4

Expansion of Iterated Stratonovich Stochastic Integrals of Arbitrary Multiplicity Based on Generalized Iterated Fourier Series Converging Pointwise. (arXiv:1801.00784v9 [math.PR] UPDATED)

The article is devoted to the expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity $k$ $(kinmathbb{N})$ based on the generalized iterated Fourier series. The case of Fourier-Legendre series as well as the case of trigonotemric Fourier series are considered in details. The obtained expansion provides a possibility to represent the iterated Stratonovich stochastic integral in the form of iterated series of products of standard Gaussian random variables. Convergence in the mean of degree $2n$ $(nin mathbb{N})$ of the expansion is proved. Some modifications of the mentioned expansion were derived for the case $k=2$. One of them is based of multiple trigonomentric Fourier series converging almost everywhere in the square $[t, T]^2$. The results of the article can be applied to the numerical solution of Ito stochastic differential equations.




4

High dimensional expanders and coset geometries. (arXiv:1710.05304v3 [math.CO] UPDATED)

High dimensional expanders is a vibrant emerging field of study. Nevertheless, the only known construction of bounded degree high dimensional expanders is based on Ramanujan complexes, whereas one dimensional bounded degree expanders are abundant.

In this work, we construct new families of bounded degree high dimensional expanders obeying the local spectral expansion property. This property has a number of important consequences, including geometric overlapping, fast mixing of high dimensional random walks, agreement testing and agreement expansion. Our construction also yields new families of expander graphs which are close to the Ramanujan bound, i.e., their spectral gap is close to optimal.

The construction is quite elementary and it is presented in a self contained manner; This is in contrary to the highly involved previously known construction of the Ramanujan complexes. The construction is also very symmetric (such symmetry properties are not known for Ramanujan complexes) ; The symmetry of the construction could be used, for example, in order to obtain good symmetric LDPC codes that were previously based on Ramanujan graphs.

The main tool that we use for is the theory of coset geometries. Coset geometries arose as a tool for studying finite simple groups. Here, we show that coset geometries arise in a very natural manner for groups of elementary matrices over any finitely generated algebra over a commutative unital ring. In other words, we show that such groups act simply transitively on the top dimensional face of a pure, partite, clique complex.




4

Simulation of Integro-Differential Equation and Application in Estimation of Ruin Probability with Mixed Fractional Brownian Motion. (arXiv:1709.03418v6 [math.PR] UPDATED)

In this paper, we are concerned with the numerical solution of one type integro-differential equation by a probability method based on the fundamental martingale of mixed Gaussian processes. As an application, we will try to simulate the estimation of ruin probability with an unknown parameter driven not by the classical L'evy process but by the mixed fractional Brownian motion.




4

Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces. (arXiv:1706.09490v2 [math.DG] UPDATED)

We use Ricci flow to obtain a local bi-Holder correspondence between Ricci limit spaces in three dimensions and smooth manifolds. This is more than a complete resolution of the three-dimensional case of the conjecture of Anderson-Cheeger-Colding-Tian, describing how Ricci limit spaces in three dimensions must be homeomorphic to manifolds, and we obtain this in the most general, locally non-collapsed case. The proofs build on results and ideas from recent papers of Hochard and the current authors.




4

Categorification via blocks of modular representations for sl(n). (arXiv:1612.06941v3 [math.RT] UPDATED)

Bernstein, Frenkel, and Khovanov have constructed a categorification of tensor products of the standard representation of $mathfrak{sl}_2$, where they use singular blocks of category $mathcal{O}$ for $mathfrak{sl}_n$ and translation functors. Here we construct a positive characteristic analogue using blocks of representations of $mathfrak{sl}_n$ over a field $ extbf{k}$ of characteristic $p$ with zero Frobenius character, and singular Harish-Chandra character. We show that the aforementioned categorification admits a Koszul graded lift, which is equivalent to a geometric categorification constructed by Cautis, Kamnitzer, and Licata using coherent sheaves on cotangent bundles to Grassmanians. In particular, the latter admits an abelian refinement. With respect to this abelian refinement, the stratified Mukai flop induces a perverse equivalence on the derived categories for complementary Grassmanians. This is part of a larger project to give a combinatorial approach to Lusztig's conjectures for representations of Lie algebras in positive characteristic.




