va

Is APOE {varepsilon}4 associated with cognitive performance in early MS?

Objective

To assess the impact of APOE polymorphisms on cognitive performance in patients newly diagnosed with clinically isolated syndrome (CIS) or relapsing-remitting MS (RRMS).

Methods

This multicenter cohort study included 552 untreated patients recently diagnosed with CIS or RRMS according to the 2005 revised McDonald criteria. The single nucleotide polymorphisms rs429358 (4) and rs7412 (2) of the APOE haplotype were assessed by allelic discrimination assays. Cognitive performance was evaluated using the 3-second paced auditory serial addition test and the Multiple Sclerosis Inventory Cognition (MUSIC). Sum scores were calculated to approximate the overall cognitive performance and memory-centered cognitive functions. The impact of the APOE carrier status on cognitive performance was assessed using multiple linear regression models, also including demographic, clinical, MRI, and lifestyle factors.

Results

APOE 4 homozygosity was associated with lower overall cognitive performance, whereas no relevant association was observed for APOE 4 heterozygosity or APOE 2 carrier status. Furthermore, higher disability levels, MRI lesion load, and depressive symptoms were associated with lower cognitive performance. Patients consuming alcohol had higher test scores than patients not consuming alcohol. Female sex, lower disability, and alcohol consumption were associated with better performance in the memory-centered subtests of MUSIC, whereas no relevant association was observed for APOE carrier status.

Conclusion

Along with parameters of a higher disease burden, APOE 4 homozygosity was identified as a potential predictor of cognitive performance in this large cohort of patients with CIS and early RRMS.




va

Risk of MS relapse after yellow fever vaccination: A self-controlled case series

Objective

To determine whether live-attenuated yellow fever vaccine (YFV) was associated with MS relapse, we evaluated the clinical courses of 23 patients in the year before and the year after immunization at the university hospital of Geneva, Switzerland.

Methods

This self-controlled retrospective cohort included adult patients with MS receiving YFV between 2014 and 2018 and defined the year before vaccination, the 3 months thereafter, and the 9 months following as the pre-exposure (PEP), exposure-risk (ERP), and postrisk (PRP) periods, respectively. The primary outcome was the relative incidence of relapse in the ERP vs the PEP. Secondary end points included the presence of new T2-weighted (T2) or T1-weighted gadolinium-positive (T1Gd+) MRI lesions.

Results

Of 23 patients with MS receiving YFV (20 relapsing MS and 3 primary progressive MS), 17 (74%) were women; mean age was 34 years (SD ±10); and 10 of 23 (40%) were treated with disease-modifying therapies (DMTs). Although 9 patients experienced 12 relapses in the PEP, only one experienced a relapse in the ERP; 3 other patients experienced one relapse each in the PRP. None of the 8 patients receiving natalizumab at the time of vaccination experienced relapse thereafter. In the PEP, ERP, and PRP, 18, 2, and 9 patients had new brain and/or spinal cord lesions on T2 or T1Gd + MRI, respectively.

Conclusions

In this cohort, YF vaccination was associated with neither an increase in MS relapse nor emergence of brain and/or spinal lesions. Further studies are warranted to confirm these findings.

Classification of evidence

This study provides Class IV evidence that for persons with MS, YFV may not increase relapse risk.




va

Ocrelizumab initiation in patients with MS: A multicenter observational study

Objective

To provide first real-world experience on patients with MS treated with the B cell–depleting antibody ocrelizumab.

Methods

We retrospectively collected data of patients who had received at least 1 treatment cycle (2 infusions) of ocrelizumab at 3 large neurology centers. Patients' characteristics including premedication, clinical disease course, and documented side effects were analyzed.

Results

We could identify 210 patients (125 women, mean age ± SD, 42.1 ± 11.4 years) who had received ocrelizumab with a mean disease duration of 7.3 years and a median Expanded Disability Status Scale score of 3.75 (interquartile range 2.5–5.5; range 0–8). Twenty-six percent of these patients had a primary progressive MS (PPMS), whereas 74% had a relapsing-remitting (RRMS) or active secondary progressive (aSPMS) disease course. Twenty-four percent of all patients were treatment naive, whereas 76% had received immune therapies before. After ocrelizumab initiation (median follow-up was 200 days, range 30–1,674 days), 13% of patients with RRMS/aSPMS experienced a relapse (accounting for an annualized relapse rate of 0.17, 95% CI 0.10–0.24), and 5% of all patients with MS experienced a 12-week confirmed disability progression. Treatment was generally well tolerated, albeit only short-term side effects were recorded, including direct infusion-related reactions and mild infections.

Conclusions

We provide class IV evidence that treatment with ocrelizumab can stabilize naive and pretreated patients, indicating that ocrelizumab is an option following potent MS drugs such as natalizumab and fingolimod. Further studies are warranted to confirm these findings and to reveal safety concerns in the longer-term follow-up.

Classification of evidence

This study provides Class IV evidence that for patients with MS, ocrelizumab can stabilize both treatment-naive and previously treated patients.




va

A large palaeo-landslide reactivated by high-speed railway construction works (northern Spain)

The presence of large palaeo-landslides can hinder the construction of railway lines if they cause an alteration of the natural balance of the slope, significantly increasing the cost of the project. During the construction works in a section of the Madrid–Asturias high-speed railway line (Spain), a large-scale hillside instability affected 460 m of the section. The ground movement began 10 months after the start of the excavations and remained active throughout the observation period (2008–2010). Data provided by fieldwork, boreholes and instrumental monitoring have allowed the investigation of the geological units involved, together with the geometry and the kinematics of the mass movement. This landslide involves a Paleozoic basement with an estimated volume of 4 400 000 m3. It shows low displacement rates (<45 mm a–1) and was accommodated on a single surface of rupture, which reaches more than 60 m depth. The kinematics is favoured by structural and lithological conditions, there being a strong rheological contrast in the lower part of the mobilized ground. This movement is linked to a large palaeo-landslide that was partially reactivated when excavations undermined the lower slopes of the hillside. Technical solutions for the stabilization have already caused an additional cost of 17% over the initial budget.




