machine and control method thereof

A washing machine and a control method thereof to achieve washing performance using bubbles without damage to fiber structures of functional clothes. When a washing course of functional clothes is selected, a motor is frequently rotated at a period of a predetermined time or less, causing the clothes to uniformly adsorb the water. Thereafter, bubbles are generated and applied to the clothes. A drive operation rate of the motor is raised stepwise to wash the clothes to which the bubbles have been applied, so as to effectively remove sweat, contaminants, or the like contained in the clothes.




con

Control method of laundry machine

A control method of a laundry machine is disclosed. The control method of a laundry machine comprising a balancer includes an unbalance sensing step, wherein the unbalance sensing step recognizes an unbalancemaximum value and an unbalanceminimum value of an unbalance wave and the unbalance sensing step determines an average value of the two unbalance maximumvalue and unbalanceminimum value to be of the unbalance generated in a drum provided in the laundry machine.




con

TWO-DIMENSIONAL MATERIAL SEMICONDUCTOR DEVICE

A semiconductor device comprises a two-dimensional (2D) material layer, the 2D material layer comprising a channel region in between a source region and a drain region; a first gate stack and a second gate stack in contact with the 2D material layer, the first and second gate stack being spaced apart over a distance; the first gate stack located on the channel region of the 2D material layer and in between the source region and the second gate stack, the first gate stack arranged to control the injection of carriers from the source region to the channel region and the second gate stack located on the channel region of the 2D material layer; the second gate stack arranged to control the conduction of the channel region.




con

INTERNAL POWER SUPPLY CIRCUIT AND SEMICONDUCTOR DEVICE

A control switch is connected to a power supply voltage and turns on based on a control signal to output a current. A clamp circuit is connected to a load and performs clamp control of the output voltage of the control switch. A current control element conducts or shuts off a current based on the output voltage to be clamp-controlled. A selector switch group includes switches, and performs switching based on a voltage varying with the current control by the current control element, thereby switching between paths for generating an internal power supply. The switch circuit connects or disconnects the coupling between the clamp circuit and the selector switch group.




con

SYSTEM AND METHOD FOR CONTROLLING A VOLTAGE CONTROLLED OSCILLATOR

An electrical circuit includes: at least one inductor, at least one varactor, and at least two transistors, all of which electrically arranged to form a voltage controlled oscillator (VCO) having an oscillation frequency; wherein the at least two transistors includes a first transistor and a second transistor; wherein the first transistor has a first bulk terminal and a first parasitic diode disposed between the first bulk terminal and the first transistor; wherein the second transistor has a second bulk terminal and a second parasitic diode disposed between the second bulk terminal and the second transistor; wherein application of a first control voltage to the first bulk terminal, application of a second control voltage to the second bulk terminal, or application of first and second control voltages to the first and second bulk terminals, respectively, is effective to change the oscillation frequency of the VCO.




con

SEMICONDUCTOR DEVICE AND CIRCUIT PROTECTING METHOD

A semiconductor device includes a first transistor and a clamping circuit. The first transistor is arranged to generate an output signal according to a control signal. The clamping circuit is arranged to generate the control signal according to an input signal, and to clamp the control signal to a predetermined signal level when the input signal exceeds the predetermined signal level.




con

SYSTEM AND METHOD FOR A REDUCED HARMONIC CONTENT TRANSMITTER FOR WIRELESS COMMUNICATION

A system includes a voltage-controlled oscillator (VCO) to generate an output signal based on an input voltage and a multi-stage delay network to receive the output signal from the VCO. Each stage of the delay network produces a phase-shifted output signal. The system includes a multi-stage digital-to-analog converter (DAC) network, where each stage of the DAC network is associated with a corresponding stage of the delay network. Each stage of the DAC network receives the phase-shifted output signal from its corresponding stage of the delay network and generates a weighted output signal based on the received phase-shifted output signal. The DAC network combines the weighted output signal of each stage. A weighting factor for each stage of the DAC network is selected to reduce harmonic content of the combination of weighted output signals.




con

Delay Control Circuit

The present disclosure relates to a delay control circuit arranged for adding delay to a signal. The delay control circuit includes a driver circuit arranged to receive a first signal and to output a second signal. The driver circuit includes a variable load arranged for outputting the second signal by adding delay to the first signal. The delay control circuit also includes a control circuit arranged to receive the first signal and to control the variable load of the driver circuit based on a current state of the first signal and on a control signal indicative of an amount of delay to be added to the first signal in the current state.