4

Word problems for finite nilpotent groups. (arXiv:2005.03634v1 [math.GR])

Let $w$ be a word in $k$ variables. For a finite nilpotent group $G$, a conjecture of Amit states that $N_w(1) ge |G|^{k-1}$, where $N_w(1)$ is the number of $k$-tuples $(g_1,...,g_k)in G^{(k)}$ such that $w(g_1,...,g_k)=1$. Currently, this conjecture is known to be true for groups of nilpotency class 2. Here we consider a generalized version of Amit's conjecture, and prove that $N_w(g) ge |G|^{k-2}$, where $g$ is a $w$-value in $G$, for finite groups $G$ of odd order and nilpotency class 2. If $w$ is a word in two variables, we further show that $N_w(g) ge |G|$, where $g$ is a $w$-value in $G$ for finite groups $G$ of nilpotency class 2. In addition, for $p$ a prime, we show that finite $p$-groups $G$, with two distinct irreducible complex character degrees, satisfy the generalized Amit conjecture for words $w_k =[x_1,y_1]...[x_k,y_k]$ with $k$ a natural number; that is, for $g$ a $w_k$-value in $G$ we have $N_{w_k}(g) ge |G|^{2k-1}$.

Finally, we discuss the related group properties of being rational and chiral, and show that every finite group of nilpotency class 2 is rational.




4

A survey of Hardy type inequalities on homogeneous groups. (arXiv:2005.03614v1 [math.FA])

In this review paper, we survey Hardy type inequalities from the point of view of Folland and Stein's homogeneous groups. Particular attention is paid to Hardy type inequalities on stratified groups which give a special class of homogeneous groups. In this environment, the theory of Hardy type inequalities becomes intricately intertwined with the properties of sub-Laplacians and more general subelliptic partial differential equations. Particularly, we discuss the Badiale-Tarantello conjecture and a conjecture on the geometric Hardy inequality in a half-space of the Heisenberg group with a sharp constant.




4

Off-diagonal estimates for bi-commutators. (arXiv:2005.03548v1 [math.CA])

We study the bi-commutators $[T_1, [b, T_2]]$ of pointwise multiplication and Calder'on-Zygmund operators, and characterize their $L^{p_1}L^{p_2} o L^{q_1}L^{q_2}$ boundedness for several off-diagonal regimes of the mixed-norm integrability exponents $(p_1,p_2) eq(q_1,q_2)$. The strategy is based on a bi-parameter version of the recent approximate weak factorization method.




4

Special subvarieties of non-arithmetic ball quotients and Hodge Theory. (arXiv:2005.03524v1 [math.AG])

Let $Gamma subset operatorname{PU}(1,n)$ be a lattice, and $S_Gamma$ the associated ball quotient. We prove that, if $S_Gamma$ contains infinitely many maximal totally geodesic subvarieties, then $Gamma$ is arithmetic. We also prove an Ax-Schanuel Conjecture for $S_Gamma$, similar to the one recently proven by Mok, Pila and Tsimerman. One of the main ingredients in the proofs is to realise $S_Gamma$ inside a period domain for polarised integral variations of Hodge structures and interpret totally geodesic subvarieties as unlikely intersections.




4

A reaction-diffusion system to better comprehend the unlockdown: Application of SEIR-type model with diffusion to the spatial spread of COVID-19 in France. (arXiv:2005.03499v1 [q-bio.PE])

A reaction-diffusion model was developed describing the spread of the COVID-19 virus considering the mean daily movement of susceptible, exposed and asymptomatic individuals. The model was calibrated using data on the confirmed infection and death from France as well as their initial spatial distribution. First, the system of partial differential equations is studied, then the basic reproduction number, R0 is derived. Second, numerical simulations, based on a combination of level-set and finite differences, shown the spatial spread of COVID-19 from March 16 to June 16. Finally, scenarios of unlockdown are compared according to variation of distancing, or partially spatial lockdown.




4

Continuity in a parameter of solutions to boundary-value problems in Sobolev spaces. (arXiv:2005.03494v1 [math.CA])

We consider the most general class of linear inhomogeneous boundary-value problems for systems of ordinary differential equations of an arbitrary order whose solutions and right-hand sides belong to appropriate Sobolev spaces. For parameter-dependent problems from this class, we prove a constructive criterion for their solutions to be continuous in the Sobolev space with respect to the parameter. We also prove a two-sided estimate for the degree of convergence of these solutions to the solution of the nonperturbed problem.




4

On completion of unimodular rows over polynomial extension of finitely generated rings over $mathbb{Z}$. (arXiv:2005.03485v1 [math.AC])

In this article, we prove that if $R$ is a finitely generated ring over $mathbb{Z}$ of dimension $d, dgeq2, frac{1}{d!}in R$, then any unimodular row over $R[X]$ of length $d+1$ can be mapped to a factorial row by elementary transformations.




4

Solving equations in dense Sidon sets. (arXiv:2005.03484v1 [math.CO])

We offer an alternative proof of a result of Conlon, Fox, Sudakov and Zhao on solving translation-invariant linear equations in dense Sidon sets. Our proof generalises to equations in more than five variables and yields effective bounds.