va

A case study for identification of organic-silt bottom sediments in an artificial lake formed in gravel alluvium in the geotourism locality of Slnecne Jazera in Senec (Bratislava, Slovakia)

This case study aims to identify the cubic capacity and geometry of the geological body of silt–organic sediments in the environment of a former gravel pit situated in a drainless depression of the alluvium of the Čierna voda River. It is located in the well-known geotourism locality of Slnečné Jazera in Senec, in the SW of Slovakia. To identify the body, electrical resistivity tomography was combined with the use of sonar. The research shows that this approach is appropriate for a number of activities that are subjects of engineering-geological investigations. The cubic capacity and geometry of specific aqueous engineering-geological environments must be determined in connection with the need for the management, control, quantification and extraction of selected sedimentary bodies. In addition, the management of sustainable development of reservoirs, sedimentation basins, industrial ponds, settling pits and natural pools for recreation (the subject of the case study) is important to control the limit amounts of sediments in such environments. The results of this study may be applied in analogous engineering-geological conditions. The drainless depression Slnečné Jazera contained a body of silt–organic sediments amounting to 23 000 m3 (41 Olympic-size pools of 25 m x 12.5 m x 1.8 m). The maximum thickness of the bottom sediments was about 6.3 m on the alluvium with an articulated morphology owing to the submerged digging of gravel. The proposed approach improved the control of extraction of the sedimentary body and optimized the engineering-geological conditions in this geotourism locality.




va

Groundwater recharge susceptibility mapping using logistic regression model and bivariate statistical analysis

A logistic regression model and a bivariate statistical analysis were used in this paper to evaluate the groundwater recharge susceptibility. The approach is based on the assessment of the relationship involving groundwater recharge and parameters that influence this hydrological process. Surface parameters and aquifer-related parameters were evaluated as thematic map layers using ArcGIS. Then, a weighted-rating method was adopted to categorize each parameter's map. To assess the role of each parameter in the aquifer recharge, a logistic regression model and a bivariate statistical analysis were applied to the Guenniche phreatic aquifer (Tunisia). Models are explored to establish a map showing the aquifer recharge susceptibility. The code Modflow was used to simulate the consequence of the recharge. The recharge amount was introduced in the model and was tested to verify the recharge effect on the hydraulic head for the two models. The obtained results reveal that the recharge as mapped in the bivariate statistical model has a minor impact on the hydraulic head. Results of the logistic regression model are more significant as the hydraulic head is widely affected. This model provides good results in mapping the spatial distribution of the aquifer recharge susceptibility.




va

Coseismic and monsoon-triggered landslide impacts on remote trekking infrastructure, Langtang Valley, Nepal

In 2015, the Mw 7.8 Gorkha earthquake struck Nepal, triggering thousands of landslides across the central and eastern Himalayas. These landslides had many adverse effects, including causing widespread damage to low-grade transport routes (e.g. tracks, footpaths) in rural regions that depend on tourism for survival. Langtang Valley is a glacial–periglacial landscape located 60 km north of Kathmandu. It is one of the most popular trekking regions in Nepal and has been severely affected by Gorkha earthquake-triggered and monsoon-triggered landsliding. Here, qualitative and quantitative observations from fieldwork and remote sensing are used to describe the materials and geomorphology of the landslides across Langtang Valley, and to quantify the extent to which coseismic and monsoon-triggered landslides have affected Langtang's trekking infrastructure. The dominant bedrock materials involved within Langtang landslides are found to be a range of gneisses and intruded leucogranites. In total, 64 landslides are found to have intersected trekking paths across Langtang, with coseismic and monsoon-triggered landslides having an impact on c. 3 km and 0.8 km of path respectively. It is observed that the practice of reconstructing paths through unstable landslide deposits is leaving the trekking infrastructure across Langtang increasingly vulnerable to future failure.




va

Multicenter Evaluation of a PCR-Based Digital Microfluidics and Electrochemical Detection System for the Rapid Identification of 15 Fungal Pathogens Directly from Positive Blood Cultures [Mycology]

Routine identification of fungal pathogens from positive blood cultures by culture-based methods can be time-consuming, delaying treatment with appropriate antifungal agents. The GenMark Dx ePlex investigational use only blood culture identification fungal pathogen panel (BCID-FP) rapidly detects 15 fungal targets simultaneously in blood culture samples positive for fungi by Gram staining. We aimed to determine the performance of the BCID-FP in a multicenter clinical study. Blood culture samples collected at 10 United States sites and tested with BCID-FP at 4 sites were compared to the standard-of-care microbiological and biochemical techniques, fluorescence in situ hybridization using peptide nucleic acid probes (PNA-FISH) and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Discrepant results were analyzed by bi-directional PCR/sequencing of residual blood culture samples. A total of 866 clinical samples, 120 retrospectively and 21 prospectively collected, along with 725 contrived samples were evaluated. Sensitivity and specificity of detection of Candida species (C. albicans, C. auris, C. dubliniensis, C. famata, C. glabrata, C. guilliermondii, C. kefyr, C. krusei, C. lusitaniae, C. parapsilosis, and C. tropicalis) ranged from 97.1 to 100% and 99.8 to 100%, respectively. For the other organism targets, sensitivity and specificity were as follows: 100% each for Cryptococcus neoformans and C. gattii, 98.6% and 100% for Fusarium spp., and 96.2% and 99.9% for Rhodotorula spp., respectively. In 4 of the 141 clinical samples, the BCID-FP panel correctly identified an additional Candida species, undetected by standard-of-care methods. The BCID-FP panel offers a faster turnaround time for identification of fungal pathogens in positive blood cultures that may allow for earlier antifungal interventions and includes C. auris, a highly multidrug-resistant fungus.




va

Evaluation of a Novel Multiplex PCR Panel Compared to Quantitative Bacterial Culture for Diagnosis of Lower Respiratory Tract Infections [Bacteriology]