con

SEMICONDUCTOR INTEGRATED CIRCUIT AND HIGH FREQUENCY ANTENNA SWITCH

An integrated circuit includes a drive circuit with a first inverter circuit with a first transistor of a first conductivity type and a second transistor of a second conductivity type. The drains of the first and second transistors are connected. An output circuit is provided having a third transistor of the second conductivity with a gate connected to the drains of the first and second transistors. A capacitor is connected between the gate and a drain of the third transistor and has a capacitance greater than 0.5 pF and less than or equal to 3.0 pF. A gate width of the first transistor when divided by a gate width of the third transistor has a value of less than 1/100. The output circuit is configured to output a transmission signal from the drain of the third transistor.




con

SOLID STATE POWER CONTROL

A solid state power control apparatus includes: (a) at least one IGBT and at least one FET, for supplying current to a load, and (b) a current controller for shutting off the IGBT and FET. The current controller is arranged to start shut off of the IGBT before it starts shut off of the FET. Further, the current controller is arranged to reduce current flow prior to start of the turn off of the IGBT and FET.




con

CLOCK GENERATION CIRCUIT AND SEMICONDUCTOR APPARATUS AND ELECTRONIC SYSTEM USING THE SAME

A clock generation circuit may include a reference clock generator configured to generate a pair of first reference clocks in an offset code generation mode, a correction code generator configured to generate a reference correction code according to a duty detection signal based on a phase difference between the pair of first reference clocks, and an offset code generator configured to generate an offset code based on the reference correction code and a preset reference code.




con

CONTINUOUS COARSE-TUNED PHASE LOCKED LOOP

In some embodiments, a phase-locked loop (PLL) system comprises a phase-frequency detector (PFD) configured to compare a phase-frequency reference signal and a feedback signal, a charge pump (CP) electrically coupled to the PFD and configured to produce a first tuning signal based on an output of the PFD, multiple integrator cells electrically coupled to the CP and configured to output multiple second tuning signals based on a voltage of the first tuning signal relative to a voltage reference signal, and a voltage-controlled oscillator (VCO) electrically coupled to the CP and to the multiple integrator cells and configured to adjust a capacitance value of the VCO based on the multiple second tuning signals. The capacitance value and the first tuning signal affect a frequency of the feedback signal.




con

LOOP FILTER WITH ACTIVE DISCRETE-LEVEL LOOP FILTER CAPACITOR IN A VOLTAGE CONTROLLED OSCILLATOR

A loop filter with an active discrete-level loop filter capacitor can be used in a VCO (such as for CDR). A loop filter capacitor function is simulated by sensing input loop filter current (such as with a current mirror and source follower in the input leg), and forcing back a loop filter (VCO) control voltage. Loop filter voltage control is provided using a VDAC with a discrete-level VDAC feedback voltage, incremented/decremented based on the sensed loop filter current. In one embodiment, the VDAC voltage is provided as the non-inverting input to an amplifier, with the inverting input providing the control voltage, forced to the VDAC feedback voltage. The VDAC feedback voltage can be provided by increment/decrement comparators based on a voltage deviation on a C2 capacitor (from a reference voltage) that receives the sensed loop filter current (effectively multiplying the C2 capacitance to provide a simulated loop filter capacitance).




con

SYSTEMS AND METHODS FOR CONTROLLING A PLURALITY OF POWER SEMICONDUCTOR DEVICES

A power conversion system may include a plurality of power devices and a sensor operably coupled to at least one of the plurality of power devices and configured to detect a voltage, current, or electromagnetic signature signal associated with the plurality of power devices. The power converter may also include circuitry operably coupled to the plurality of power devices and the sensor. The circuitry may send a respective gate signal to each respective power device of the plurality of power devices, such that each respective gate signal is delayed by a respective compensation delay that is determined for the respective power device based on a respective time delay of the respective power device and a maximum time delay of the plurality of power devices.




con

MULTI-STEP SLEW RATE CONTROL CIRCUITS

An example circuit includes: a slew rate driver configured to provide an output voltage; a first voltage provider configured to provide a first input voltage to the slew rate driver in response to the output voltage being within a first range; and a second voltage provider configured to provide a second input voltage to the slew rate driver in response to the output voltage being within a second range. The slew rate driver is further configured to change the output voltage based at least in part on the first input voltage or the second input voltage.