4

Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric. (arXiv:2005.03483v1 [math.DG])

In cite{S 2017}, Suh gave a non-existence theorem for Hopf real hypersurfaces in the complex quadric with parallel normal Jacobi operator. Motivated by this result, in this paper, we introduce some generalized conditions named $mathcal C$-parallel or Reeb parallel normal Jacobi operators. By using such weaker parallelisms of normal Jacobi operator, first we can assert a non-existence theorem of Hopf real hypersurfaces with $mathcal C$-parallel normal Jacobi operator in the complex quadric $Q^{m}$, $m geq 3$. Next, we prove that a Hopf real hypersurface has Reeb parallel normal Jacobi operator if and only if it has an $mathfrak A$-isotropic singular normal vector field.




4

Characteristic Points, Fundamental Cubic Form and Euler Characteristic of Projective Surfaces. (arXiv:2005.03481v1 [math.DG])

We define local indices for projective umbilics and godrons (also called cusps of Gauss) on generic smooth surfaces in projective 3-space. By means of these indices, we provide formulas that relate the algebraic numbers of those characteristic points on a surface (and on domains of the surface) with the Euler characteristic of that surface (resp. of those domains). These relations determine the possible coexistences of projective umbilics and godrons on the surface. Our study is based on a "fundamental cubic form" for which we provide a closed simple expression.




4

$k$-Critical Graphs in $P_5$-Free Graphs. (arXiv:2005.03441v1 [math.CO])

Given two graphs $H_1$ and $H_2$, a graph $G$ is $(H_1,H_2)$-free if it contains no induced subgraph isomorphic to $H_1$ or $H_2$. Let $P_t$ be the path on $t$ vertices. A graph $G$ is $k$-vertex-critical if $G$ has chromatic number $k$ but every proper induced subgraph of $G$ has chromatic number less than $k$. The study of $k$-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is $(k-1)$-colorable.

In this paper, we initiate a systematic study of the finiteness of $k$-vertex-critical graphs in subclasses of $P_5$-free graphs. Our main result is a complete classification of the finiteness of $k$-vertex-critical graphs in the class of $(P_5,H)$-free graphs for all graphs $H$ on 4 vertices. To obtain the complete dichotomy, we prove the finiteness for four new graphs $H$ using various techniques -- such as Ramsey-type arguments and the dual of Dilworth's Theorem -- that may be of independent interest.




4

On the connection problem for the second Painlev'e equation with large initial data. (arXiv:2005.03440v1 [math.CA])

We consider two special cases of the connection problem for the second Painlev'e equation (PII) using the method of uniform asymptotics proposed by Bassom et al.. We give a classification of the real solutions of PII on the negative (positive) real axis with respect to their initial data. By product, a rigorous proof of a property associate with the nonlinear eigenvalue problem of PII on the real axis, recently revealed by Bender and Komijani, is given by deriving the asymptotic behavior of the Stokes multipliers.




4

The formation of trapped surfaces in the gravitational collapse of spherically symmetric scalar fields with a positive cosmological constant. (arXiv:2005.03434v1 [gr-qc])

Given spherically symmetric characteristic initial data for the Einstein-scalar field system with a positive cosmological constant, we provide a criterion, in terms of the dimensionless size and dimensionless renormalized mass content of an annular region of the data, for the formation of a future trapped surface. This corresponds to an extension of Christodoulou's classical criterion by the inclusion of the cosmological term.




4

Aspiration can promote cooperation in well-mixed populations as in regular graphs. (arXiv:2005.03421v1 [q-bio.PE])

Classical studies on aspiration-based dynamics suggest that a dissatisfied individual changes strategy without taking into account the success of others. This promotes defection spreading. The imitation-based dynamics allow individuals to imitate successful strategies without taking into account their own-satisfactions. In this article, we propose to study a dynamic based on aspiration which takes into account imitation of successful strategies for dissatisfied individuals. This helps cooperative members to resist. Individuals compare their success to their desired satisfaction level before making a decision to update their strategies. This mechanism helps individuals with a minimum of self-satisfaction to maintain their strategies. If an individual is dissatisfied, it will learn from others by choosing successful strategies. We derive an exact expression of the fixation probability in well-mixed populations as in structured populations in networks. As a result, we show that selection may favor cooperation more than defection in well-mixed populations as in populations ranged over a regular graph. We show that the best scenario is a graph with small connectivity.




4

A note on Penner's cocycle on the fatgraph complex. (arXiv:2005.03414v1 [math.GT])

We study a 1-cocycle on the fatgraph complex of a punctured surface introduced by Penner. We present an explicit cobounding cochain for this cocycle, whose formula involves a summation over trivalent vertices of a trivalent fatgraph spine. In a similar fashion, we express the symplectic form of the underlying surface of a given fatgraph spine.