Quantitative bacterial culture of bronchoalveolar lavage fluids (BALF) is labor-intensive, and the delay involved in performing culture, definitive identification, and susceptibility testing often results in prolonged use of broad-spectrum antibiotics. The Unyvero lower respiratory tract (LRT) panel (Curetis, Holzgerlingen, Germany) allows the multiplexed rapid detection and identification of 20 potential etiologic agents of pneumonia within 5 h of collection. In addition, the assay includes detection of gene sequences that confer antimicrobial resistance. We retrospectively compared the performance of the molecular panel to routine quantitative bacterial culture methods on remnant BALF. Upon testing 175 BALF, we were able to analyze positive agreement of 181 targets from 129 samples, and 46 samples were negative. The positive percent agreement (PPA) among the microbial targets was 96.5%, and the negative percent agreement (NPA) was 99.6%. The targets with a PPA of <100% were Staphylococcus aureus (34/37 [91.9%]), Streptococcus pneumoniae (10/11 [90.9%]), and Enterobacter cloacae complex (2/4 [50%]). For the analyzable resistance targets, concordance with phenotypic susceptibility testing was 79% (14/18). This study found the Unyvero LRT panel largely concordant with culture results; however, no outcome or clinical impact studies were performed.




va

Multicenter Evaluation of the BD Phoenix CPO Detect Test for Detection and Classification of Carbapenemase-Producing Organisms in Clinical Isolates [Bacteriology]

Limited treatment options contribute to high morbidity/mortality rates with carbapenem-resistant, Gram-negative bacterial infections. New approaches for carbapenemase-producing organism (CPO) detection may help inform clinician decision-making on patient treatment and infection control. BD Phoenix CPO detect (CPO detect) detects and classifies carbapenemases in Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa during susceptibility testing. The clinical performance of CPO detect is reported here. Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa isolates were evaluated across three sites using CPO detect and a composite reference method (RM); the latter was comprised of the modified carbapenem inactivation method and a MIC screen for ertapenem, imipenem, and meropenem. Multiplex PCR testing was also utilized for Ambler class determination. Positive and negative percentages of agreement (PPA and NPA, respectively) between CPO detect and the RM were determined. The PPA and NPA for Enterobacterales were 98.5% (confidence intervals, 96.6%, 99.4%) and 97.2% (95.8%, 98.2%), respectively. The A. baumannii PPA and NPA, respectively, were 97.1% (90.2%, 99.2%) and 97.1% (89.9%, 99.2%). The P. aeruginosa PPA and NPA, respectively, were 95.9% (88.6%, 98.6%) and 92.3% (86.7%, 95.6%). The PPA values for carbapenemase class designations for all organisms combined and Enterobacterales alone, respectively, were 95.3% (90.2%, 97.8%) and 94.6% (88.8%, 97.5%) for class A, 94.0% (88.7%, 96.6%) and 96.4% (90.0%, 98.8%) for class B, and 95.0% (90.1%, 97.6%) and 99.0% (94.4%, 99.8%) for class D carbapenemases. NPA values for all organisms and Enterobacterales alone ranged from 98.5% to 100%. CPO detect provided accurate detection and classification of CPOs for the majority of isolates of Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa tested.




va

Evaluation of ID Fungi Plates Medium for Identification of Molds by MALDI Biotyper [Mycology]

MALDI-TOF mass spectrometry (MS) identification of pathogenic filamentous fungi is often impaired by difficulties in harvesting hyphae embedded in the medium and long extraction protocols. The ID Fungi Plate (IDFP) is a novel culture method developed to address such difficulties and improve the identification of filamentous fungi by MALDI-TOF MS. We cultured 64 strains and 11 clinical samples on IDFP, Sabouraud agar-chloramphenicol (SAB), and ChromID Candida agar (CAN2). We then compared the three media for growth, ease of harvest, amount of material picked, and MALDI-TOF identification scores after either rapid direct transfer (DT) or a long ethanol-acetonitrile (EA) extraction protocol. Antifungal susceptibility testing and microscopic morphology after subculture on SAB and IDFP were also compared for ten molds. Growth rates and morphological aspects were similar for the three media. With IDFP, harvesting of fungal material for the extraction procedure was rapid and easy in 92.4% of cases, whereas it was tedious on SAB or CAN2 in 65.2% and 80.3% of cases, respectively. The proportion of scores above 1.7 (defined as acceptable identification) were comparable for both extraction protocols using IDFP (P = 0.256). Moreover, rates of acceptable identification after DT performed on IDFP (93.9%) were significantly higher than those obtained after EA extraction with SAB (69.7%) or CAN2 (71.2%) (P = <0.001 and P = 0.001, respectively). Morphological aspects and antifungal susceptibility testing were similar between IDFP and SAB. IDFP is a culture plate that facilitates and improves the identification of filamentous fungi, allowing accurate routine identification of molds with MALDI-TOF-MS using a rapid-extraction protocol.




va

Evaluation of Cycle Threshold, Toxin Concentration, and Clinical Characteristics of Clostridioides difficile Infection in Patients with Discordant Diagnostic Test Results [Bacteriology]

Clostridioides difficile infection (CDI) is one of the most common health care-associated infections that can cause significant morbidity and mortality. CDI diagnosis involves laboratory testing in conjunction with clinical assessment. The objective of this study was to assess the performance of various C. difficile tests and to compare clinical characteristics, Xpert C. difficile/Epi (PCR) cycle threshold (CT), and Singulex Clarity C. diff toxins A/B (Clarity) concentrations between groups with discordant test results. Unformed stool specimens from 200 hospitalized adults (100 PCR positive and 100 negative) were tested by cell cytotoxicity neutralization assay (CCNA), C. diff Quik Chek Complete (Quik Chek), Premier Toxins A and B, and Clarity. Clinical data, including CDI severity and CDI risk factors, were compared between discordant test results. Compared to CCNA, PCR had the highest sensitivity at 100% and Quik Chek had the highest specificity at 100%. Among clinical and laboratory data studied, prevalences of leukocytosis, prior antibiotic use, and hospitalizations were consistently higher across all subgroups in comparisons of toxin-positive to toxin-negative patients. Among PCR-positive samples, the median CT was lower in toxin-positive samples than in toxin-negative samples; however, CT ranges overlapped. Among Clarity-positive samples, the quantitative toxin concentration was significantly higher in toxin-positive samples than in toxin-negative samples as determined by CCNA and Quik Chek Toxin A and B. Laboratory tests for CDI vary in sensitivity and specificity. The quantitative toxin concentration may offer value in guiding CDI diagnosis and treatment. The presence of leukocytosis, prior antibiotic use, and previous hospitalizations may assist with CDI diagnosis, while other clinical parameters may not be consistently reliable.