con

DEVICE AND METHOD FOR PRODUCING A DYNAMIC REFERENCE SIGNAL FOR A DRIVER CIRCUIT FOR A SEMICONDUCTOR POWER SWITCH

A device (442) for producing a dynamic reference signal (UREF) for a control circuit for a power semiconductor switch comprises a reference signal generator (442) for providing a dynamic reference signal (UREF), which has a stationary signal level after elapse of a predefined time following a switching process of the power semiconductor switch, a passive charging circuit (450) which is configured to increase a signal level of the dynamic reference signal in reaction to a switching of a control signal of the power semiconductor switch from an OFF state to ON state for at least one part of the predefined time above the stationary signal level, in order to produce the dynamic reference signal and an output (A) for tapping the dynamic reference signal (UREF).




con

ULTRA HIGH PERFORMANCE SILICON CARBIDE GATE DRIVERS

A system includes a SiC semiconductor power device; a power supply board that is configured to provide power to a first gate driver board via a connector; the first gate driver board that is coupled and configured to provide current to the SiC semiconductor power device, wherein the first gate driver board is coupled to the power supply board via the connector, and wherein the first gate driver board is separated from the power supply board; and an interconnect board that is coupled to the first gate driver board, wherein the interconnect board is configured to couple the first gate driver board a second gate driver board.




con

SEMICONDUCTOR APPARATUS

A semiconductor apparatus may include a noise determination circuit, a strobe signal control circuit, and a reception circuit. The noise determination circuit may sense and determine noise of a reference voltage, and generate an up control signal and a down control signal. The strobe signal control circuit may adjust a transition timing of a strobe signal in response to the up control signal and the down control signal, and output a control strobe signal. The reception circuit may generate internal data signal in response to external data signal, the reference voltage, and the control strobe signal.




con

GATE TRANSISTOR CONTROL CIRCUIT

A device for controlling a first control gate transistor, including: a second transistor and a third transistor series-connected between a first and a second terminals of application of a power supply voltage, the junction point of these transistors being connected to the gate of the first transistor; a terminal of application of a digital control signal; a circuit for generating an analog signal according to variations of the power supply voltage; and for each of the second and third transistors, a circuit of selection of a control signal of the first transistor representative of said digital signal or of said analog signal.




con

Construction and Optical Control of Bipolar Junction Transistors and Thyristors

Methods and systems include constructing and operating a semiconductor device with a mid-band dopant layer. In various implementations, carriers that are optically excited in a mid-band dopant region may provide injection currents that may reduce transition times and increase achievable operating frequency in a bipolar junction transistor (BJT). In various implementations, carriers that are optically excited in a mid-band dopant region within a thyristor may improve closure transition time, effective current spreading velocity, and maximum rate of current rise.




con

NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND BATTERY PACK

A nonaqueous electrolyte secondary battery of the present invention includes a positive electrode containing olivine-structured Fe or a Mn-containing phosphorus compound as a positive electrode active material; a negative electrode containing a titanium-containing metal oxide capable of inserting and extracting lithium ions as a negative electrode active material; a nonwoven fabric separator, which contains an electrically insulating fiber and is bonded to a surface of at least one of the positive electrode and the negative electrode; and a nonaqueous electrolyte. In a thickness direction of the nonwoven fabric separator, a density of the fiber on a side having contact with the positive electrode is high, and a density of the fiber on a side having contact with the negative electrode is low.




con

NONAQUEOUS ELECTROLYTE SECONDARY BATTERY SEPARATOR

The present invention provides a nonaqueous electrolyte secondary battery separator that achieves an excellent rate characteristic by having a tensile creep compliance J satisfying at least one of the following three conditions in a case where stress of 30 MPa is applied for t seconds: (i) when t=300 seconds, J=4.5 GPa−1 to 14.0 GPa−1, (ii) when t=1800 seconds, J=9.0 GPa−1 to 25.0 GPa−1, (iii) when t=600 seconds, J=12.0 GPa−5 to 32.0 GPa−1.