4

Sums of powers of integers and hyperharmonic numbers. (arXiv:2005.03407v1 [math.NT])

In this paper, we derive a formula for the sums of powers of the first $n$ positive integers that involves the hyperharmonic numbers and the Stirling numbers of the second kind. Then, using an explicit representation for the hyperharmonic numbers, we generalize this formula to the sums of powers of an arbitrary arithmetic progression. Moreover, as a by-product, we express the Bernoulli polynomials in terms of the hyperharmonic polynomials and the Stirling numbers of the second kind.




4

Minimum pair degree condition for tight Hamiltonian cycles in $4$-uniform hypergraphs. (arXiv:2005.03391v1 [math.CO])

We show that every 4-uniform hypergraph with $n$ vertices and minimum pair degree at least $(5/9+o(1))n^2/2$ contains a tight Hamiltonian cycle. This degree condition is asymptotically optimal.




4

A theory of stacks with twisted fields and resolution of moduli of genus two stable maps. (arXiv:2005.03384v1 [math.AG])

We construct a smooth moduli stack of tuples consisting of genus two nodal curves, line bundles, and twisted fields. It leads to a desingularization of the moduli of genus two stable maps to projective spaces. The construction of this new moduli is based on systematical application of the theory of stacks with twisted fields (STF), which has its prototype appeared in arXiv:1906.10527 and arXiv:1201.2427 and is fully developed in this article. The results of this article are the second step of a series of works toward the resolutions of the moduli of stable maps of higher genera.




4

Converging outer approximations to global attractors using semidefinite programming. (arXiv:2005.03346v1 [math.OC])

This paper develops a method for obtaining guaranteed outer approximations for global attractors of continuous and discrete time nonlinear dynamical systems. The method is based on a hierarchy of semidefinite programming problems of increasing size with guaranteed convergence to the global attractor. The approach taken follows an established line of reasoning, where we first characterize the global attractor via an infinite dimensional linear programming problem (LP) in the space of Borel measures. The dual to this LP is in the space of continuous functions and its feasible solutions provide guaranteed outer approximations to the global attractor. For systems with polynomial dynamics, a hierarchy of finite-dimensional sum-of-squares tightenings of the dual LP provides a sequence of outer approximations to the global attractor with guaranteed convergence in the sense of volume discrepancy tending to zero. The method is very simple to use and based purely on convex optimization. Numerical examples with the code available online demonstrate the method.




4

Evaluating the phase dynamics of coupled oscillators via time-variant topological features. (arXiv:2005.03343v1 [physics.data-an])

The characterization of phase dynamics in coupled oscillators offers insights into fundamental phenomena in complex systems. To describe the collective dynamics in the oscillatory system, order parameters are often used but are insufficient for identifying more specific behaviors. We therefore propose a topological approach that constructs quantitative features describing the phase evolution of oscillators. Here, the phase data are mapped into a high-dimensional space at each time point, and topological features describing the shape of the data are subsequently extracted from the mapped points. We extend these features to time-variant topological features by considering the evolution time, which serves as an additional dimension in the topological-feature space. The resulting time-variant features provide crucial insights into the time evolution of phase dynamics. We combine these features with the machine learning kernel method to characterize the multicluster synchronized dynamics at a very early stage of the evolution. Furthermore, we demonstrate the usefulness of our method for qualitatively explaining chimera states, which are states of stably coexisting coherent and incoherent groups in systems of identical phase oscillators. The experimental results show that our method is generally better than those using order parameters, especially if only data on the early-stage dynamics are available.




4

The conjecture of Erd"{o}s--Straus is true for every $nequiv 13 extrm{ mod }24$. (arXiv:2005.03273v1 [math.NT])

In this short note we give a proof of the famous conjecture of Erd"{o}s-Straus for the case $nequiv13 extrm{ mod } 24.$ The Erd"{o}s--Straus conjecture states that the equation $frac{4}{n}=frac{1}{x}+frac{1}{y}+frac{1}{z}$ has positive integer solutions $x,y,z$ for every $ngeq 2$. It is open for $nequiv 1 extrm{ mod } 12$. Indeed, in all of the other cases the solutions are always easy to find. We prove that the conjecture is true for every $nequiv 13 extrm{ mod } 24$. Therefore, to solve it completely, it remains to find solutions for every $nequiv 1 extrm{ mod } 24$.