va

Direct Determination of Pyrazinamide (PZA) Susceptibility by Sputum Microscopic Observation Drug Susceptibility (MODS) Culture at Neutral pH: the MODS-PZA Assay [Mycobacteriology and Aerobic Actinomycetes]

Pyrazinamide (PZA) is considered the pivot drug in all tuberculosis treatment regimens due to its particular action on the persistent forms of Mycobacterium tuberculosis. However, no drug susceptibility test (DST) is considered sufficiently reliable for routine application. Although molecular tests are endorsed, their application is limited to known PZA resistance associated mutations. Microbiological DSTs for PZA have been restricted by technical limitations, especially the necessity for an acidic pH. Here, for the first time, MODS culture at neutral pH was evaluated using high PZA concentrations (400 and 800 μg/ml) to determine PZA susceptibility directly from sputum samples. Sputum samples were cultured with PZA for up to 21 days at 37°C. Plate reading was performed at two time points: R1 (mean, 10 days) and R2 (mean, 13 days) for each PZA concentration. A consensus reference test, composed of MGIT-PZA, pncA sequencing, and the classic Wayne test, was used. A total of 182 samples were evaluated. The sensitivity and specificity for 400 μg/ml ranged from 76.9 to 89.7 and from 93.0 to 97.9%, respectively, and for 800 μg/ml ranged from 71.8 to 82.1 and from 95.8 to 98.6%, respectively. Compared to MGIT-PZA, our test showed a similar turnaround time (medians of 10 and 12 days for PZA-sensitive and -resistant isolates, respectively). In conclusion, MODS-PZA is presented as a fast, simple, and low-cost DST that could complement the MODS assay to evaluate resistance to the principal first-line antituberculosis drugs. Further optimization of test conditions would be useful in order to increase its performance.




va

Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens [Virology]

On 31 December 2019, the World Health Organization was informed of a cluster of cases of pneumonia of unknown etiology in Wuhan, China. Subsequent investigations identified a novel coronavirus, now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from the affected patients. Highly sensitive and specific laboratory diagnostics are important for controlling the rapidly evolving SARS-CoV-2-associated coronavirus disease 2019 (COVID-19) epidemic. In this study, we developed and compared the performance of three novel real-time reverse transcription-PCR (RT-PCR) assays targeting the RNA-dependent RNA polymerase (RdRp)/helicase (Hel), spike (S), and nucleocapsid (N) genes of SARS-CoV-2 with that of the reported RdRp-P2 assay, which is used in >30 European laboratories. Among the three novel assays, the COVID-19-RdRp/Hel assay had the lowest limit of detection in vitro (1.8 50% tissue culture infective doses [TCID50]/ml with genomic RNA and 11.2 RNA copies/reaction with in vitro RNA transcripts). Among 273 specimens from 15 patients with laboratory-confirmed COVID-19 in Hong Kong, 77 (28.2%) were positive by both the COVID-19-RdRp/Hel and RdRp-P2 assays. The COVID-19-RdRp/Hel assay was positive for an additional 42 RdRp-P2-negative specimens (119/273 [43.6%] versus 77/273 [28.2%]; P < 0.001), including 29/120 (24.2%) respiratory tract specimens and 13/153 (8.5%) non-respiratory tract specimens. The mean viral load of these specimens was 3.21 x 104 RNA copies/ml (range, 2.21 x 102 to 4.71 x 105 RNA copies/ml). The COVID-19-RdRp/Hel assay did not cross-react with other human-pathogenic coronaviruses and respiratory pathogens in cell culture and clinical specimens, whereas the RdRp-P2 assay cross-reacted with SARS-CoV in cell culture. The highly sensitive and specific COVID-19-RdRp/Hel assay may help to improve the laboratory diagnosis of COVID-19.




va

Multicenter Evaluation of the QIAstat-Dx Respiratory Panel for Detection of Viruses and Bacteria in Nasopharyngeal Swab Specimens [Virology]

The QIAstat-Dx Respiratory Panel (QIAstat-Dx RP) is a multiplex in vitro diagnostic test for the qualitative detection of 20 pathogens directly from nasopharyngeal swab (NPS) specimens. The assay is performed using a simple sample-to-answer platform with results available in approximately 69 min. The pathogens identified are adenovirus, coronavirus 229E, coronavirus HKU1, coronavirus NL63, coronavirus OC43, human metapneumovirus A and B, influenza A, influenza A H1, influenza A H3, influenza A H1N1/2009, influenza B, parainfluenza virus 1, parainfluenza virus 2, parainfluenza virus 3, parainfluenza virus 4, rhinovirus/enterovirus, respiratory syncytial virus A and B, Bordetella pertussis, Chlamydophila pneumoniae, and Mycoplasma pneumoniae. This multicenter evaluation provides data obtained from 1,994 prospectively collected and 310 retrospectively collected (archived) NPS specimens with performance compared to that of the BioFire FilmArray Respiratory Panel, version 1.7. The overall percent agreement between QIAstat-Dx RP and the comparator testing was 99.5%. In the prospective cohort, the QIAstat-Dx RP demonstrated a positive percent agreement of 94.0% or greater for the detection of all but four analytes: coronaviruses 229E, NL63, and OC43 and rhinovirus/enterovirus. The test also demonstrated a negative percent agreement of ≥97.9% for all analytes. The QIAstat-Dx RP is a robust and accurate assay for rapid, comprehensive testing for respiratory pathogens.




va

Validation of an Epstein-Barr Virus Antibody Risk Stratification Signature for Nasopharyngeal Carcinoma by Use of Multiplex Serology [Virology]