con

SECONDARY BATTERY

A secondary battery includes a case composed of a metal containing aluminum as a main component, a stacked electrode assembly arranged in the case, a negative electrode current collector electrically connecting negative electrodes of the stacked electrode assembly to a negative electrode terminal, a positive electrode current collector electrically connecting positive electrodes of the stacked electrode assembly to a positive electrode terminal, a first metal plate arranged between the case and the stacked electrode assembly, and a spacer arranged between the case and the first metal plate, the spacer being composed of an insulating material. The positive electrodes are electrically connected to the case or a second metal plate arranged on the first metal plate with an insulating member provided between the first metal plate and the insulating member. The negative electrode current collector is in contact with the first metal plate to establish electrical connection between the negative electrode current collector and the first metal plate.




con

SECONDARY BATTERY

A secondary battery is disclosed. In one aspect, the secondary battery includes a case accommodating an electrode assembly, a cap plate sealing an opening of the case, an electrode terminal electrically connected to the electrode assembly and disposed over the cap, and an insulating member provided between the cap plate and the electrode terminal and configured to insulate the electrode terminal from the cap plate. The battery also includes a connection tab disposed over the electrode terminal, and a safety device having a portion positioned under the connection tab and electrically connected to the electrode terminal via the connection tab. The safety device has at least one of electric conductivity and thermal conductivity greater than that of the connection tab, and at least a part of the safety device is seated on the insulating member.




con

POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERIES, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERIES, AND LITHIUM SECONDARY BATTERY

The object of the present invention is to provide a positive electrode active material usable for a lithium ion battery capable of high charge/discharge cycle performance and high discharge capacity. The positive electrode active material for a lithium secondary battery has a layered structure and comprises at least nickel, cobalt and manganese. Further, the positive electrode active material satisfies requirements (1) to (3) below: (1) a primary particle size of 0.1 μm to 1 μm, and a 50% cumulative particle size D50 of 1 μm to 10 μm, (2) a ratio (D90/D10) of volume-based 90% cumulative particle size D50 to volume-based 10% cumulative particle size D10 of 2 to 6, and (3) a lithium carbonate content in a residual alkali on particle surfaces of 0.1% by mass to 0.8% by mass as measured by neutralization titration.




con

POSITIVE ELECTRODE FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY

The positive electrode as an embodiment includes a positive electrode current collector mainly composed of aluminum, a positive electrode mixture layer containing a lithium-containing transition metal oxide and disposed above the positive electrode current collector, and a protective layer disposed between the positive electrode current collector and the positive electrode mixture layer. The protective layer contains inorganic particles, an electro-conductive material, and a binding material; is mainly composed of the inorganic particles; and is disposed on the positive electrode current collector to cover the positive electrode current collector in approximately the entire area where the positive electrode mixture layer is disposed and at least a part of the exposed portion of the positive electrode current collector where the positive electrode mixture layer is not disposed on the surface of the positive electrode current collector.




con

POSITIVE ELECTRODE ACTIVE MATERIAL FOR SODIUM SECONDARY BATTERY, AND METHOD FOR PREPARING SAME

The present invention relates to a positive electrode active material for a sodium secondary battery, and a method for preparing the same. The positive electrode active material for the sodium secondary battery according to the present invention is structurally more stable by replacing a part of the transition metal with Li, and accordingly, the thermal stability and life characteristics of the sodium battery including the positive electrode active material are greatly improved.




con

CARBON MATERIAL, METHOD FOR PRODUCING CARBON MATERIAL, AND NON-AQUEOUS SECONDARY BATTERY USING CARBON MATERIAL

A carbon material for a non-aqueous secondary battery containing a graphite capable of occluding and releasing lithium ions, and having a cumulative pore volume at pore diameters in a range of 0.01 μm to 1 μm of 0.08 mL/g or more, a roundness, as determined by flow-type particle image analysis, of 0.88 or greater, and a pore diameter to particle diameter ratio (PD/d50 (%)) of 1.8 or less, the ratio being given by equation (1A): PD/d50 (%)=mode pore diameter (PD) in a pore diameter range of 0.01 μm to 1 μm in a pore distribution determined by mercury intrusion/volume-based average particle diameter (d50)×100 is provided.




con

CATALYST COMPOSITION FOR ALKALINE ELECTROCHEMICAL ENERGY CONVERSION REACTION AND USE THEREOF

A catalyst composition and a use thereof are provided. The catalyst composition includes a support and at least one RuXMY alloy attached to the surface of the support, wherein M is a transition metal and X≧Y. The catalyst composition is used in an alkaline electrochemical energy conversion reaction, and can improve the energy conversion efficiency for an electrochemical energy conversion device and significantly reduce material costs.