4

A Chance Constraint Predictive Control and Estimation Framework for Spacecraft Descent with Field Of View Constraints. (arXiv:2005.03245v1 [math.OC])

Recent studies of optimization methods and GNC of spacecraft near small bodies focusing on descent, landing, rendezvous, etc., with key safety constraints such as line-of-sight conic zones and soft landings have shown promising results; this paper considers descent missions to an asteroid surface with a constraint that consists of an onboard camera and asteroid surface markers while using a stochastic convex MPC law. An undermodeled asteroid gravity and spacecraft technology inspired measurement model is established to develop the constraint. Then a computationally light stochastic Linear Quadratic MPC strategy is presented to keep the spacecraft in satisfactory field of view of the surface markers while trajectory tracking, employing chance based constraints and up-to-date estimation uncertainty from navigation. The estimation uncertainty giving rise to the tightened constraints is particularly addressed. Results suggest robust tracking performance across a variety of trajectories.




4

The UCT problem for nuclear $C^ast$-algebras. (arXiv:2005.03184v1 [math.OA])

In recent years, a large class of nuclear $C^ast$-algebras have been classified, modulo an assumption on the Universal Coefficient Theorem (UCT). We think this assumption is redundant and propose a strategy for proving it. Indeed, following the original proof of the classification theorem, we propose bridging the gap between reduction theorems and examples. While many such bridges are possible, various approximate ideal structures appear quite promising.




4

Functional convex order for the scaled McKean-Vlasov processes. (arXiv:2005.03154v1 [math.PR])

We establish the functional convex order results for two scaled McKean-Vlasov processes $X=(X_{t})_{tin[0, T]}$ and $Y=(Y_{t})_{tin[0, T]}$ defined by

[egin{cases} dX_{t}=(alpha X_{t}+eta)dt+sigma(t, X_{t}, mu_{t})dB_{t}, quad X_{0}in L^{p}(mathbb{P}),\ dY_{t}=(alpha Y_{t},+eta)dt+ heta(t, Y_{t}, u_{t})dB_{t}, quad Y_{0}in L^{p}(mathbb{P}). end{cases}] If we make the convexity and monotony assumption (only) on $sigma$ and if $sigmaleq heta$ with respect to the partial matrix order, the convex order for the initial random variable $X_0 leq Y_0$ can be propagated to the whole path of process $X$ and $Y$. That is, if we consider a convex functional $F$ with polynomial growth defined on the path space, we have $mathbb{E}F(X)leqmathbb{E}F(Y)$; for a convex functional $G$ defined on the product space involving the path space and its marginal distribution space, we have $mathbb{E},Gig(X, (mu_t)_{tin[0, T]}ig)leq mathbb{E},Gig(Y, ( u_t)_{tin[0, T]}ig)$ under appropriate conditions. The symmetric setting is also valid, that is, if $ heta leq sigma$ and $Y_0 leq X_0$ with respect to the convex order, then $mathbb{E},F(Y) leq mathbb{E},F(X)$ and $mathbb{E},Gig(Y, ( u_t)_{tin[0, T]}ig)leq mathbb{E},G(X, (mu_t)_{tin[0, T]})$. The proof is based on several forward and backward dynamic programming and the convergence of the Euler scheme of the McKean-Vlasov equation.




4

Hydrodynamic limit of Robinson-Schensted-Knuth algorithm. (arXiv:2005.03147v1 [math.CO])

We investigate the evolution in time of the position of a fixed number inthe insertion tableau when the Robinson-Schensted-Knuth algorithm is applied to asequence of random numbers. When the length of the sequence tends to infinity, a typical trajectory after scaling converges uniformly in probability to some deterministiccurve.




4

Sharp p-bounds for maximal operators on finite graphs. (arXiv:2005.03146v1 [math.CA])

Let $G=(V,E)$ be a finite graph and $M_G$ be the centered Hardy-Littlewood maximal operator defined there. We found the optimal value $C_{G,p}$ such that the inequality $$Var_{p}(M_{G}f)le C_{G,p}Var_{p}(f)$$ holds for every every $f:V o mathbb{R},$ where $Var_p$ stands for the $p$-variation, when: (i)$G=K_n$ (complete graph) and $pin [frac{ln(4)}{ln(6)},infty)$ or $G=K_4$ and $pin (0,infty)$;(ii) $G=S_n$(star graph) and $1ge pge frac{1}{2}$; $pin (0,frac{1}{2})$ and $nge C(p)<infty$ or $G=S_3$ and $pin (1,infty).$ We also found the optimal value $L_{G,2}$ such that the inequality $$|M_{G}f|_2le L_{G,2}|f|_2$$ holds for every $f:V o mathbb{R}$, when: (i)$G=K_n$ and $nge 3$;(ii)$G=S_n$ and $nge 3.$




4

Anti-symplectic involutions on rational symplectic 4-manifolds. (arXiv:2005.03142v1 [math.SG])

This is an expanded version of the talk given be the first author at the conference "Topology, Geometry, and Dynamics: Rokhlin - 100". The purpose of this talk was to explain our current results on classification of rational symplectic 4-manifolds equipped with an anti-symplectic involution. Detailed exposition will appear elsewhere.