Serological testing for nasopharyngeal carcinoma (NPC) has recently been reinvigorated by the implementation of novel Epstein-Barr virus (EBV)-specific IgA and IgG antibodies from a proteome array. Although proteome arrays are well suited for comprehensive antigen selection, they are not applicable for large-scale studies. We adapted a 13-marker EBV antigen signature for NPC risk identified by proteome arrays to multiplex serology to establish an assay for large-scale studies. Taiwanese NPC cases (n = 175) and matched controls (n = 175) were used for assay validation. Spearman’s correlation was calculated, and the diagnostic value of all multiplex markers was assessed independently using the area under the receiver operating characteristic curve (AUC). Two refined signatures were identified using stepwise logistic regression and internally validated with 10-fold cross validation. Array and multiplex serology showed strong correlation for each individual EBV marker, as well as for a 13-marker combined model on continuous data. Two refined signatures with either four (LF2 and BGLF2 IgG, LF2 and BMRF1 IgA) or two (LF2 and BGLF2 IgG) antibodies on dichotomous data were identified as the most parsimonious set of serological markers able to distinguish NPC cases from controls with AUCs of 0.992 (95% confidence interval [CI], 0.983 to 1.000) and 0.984 (95% CI, 0.971 to 0.997), respectively. Neither differed significantly from the 13-marker model (AUC, 0.992; 95% CI, 0.982 to 1.000). All models were internally validated. Multiplex serology successfully validated the original EBV proteome microarray data. Two refined signatures of four and two antibodies were capable of detecting NPC with 99.2% and 98.4% accuracy.




va

Arabidopsis retrotransposon virus-like particles and their regulation by epigenetically activated small RNA [RESEARCH]

In Arabidopsis, LTR retrotransposons are activated by mutations in the chromatin gene DECREASE in DNA METHYLATION 1 (DDM1), giving rise to 21- to 22-nt epigenetically activated siRNA (easiRNA) that depend on RNA DEPENDENT RNA POLYMERASE 6 (RDR6). We purified virus-like particles (VLPs) from ddm1 and ddm1rdr6 mutants in which genomic RNA is reverse transcribed into complementary DNA. High-throughput short-read and long-read sequencing of VLP DNA (VLP DNA-seq) revealed a comprehensive catalog of active LTR retrotransposons without the need for mapping transposition, as well as independent of genomic copy number. Linear replication intermediates of the functionally intact COPIA element EVADE revealed multiple central polypurine tracts (cPPTs), a feature shared with HIV in which cPPTs promote nuclear localization. For one member of the ATCOPIA52 subfamily (SISYPHUS), cPPT intermediates were not observed, but abundant circular DNA indicated transposon "suicide" by auto-integration within the VLP. easiRNA targeted EVADE genomic RNA, polysome association of GYPSY (ATHILA) subgenomic RNA, and transcription via histone H3 lysine-9 dimethylation. VLP DNA-seq provides a comprehensive landscape of LTR retrotransposons and their control at transcriptional, post-transcriptional, and reverse transcriptional levels.




va

Rapid evolution of piRNA-mediated silencing of an invading transposable element was driven by abundant de novo mutations [RESEARCH]

The regulation of transposable element (TE) activity by small RNAs is a ubiquitous feature of germlines. However, despite the obvious benefits to the host in terms of ensuring the production of viable gametes and maintaining the integrity of the genomes they carry, it remains controversial whether TE regulation evolves adaptively. We examined the emergence and evolutionary dynamics of repressor alleles after P-elements invaded the Drosophila melanogaster genome in the mid-twentieth century. In many animals including Drosophila, repressor alleles are produced by transpositional insertions into piRNA clusters, genomic regions encoding the Piwi-interacting RNAs (piRNAs) that regulate TEs. We discovered that ~94% of recently collected isofemale lines in the Drosophila melanogaster Genetic Reference Panel (DGRP) contain at least one P-element insertion in a piRNA cluster, indicating that repressor alleles are produced by de novo insertion at an exceptional rate. Furthermore, in our sample of approximately 200 genomes, we uncovered no fewer than 80 unique P-element insertion alleles in at least 15 different piRNA clusters. Finally, we observe no footprint of positive selection on P-element insertions in piRNA clusters, suggesting that the rapid evolution of piRNA-mediated repression in D. melanogaster was driven primarily by mutation. Our results reveal for the first time how the unique genetic architecture of piRNA production, in which numerous piRNA clusters can encode regulatory small RNAs upon transpositional insertion, facilitates the nonadaptive rapid evolution of repression.




va

Correction: Targeting IDH1 as a Prosenescent Therapy in High-grade Serous Ovarian Cancer




va

Complex Rab4-Mediated Regulation of Endosomal Size and EGFR Activation

Early sorting endosomes are responsible for the trafficking and function of transferrin receptor (TfR) and EGFR. These receptors play important roles in iron uptake and signaling and are critical for breast cancer development. However, the role of morphology, receptor composition, and signaling of early endosomes in breast cancer remains poorly understood. A novel population of enlarged early endosomes was identified in breast cancer cells and tumor xenografts but not in noncancerous MCF10A cells. Quantitative analysis of endosomal morphology, cargo sorting, EGFR activation, and Rab GTPase regulation was performed using super-resolution and confocal microscopy followed by 3D rendering. MDA-MB-231 breast cancer cells have fewer, but larger EEA1-positive early endosomes compared with MCF10A cells. Live-cell imaging indicated dysregulated cargo sorting, because EGF and Tf traffic together via enlarged endosomes in MDA-MB-231, but not in MCF10A. Large EEA1-positive MDA-MB-231 endosomes exhibited prolonged and increased EGF-induced activation of EGFR upon phosphorylation at tyrosine-1068 (EGFR-p1068). Rab4A overexpression in MCF10A cells produced EEA1-positive enlarged endosomes that displayed prolonged and amplified EGF-induced EGFR-p1068 activation. Knockdown of Rab4A lead to increased endosomal size in MCF10A, but not in MDA-MB-231 cells. Nevertheless, Rab4A knockdown resulted in enhanced EGF-induced activation of EGFR-p1068 in MDA-MB-231 as well as downstream signaling in MCF10A cells. Altogether, this extensive characterization of early endosomes in breast cancer cells has identified a Rab4-modulated enlarged early endosomal compartment as the site of prolonged and increased EGFR activation.