con

SYSTEMS AND METHODS FOR PREVENTING CHROMIUM CONTAMINATION OF SOLID OXIDE FUEL CELLS

In some embodiments, a solid oxide fuel system is provided. The solid oxide fuel cell system may include a chromium-getter material. The chromium-getter material may react with chromium to remove chromium species from chromium vapor. The solid oxide fuel cell system may also include an inert substrate. The chromium-getter material may be coated onto the inert substrate. The coated substrate may remove chromium species from chromium vapor before the chromium species can react with a cathode in the solid oxide fuel cell system.




con

FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM

A fuel cell system for supplying anode gas and cathode gas to a fuel cell and causing the fuel cell to generate power according to a load includes a component that circulates discharged gas of either the anode gas or the cathode gas discharged from the fuel cell to the fuel cell. The fuel cell system includes a power generation control unit that controls a power generation state of the fuel cell on the basis of the load, a freezing prediction unit that predicts the freezing of the component on the basis of a temperature of the fuel cell system. The fuel cell system includes an operation execution unit that executes a warm-up operation without stopping the fuel cell system or after the stop of the fuel cell system in the case of receiving a stop command of the fuel cell system when the freezing of the component is predicted.




con

LITHIUM BATTERY ELECTROLYTE SOLUTION CONTAINING METHYL (2,2,3,3,-TETRAFLUOROPROPYL) CARBONATE

A battery electrolyte solution contains a lithium salt dissolved in a solvent phase comprising at least 10% by weight of methyl (2,2,3,3-tetrafluoropropyl) carbonate. The solvent phase comprises optionally other solvent materials such as 4-fluoroethylene carbonate and other carbonate solvents. This battery electrolyte is highly stable even when used in batteries in which the cathode material has a high operating potential (such as 4.5V or more) relative to Li/Li+. Batteries containing this electrolyte solution therefore have excellent cycling stability.




con

LITHIUM ION SECONDARY BATTERY

A lithium ion secondary battery including: a positive electrode including a positive electrode active material capable of intercalating and deintercalating a lithium ion; a negative electrode including a negative electrode active material capable of intercalating and deintercalating a lithium ion; and a non-aqueous electrolytic solution, wherein the positive electrode active material includes a Mn-based spinel-type composite oxide and an additional active material, and the content of the Mn-based spinel-type composite oxide based on the whole of the positive electrode active material is 60% by mass or less, and the negative electrode active material includes a first graphite particle containing natural graphite and a second graphite particle containing artificial graphite, and the content of the second graphite particle based on the sum total of the first graphite particle and the second graphite particle is in the range of 1 to 30% by mass.




con

POSITIVE ELECTRODE ACTIVE MATERIAL FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERIES, PRODUCTION METHOD THEREOF, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY INCLUDING SAID MATERIAL

Provided is a positive electrode active material that can be used to fabricate a nonaqueous electrolyte secondary battery having excellent output characteristics not only in an environment at normal temperature but also in all temperature environments from extremely low to high temperatures. A positive electrode active material for nonaqueous electrolyte secondary batteries, the positive electrode active material includes a boron compound and lithium-nickel-cobalt-manganese composite oxide of general formula (1) having a layered hexagonal crystal structure. The lithium-nickel-cobalt-manganese composite oxide includes secondary particles composed of agglomerated primary particles. The boron compound is present on at least part of the surface of the primary particles, and contains lithium. Li1+sNixCoyMnzMotMwO2 (1)




con

GARNET MATERIALS FOR LI SECONDARY BATTERIES AND METHODS OF MAKING AND USING GARNET MATERIALS

Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (




con

NON-AQUEOUS ELECTROLYTE SECONDARY CELL

A non-aqueous electrolyte secondary cell includes: a positive electrode including a positive electrode active material which contains as a primary component, a lithium composite oxide in which the rate of nickel to the total number of moles of metal elements other than lithium is 50 percent by mole or more; a negative electrode; and a non-aqueous electrolyte. The non-aqueous electrolyte contains lithium bis(fluorosulfonyl)amide and a fluorinated chain carboxylic acid ester represented by the following formula, R1 and R2 each represent H, F, or CH3-xFx (x represents 1, 2, or 3) and may be equivalent to or different from each other. R3 represents an alkyl group having 1 to 3 carbon atoms and may contain F.