4

Continuation of relative equilibria in the $n$--body problem to spaces of constant curvature. (arXiv:2005.03114v1 [math.DS])

We prove that all non-degenerate relative equilibria of the planar Newtonian $n$--body problem can be continued to spaces of constant curvature $kappa$, positive or negative, for small enough values of this parameter. We also compute the extension of some classical relative equilibria to curved spaces using numerical continuation. In particular, we extend Lagrange's triangle configuration with different masses to both positive and negative curvature spaces.




4

GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU. (arXiv:1908.01407v3 [cs.DC] CROSS LISTED)

High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs, because of three challenges: (1) difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based in sparse linear algebra, which will allow graph algorithms to be expressed in a performant, succinct, composable and portable manner. In this paper, we examine the performance challenges of a linear algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction. Exploiting output sparsity allows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in "GraphBLAST", the first open-source linear algebra-based graph framework on GPU targeting high-performance computing. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse and GBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework, while offering a simpler and more concise programming model.




4

The Cascade Transformer: an Application for Efficient Answer Sentence Selection. (arXiv:2005.02534v2 [cs.CL] UPDATED)

Large transformer-based language models have been shown to be very effective in many classification tasks. However, their computational complexity prevents their use in applications requiring the classification of a large set of candidates. While previous works have investigated approaches to reduce model size, relatively little attention has been paid to techniques to improve batch throughput during inference. In this paper, we introduce the Cascade Transformer, a simple yet effective technique to adapt transformer-based models into a cascade of rankers. Each ranker is used to prune a subset of candidates in a batch, thus dramatically increasing throughput at inference time. Partial encodings from the transformer model are shared among rerankers, providing further speed-up. When compared to a state-of-the-art transformer model, our approach reduces computation by 37% with almost no impact on accuracy, as measured on two English Question Answering datasets.




4

On the list recoverability of randomly punctured codes. (arXiv:2005.02478v2 [math.CO] UPDATED)

We show that a random puncturing of a code with good distance is list recoverable beyond the Johnson bound. In particular, this implies that there are Reed-Solomon codes that are list recoverable beyond the Johnson bound. It was previously known that there are Reed-Solomon codes that do not have this property. As an immediate corollary to our main theorem, we obtain better degree bounds on unbalanced expanders that come from Reed-Solomon codes.




4

Temporal Event Segmentation using Attention-based Perceptual Prediction Model for Continual Learning. (arXiv:2005.02463v2 [cs.CV] UPDATED)

Temporal event segmentation of a long video into coherent events requires a high level understanding of activities' temporal features. The event segmentation problem has been tackled by researchers in an offline training scheme, either by providing full, or weak, supervision through manually annotated labels or by self-supervised epoch based training. In this work, we present a continual learning perceptual prediction framework (influenced by cognitive psychology) capable of temporal event segmentation through understanding of the underlying representation of objects within individual frames. Our framework also outputs attention maps which effectively localize and track events-causing objects in each frame. The model is tested on a wildlife monitoring dataset in a continual training manner resulting in $80\%$ recall rate at $20\%$ false positive rate for frame level segmentation. Activity level testing has yielded $80\%$ activity recall rate for one false activity detection every 50 minutes.




4

Differential Machine Learning. (arXiv:2005.02347v2 [q-fin.CP] UPDATED)

Differential machine learning (ML) extends supervised learning, with models trained on examples of not only inputs and labels, but also differentials of labels to inputs.

Differential ML is applicable in all situations where high quality first order derivatives wrt training inputs are available. In the context of financial Derivatives risk management, pathwise differentials are efficiently computed with automatic adjoint differentiation (AAD). Differential ML, combined with AAD, provides extremely effective pricing and risk approximations. We can produce fast pricing analytics in models too complex for closed form solutions, extract the risk factors of complex transactions and trading books, and effectively compute risk management metrics like reports across a large number of scenarios, backtesting and simulation of hedge strategies, or capital regulations.

The article focuses on differential deep learning (DL), arguably the strongest application. Standard DL trains neural networks (NN) on punctual examples, whereas differential DL teaches them the shape of the target function, resulting in vastly improved performance, illustrated with a number of numerical examples, both idealized and real world. In the online appendices, we apply differential learning to other ML models, like classic regression or principal component analysis (PCA), with equally remarkable results.