Implications:

Enlarged early endosomes play a Rab4-modulated role in regulation of EGFR activation in breast cancer cells.




va

Constitutive CHK1 Expression Drives a pSTAT3-CIP2A Circuit that Promotes Glioblastoma Cell Survival and Growth

High-constitutive activity of the DNA damage response protein checkpoint kinase 1 (CHK1) has been shown in glioblastoma (GBM) cell lines and in tissue sections. However, whether constitutive activation and overexpression of CHK1 in GBM plays a functional role in tumorigenesis or has prognostic significance is not known. We interrogated multiple glioma patient cohorts for expression levels of CHK1 and the oncogene cancerous inhibitor of protein phosphatase 2A (CIP2A), a known target of high-CHK1 activity, and examined the relationship between these two proteins in GBM. Expression levels of CHK1 and CIP2A were independent predictors for reduced overall survival across multiple glioma patient cohorts. Using siRNA and pharmacologic inhibitors we evaluated the impact of their depletion using both in vitro and in vivo models and sought a mechanistic explanation for high CIP2A in the presence of high-CHK1 levels in GBM and show that; (i) CHK1 and pSTAT3 positively regulate CIP2A gene expression; (ii) pSTAT3 and CIP2A form a recursively wired transcriptional circuit; and (iii) perturbing CIP2A expression induces GBM cell senescence and retards tumor growth in vitro and in vivo. Taken together, we have identified an oncogenic transcriptional circuit in GBM that can be destabilized by targeting CIP2A.

Implications:

High expression of CIP2A in gliomas is maintained by a CHK1-dependent pSTAT3–CIP2A recursive loop; interrupting CIP2A induces cell senescence and slows GBM growth adding impetus to the development of CIP2A as an anticancer drug target.




va

Histone Demethylase JMJD1A Promotes Tumor Progression via Activating Snail in Prostate Cancer

The histone demethylase JMJD1A plays a key functional role in spermatogenesis, sex determination, stem cell renewal, and cancer via removing mono- and di-methyl groups from H3K9 to epigenetically control gene expression. However, its role in prostate cancer progression remains unclear. Here, we found JMJD1A was significantly elevated in prostate cancer tissue compared with matched normal tissue. Ectopic JMJD1A expression in prostate cancer cells promoted proliferation, migration, and invasion in vitro, and tumorigenesis in vivo; JMJD1A knockdown exhibited the opposite effects. Mechanically, we revealed that JMJD1A directly interacted with the Snail gene promoter and regulated its transcriptional activity, promoting prostate cancer progression both in vitro and in vivo. Furthermore, we found that JMJD1A transcriptionally activated Snail expression via H3K9me1 and H3K9me2 demethylation at its special promoter region. In summary, our studies reveal JMJD1A plays an important role in regulating proliferation and progression of prostate cancer cells though Snail, and thus highlight JMJD1A as potential therapeutic target for advanced prostate cancer.

Implications:

Our studies identify that JMJD1A promotes the proliferation and progression of prostate cancer cells through enabling Snail transcriptional activation, and thus highlight JMJD1A as potential therapeutic target for advanced prostate cancer.




va

Pre-eclamptic Fetal Programming Alters Neuroinflammatory and Cardiovascular Consequences of Endotoxemia in Sex-Specific Manners [Neuropharmacology]

Pre-eclampsia (PE)-induced fetal programming predisposes offspring to health hazards in adult life. Here, we tested the hypothesis that pre-eclamptic fetal programming elicits sexually dimorphic inflammatory and cardiovascular complications to endotoxemia in adult rat offspring. PE was induced by oral administration of L-NAME (50 mg/kg per day for seven consecutive days) starting from day 14 of conception. Cardiovascular studies were performed in conscious adult male and female offspring preinstrumented with femoral indwelling catheters. Compared with non-PE male counterparts, intravenous administration of lipopolysaccharide (LPS, 5 mg/kg) to PE male offspring caused significantly greater 1) falls in blood pressure, 2) increases in heart rate, 3) rises in arterial dP/dtmax, a correlate of left ventricular contractility, and 4) decreases in time- and frequency-domain indices of heart rate variability (HRV). By contrast, the hypotensive and tachycardic actions of LPS in female offspring were independent of the pre-eclamptic state and no clear changes in HRV or dP/dtmax were noted. Measurement of arterial baroreflex activity by vasoactive method revealed no sex specificity in baroreflex dysfunction induced by LPS. Immunohistochemical studies showed increased protein expression of toll-like receptor 4 in heart as well as in brainstem neuronal pools of the nucleus of solitary tract and rostral ventrolateral medulla in endotoxic PE male, but not female, offspring. Enhanced myocardial, but not neuronal, expression of monocyte chemoattractant protein-1 was also demonstrated in LPS-treated male offspring. Together, pre-eclamptic fetal programming aggravates endotoxic manifestations of hypotension and autonomic dysfunction in male offspring via exacerbating myocardial and neuromedullary inflammatory pathways.

SIGNIFICANCE STATEMENT

Current molecular and neuroanatomical evidence highlights a key role for pre-eclamptic fetal programming in offspring predisposition to health hazards induced by endotoxemia in adult life. Pre-eclampsia accentuates endotoxic manifestations of hypotension, tachycardia, and cardiac autonomic dysfunction in male offspring via exacerbating myocardial and central inflammatory pathways. The absence of such detrimental effects in female littermates suggests sexual dimorphism in the interaction of pre-eclamptic fetal programming with endotoxemia.




va

Hepatic Transporter Alterations by Nuclear Receptor Agonist T0901317 in Sandwich-Cultured Human Hepatocytes: Proteomic Analysis and PBPK Modeling to Evaluate Drug-Drug Interaction Risk [Metabolism, Transport, and Pharmacogenomics]

In vitro approaches for predicting drug-drug interactions (DDIs) caused by alterations in transporter protein regulation are not well established. However, reports of transporter regulation via nuclear receptor (NR) modulation by drugs are increasing. This study examined alterations in transporter protein levels in sandwich-cultured human hepatocytes (SCHH; n = 3 donors) measured by liquid chromatography–tandem mass spectrometry–based proteomic analysis after treatment with N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide (T0901317), the first described synthetic liver X receptor agonist. T0901317 treatment (10 μM, 48 hours) decreased the levels of organic cation transporter (OCT) 1 (0.22-, 0.43-, and 0.71-fold of control) and organic anion transporter (OAT) 2 (0.38-, 0.38-, and 0.53-fold of control) and increased multidrug resistance protein (MDR) 1 (1.37-, 1.48-, and 1.59-fold of control). The induction of NR downstream gene expression supports the hypothesis that T0901317 off-target effects on farnesoid X receptor and pregnane X receptor activation are responsible for the unexpected changes in OCT1, OAT2, and MDR1. Uptake of the OCT1 substrate metformin in SCHH was decreased by T0901317 treatment. Effects of decreased OCT1 levels on metformin were simulated using a physiologically-based pharmacokinetic (PBPK) model. Simulations showed a clear decrease in metformin hepatic exposure resulting in a decreased pharmacodynamic effect. This DDI would not be predicted by the modest changes in simulated metformin plasma concentrations. Altogether, the current study demonstrated that an approach combining SCHH, proteomic analysis, and PBPK modeling is useful for revealing tissue concentration–based DDIs caused by unexpected regulation of hepatic transporters by NR modulators.

SIGNIFICANCE STATEMENT

This study utilized an approach combining sandwich-cultured human hepatocytes, proteomic analysis, and physiologically based pharmacokinetic modeling to evaluate alterations in pharmacokinetics (PK) and pharmacodynamics (PD) caused by transporter regulation by nuclear receptor modulators. The importance of this approach from a mechanistic and clinically relevant perspective is that it can reveal drug-drug interactions (DDIs) caused by unexpected regulation of hepatic transporters and enable prediction of altered PK and PD changes, especially for tissue concentration–based DDIs.




va

Inner Ear Arginine Vasopressin-Vasopressin Receptor 2-Aquaporin 2 Signaling Pathway Is Involved in the Induction of Motion Sickness [Drug Discovery and Translational Medicine]

It has been identified that arginine vasopressin (AVP), vasopressin receptor 2(V2R), and the aquaporin 2 (AQP2) signaling pathway in the inner ear play important roles in hearing and balance functions through regulating the endolymph equilibrium; however, the contributions of this signaling pathway to the development of motion sickness are unclear. The present study was designed to investigate whether the activation of the AVP-V2R-AQP2 signaling pathway in the inner ear is involved in the induction of motion sickness and whether mozavaptan, a V2R antagonist, could reduce motion sickness. We found that both rotatory stimulus and intraperitoneal AVP injection induced conditioned taste aversion (a confirmed behavioral index for motion sickness) in rats and activated the AVP-V2R-AQP2 signaling pathway with a responsive V2R downregulation in the inner ears, and AVP perfusion in cultured epithelial cells from rat endolymphatic sacs induced similar changes in this pathway signaling. Vestibular training, V2R antagonist mozavaptan, or PKA inhibitor H89 blunted these changes in the V2R-AQP2 pathway signaling while reducing rotatory stimulus– or DDAVP (a V2R agonist)-induced motion sickness in rats and dogs. Therefore, our results suggest that activation of the inner ear AVP-V2R-AQP2 signaling pathway is potentially involved in the development of motion sickness; thus, mozavaptan targeting AVP V2Rs in the inner ear may provide us with a new application option to reduce motion sickness.

SIGNIFICANCE STATEMENT

Motion sickness affects many people traveling or working. In the present study our results showed that activation of the inner ear arginine vasopressin-vaspopressin receptor 2 (V2R)-aquaporin 2 signaling pathway was potentially involved in the development of motion sickness and that blocking V2R with mozavaptan, a V2R antagonist, was much more effective in reducing motion sickness in both rat and dog; therefore, we demonstrated a new mechanism to underlie motion sickness and a new candidate drug to reduce motion sickness.




va

Translational Pharmacokinetic-Pharmacodynamic Modeling for an Orally Available Novel Inhibitor of Epigenetic Regulator Enhancer of Zeste Homolog 2 [Drug Discovery and Translational Medicine]

PF06821497 has been identified as an orally available small-molecule enhancer of zeste homolog 2 inhibitor. The objectives of the present study were to characterize pharmacokinetic-pharmacodynamic-disease relationships of PF06821497 in xenograft mouse models with diffuse large B-cell lymphoma (Karpas422). An indirect-response model reasonably fit dose-dependent pharmacodynamic responses [histone H3 on lysine 27 (H3K27) me3 inhibition] with an unbound EC50 of 76 nM, whereas a signal-transduction model sufficiently fit dose-dependent disease responses (tumor growth inhibition) with an unbound tumor stasis concentration (Tsc) of 168 nM. Thus, effective concentration for 70% of maximal effect (EC70) for H3K27me3 inhibition was roughly comparable to Tsc, suggesting that 70% H3K27me3 inhibition could be required for tumor stasis. Consistently, an integrated pharmacokinetic-pharmacodynamic-disease model adequately describing tumor growth inhibition also suggested that ~70% H3K27me3 inhibition was associated with tumor stasis. Based on these results, we would propose that an EC70 estimate for H3K27me3 inhibition corresponding to tumor stasis could be considered a minimum target efficacious concentration of PF06821497 in cancer patients.