This paper is meant to be read in conjunction with its companion GitHub repo https://github.com/differential-machine-learning, where we posted a TensorFlow implementation, tested on Google Colab, along with examples from the article and additional ones. We also posted appendices covering many practical implementation details not covered in the paper, mathematical proofs, application to ML models besides neural networks and extensions necessary for a reliable implementation in production.




4

Automata Tutor v3. (arXiv:2005.01419v2 [cs.FL] UPDATED)

Computer science class enrollments have rapidly risen in the past decade. With current class sizes, standard approaches to grading and providing personalized feedback are no longer possible and new techniques become both feasible and necessary. In this paper, we present the third version of Automata Tutor, a tool for helping teachers and students in large courses on automata and formal languages. The second version of Automata Tutor supported automatic grading and feedback for finite-automata constructions and has already been used by thousands of users in dozens of countries. This new version of Automata Tutor supports automated grading and feedback generation for a greatly extended variety of new problems, including problems that ask students to create regular expressions, context-free grammars, pushdown automata and Turing machines corresponding to a given description, and problems about converting between equivalent models - e.g., from regular expressions to nondeterministic finite automata. Moreover, for several problems, this new version also enables teachers and students to automatically generate new problem instances. We also present the results of a survey run on a class of 950 students, which shows very positive results about the usability and usefulness of the tool.




4

The Sensitivity of Language Models and Humans to Winograd Schema Perturbations. (arXiv:2005.01348v2 [cs.CL] UPDATED)

Large-scale pretrained language models are the major driving force behind recent improvements in performance on the Winograd Schema Challenge, a widely employed test of common sense reasoning ability. We show, however, with a new diagnostic dataset, that these models are sensitive to linguistic perturbations of the Winograd examples that minimally affect human understanding. Our results highlight interesting differences between humans and language models: language models are more sensitive to number or gender alternations and synonym replacements than humans, and humans are more stable and consistent in their predictions, maintain a much higher absolute performance, and perform better on non-associative instances than associative ones. Overall, humans are correct more often than out-of-the-box models, and the models are sometimes right for the wrong reasons. Finally, we show that fine-tuning on a large, task-specific dataset can offer a solution to these issues.




4

Quantum arithmetic operations based on quantum Fourier transform on signed integers. (arXiv:2005.00443v2 [cs.IT] UPDATED)

The quantum Fourier transform brings efficiency in many respects, especially usage of resource, for most operations on quantum computers. In this study, the existing QFT-based and non-QFT-based quantum arithmetic operations are examined. The capabilities of QFT-based addition and multiplication are improved with some modifications. The proposed operations are compared with the nearest quantum arithmetic operations. Furthermore, novel QFT-based subtraction and division operations are presented. The proposed arithmetic operations can perform non-modular operations on all signed numbers without any limitation by using less resources. In addition, novel quantum circuits of two's complement, absolute value and comparison operations are also presented by using the proposed QFT based addition and subtraction operations.




4

Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential. (arXiv:2004.14936v2 [eess.IV] UPDATED)

Image analysis in the field of digital pathology has recently gained increased popularity. The use of high-quality whole slide scanners enables the fast acquisition of large amounts of image data, showing extensive context and microscopic detail at the same time. Simultaneously, novel machine learning algorithms have boosted the performance of image analysis approaches. In this paper, we focus on a particularly powerful class of architectures, called Generative Adversarial Networks (GANs), applied to histological image data. Besides improving performance, GANs also enable application scenarios in this field, which were previously intractable. However, GANs could exhibit a potential for introducing bias. Hereby, we summarize the recent state-of-the-art developments in a generalizing notation, present the main applications of GANs and give an outlook of some chosen promising approaches and their possible future applications. In addition, we identify currently unavailable methods with potential for future applications.




4

Towards Embodied Scene Description. (arXiv:2004.14638v2 [cs.RO] UPDATED)

Embodiment is an important characteristic for all intelligent agents (creatures and robots), while existing scene description tasks mainly focus on analyzing images passively and the semantic understanding of the scenario is separated from the interaction between the agent and the environment. In this work, we propose the Embodied Scene Description, which exploits the embodiment ability of the agent to find an optimal viewpoint in its environment for scene description tasks. A learning framework with the paradigms of imitation learning and reinforcement learning is established to teach the intelligent agent to generate corresponding sensorimotor activities. The proposed framework is tested on both the AI2Thor dataset and a real world robotic platform demonstrating the effectiveness and extendability of the developed method.




4

Teaching Cameras to Feel: Estimating Tactile Physical Properties of Surfaces From Images. (arXiv:2004.14487v2 [cs.CV] UPDATED)

The connection between visual input and tactile sensing is critical for object manipulation tasks such as grasping and pushing. In this work, we introduce the challenging task of estimating a set of tactile physical properties from visual information. We aim to build a model that learns the complex mapping between visual information and tactile physical properties. We construct a first of its kind image-tactile dataset with over 400 multiview image sequences and the corresponding tactile properties. A total of fifteen tactile physical properties across categories including friction, compliance, adhesion, texture, and thermal conductance are measured and then estimated by our models. We develop a cross-modal framework comprised of an adversarial objective and a novel visuo-tactile joint classification loss. Additionally, we develop a neural architecture search framework capable of selecting optimal combinations of viewing angles for estimating a given physical property.




4

When Hearing Defers to Touch. (arXiv:2004.13462v2 [q-bio.NC] UPDATED)

Hearing is often believed to be more sensitive than touch. This assertion is based on a comparison of sensitivities to weak stimuli. The respective stimuli, however, are not easily comparable since hearing is gauged using acoustic pressure and touch using skin displacement. We show that under reasonable assumptions the auditory and tactile detection thresholds can be reconciled on a level playing field. The results indicate that the capacity of touch and hearing to detect weak stimuli varies according to the size of a sensed object as well as to the frequency of its oscillations. In particular, touch is found to be more effective than hearing at detecting small and slow objects.




4

Self-Attention with Cross-Lingual Position Representation. (arXiv:2004.13310v2 [cs.CL] UPDATED)

Position encoding (PE), an essential part of self-attention networks (SANs), is used to preserve the word order information for natural language processing tasks, generating fixed position indices for input sequences. However, in cross-lingual scenarios, e.g. machine translation, the PEs of source and target sentences are modeled independently. Due to word order divergences in different languages, modeling the cross-lingual positional relationships might help SANs tackle this problem. In this paper, we augment SANs with emph{cross-lingual position representations} to model the bilingually aware latent structure for the input sentence. Specifically, we utilize bracketing transduction grammar (BTG)-based reordering information to encourage SANs to learn bilingual diagonal alignments. Experimental results on WMT'14 English$Rightarrow$German, WAT'17 Japanese$Rightarrow$English, and WMT'17 Chinese$Leftrightarrow$English translation tasks demonstrate that our approach significantly and consistently improves translation quality over strong baselines. Extensive analyses confirm that the performance gains come from the cross-lingual information.




4

Optimal Adjacent Vertex-Distinguishing Edge-Colorings of Circulant Graphs. (arXiv:2004.12822v2 [cs.DM] UPDATED)

A k-proper edge-coloring of a graph G is called adjacent vertex-distinguishing if any two adjacent vertices are distinguished by the set of colors appearing in the edges incident to each vertex. The smallest value k for which G admits such coloring is denoted by $chi$'a (G). We prove that $chi$'a (G) = 2R + 1 for most circulant graphs Cn([[1, R]]).




4

Jealousy-freeness and other common properties in Fair Division of Mixed Manna. (arXiv:2004.11469v2 [cs.GT] UPDATED)

We consider a fair division setting where indivisible items are allocated to agents. Each agent in the setting has strictly negative, zero or strictly positive utility for each item. We, thus, make a distinction between items that are good for some agents and bad for other agents (i.e. mixed), good for everyone (i.e. goods) or bad for everyone (i.e. bads). For this model, we study axiomatic concepts of allocations such as jealousy-freeness up to one item, envy-freeness up to one item and Pareto-optimality. We obtain many new possibility and impossibility results in regard to combinations of these properties. We also investigate new computational tasks related to such combinations. Thus, we advance the state-of-the-art in fair division of mixed manna.




4

Warwick Image Forensics Dataset for Device Fingerprinting In Multimedia Forensics. (arXiv:2004.10469v2 [cs.CV] UPDATED)

Device fingerprints like sensor pattern noise (SPN) are widely used for provenance analysis and image authentication. Over the past few years, the rapid advancement in digital photography has greatly reshaped the pipeline of image capturing process on consumer-level mobile devices. The flexibility of camera parameter settings and the emergence of multi-frame photography algorithms, especially high dynamic range (HDR) imaging, bring new challenges to device fingerprinting. The subsequent study on these topics requires a new purposefully built image dataset. In this paper, we present the Warwick Image Forensics Dataset, an image dataset of more than 58,600 images captured using 14 digital cameras with various exposure settings. Special attention to the exposure settings allows the images to be adopted by different multi-frame computational photography algorithms and for subsequent device fingerprinting. The dataset is released as an open-source, free for use for the digital forensic community.




4

On the regularity of De Bruijn multigrids. (arXiv:2004.10128v2 [cs.DM] UPDATED)

In this paper we prove that any odd multigrid with non-zero rational offsets is regular, which means that its dual is a rhombic tiling. To prove this result we use a result on trigonometric diophantine equations.