SIGNIFICANCE STATEMENT

Using a mathematical modeling approach, the quantitative relationships of an orally available anticancer small-molecule enhancer of zeste homolog 2 inhibitor, PF06821497, were characterized among pharmacokinetics, pharmacodynamic biomarker inhibition, and disease responses in nonclinical xenograft models with diffuse large B-cell lymphoma. The modeling results suggest that >70% histone H3 on lysine 27 (H3K27) me3 inhibition would be required for tumor stasis (i.e., 100% tumor growth inhibition). Accordingly, we would propose that an effective concentration for 70% of maximal effect estimate for H3K27me3 inhibition could be considered a minimum target efficacious concentration of PF06821497 in cancer patients.




va

A Mechanistic and Translational Pharmacokinetic-Pharmacodynamic Model of Abicipar Pegol and Vascular Endothelial Growth Factor Inhibition [Drug Discovery and Translational Medicine]

Abicipar pegol (abicipar) is a novel DARPin therapeutic and highly potent vascular endothelial growth factor (VEGF) inhibitor intended for the treatment of neovascular age-related macular degeneration (nAMD). Here we develop a translational pharmacokinetic/pharmacodynamic (PK/PD) model for abicipar to guide dosing regimens in the clinic. The model incorporated abicipar-VEGF binding kinetics, VEGF expression levels, and VEGF turnover rates to describe the ocular and systemic PK data collected from the vitreous, aqueous humor (AH), choroid, retina, and serum of rabbits after a 1-mg abicipar intravitreal (IVT) dose. The model was translated to humans using human-specific mechanistic parameters and refitted to human serum and AH concentrations from patients with diabetic macular edema and nAMD. The model was then used to simulate 8-, 12- (quarterly), and 16-week dosing intervals in the clinic. Simulations of 2 mg abicipar IVT at 8-week or quarterly dosing in humans indicates minimum steady-state vitreal concentrations are maintained above both in vitro IC50 and in vivo human IC50 values. The model predicted virtually complete VEGF inhibition for the 8-week and quarterly dosing schedule during the 52-week treatment period. In the 16-week schedule, clinically significant VEGF inhibition was maintained during the 52-week period. The model quantitatively described abicipar-VEGF target engagement leading to rapid reduction of VEGF and a long duration of VEGF inhibition demonstrating the clinical feasibility of up to a 16-week dosing interval. Abicipar is predicted to reduce IVT dosing compared with other anti-VEGF therapies with the potential to lessen patient treatment burden.

SIGNIFICANCE STATEMENT

Current anti-VEGF treatments for neovascular age-related macular degeneration require frequent (monthly) intravitreal injections and monitoring, which increases patient burden. We developed a mechanistic pharmakinetic/pharmadynamic model to describe the interaction between abicipar (a novel VEGF inhibitor) and VEGF to evaluate the duration of action. The model demonstrates extended abicipar-VEGF target engagement leading to clinical feasibility of up to a 16-week dosing interval. Our model predicted that abicipar 8-week and quarterly dosing schedules maintain virtually complete VEGF inhibition during the 52-week period.




va

COMT-Catalyzed Palmitic Acid Methyl Ester Biosynthesis in Perivascular Adipose Tissue and its Potential Role Against Hypertension [Cardiovascular]

Decreased release of palmitic acid methyl ester (PAME), a vasodilator, from perivascular adipose tissue (PVAT) might contribute to hypertension pathogenesis. However, the PAME biosynthetic pathway remains unclear. In this study, we hypothesized that PAME is biosynthesized from palmitic acid (PA) via human catechol-O-methyltransferase (COMT) catalysis and that decreased PAME biosynthesis plays a role in hypertension pathogenesis. We compared PAME biosynthesis between age-matched normotensive Wistar Kyoto (WKY) rats and hypertensive spontaneously hypertensive rats (SHRs) and investigated the effects of losartan treatment on PAME biosynthesis. Computational molecular modeling indicated that PA binds well at the active site of COMT. Furthermore, in in vitro enzymatic assays in the presence of COMT and S-5'-adenosyl-L-methionine (AdoMet), the stable isotope [13C16]-PA was methylated to form [13C16]-PAME in incubation medium or the Krebs–Henseleit solution containing 3T3-L1 adipocytes or rat PVAT. The adipocytes and PVATs expressed membrane-bound (MB)-COMT and soluble (S)-COMT proteins. [13C16]-PA methylation to form [13C16]-PAME in 3T3-L1 adipocytes and rat PVAT was blocked by various COMT inhibitors, such as S-(5'-adenosyl)-L-homocysteine, adenosine-2',3'-dialdehyde, and tolcapone. MB- and S-COMT levels in PVATs of established SHRs were significantly lower than those in PVATs of age-matched normotensive WKY rats, with decreased [13C16]-PA methylation to form [13C16]-PAME. This decrease was reversed by losartan, an angiotensin II (Ang II) type 1 receptor antagonist. Therefore, PAME biosynthesis in rat PVAT is dependent on AdoMet, catalyzed by COMT, and decreased in SHRs, further supporting the role of PVAT/PAME in hypertension pathogenesis. Moreover, the antihypertensive effect of losartan might be due partly to its increased PAME biosynthesis.

SIGNIFICANCE STATEMENT

PAME is a key PVAT-derived relaxing factor. We for the first time demonstrate that PAME is synthesized through PA methylation via the S-5'-adenosyl-L-methionine–dependent COMT catalyzation pathway. Moreover, we confirmed PVAT dysfunction in the hypertensive state. COMT-dependent PAME biosynthesis is involved in Ang II receptor type 1–mediated blood pressure regulation, as evidenced by the reversal of decreased PAME biosynthesis in PVAT by losartan in hypertensive rats. This finding might help in developing novel therapeutic or preventive strategies against hypertension.




va

Forget the stress: retrograde amnesia for the stress-induced impairment of extinction retrieval [BRIEF COMMUNICATIONS]

We investigated whether cycloheximide (CHX) would induce amnesia for the stress-induced impairment of extinction retrieval. First, a single restraint stress session was demonstrated to impair extinction retrieval, but not fear conditioning. A second experiment showed that when CHX was administered immediately after restraint, rats exhibited significant extinction retrieval at test (i.e., retrograde amnesia for the stress). In a third experiment, the stress session impaired various amounts of extinction durations, suggesting that the stress inhibited extinction retrieval rather than enhancing the original fear learning. These results suggest memories for acute stress are susceptible to disruption, which could have clinical implications.




va

Delineating the role of membrane blebs in a hybrid mode of cancer cell invasion in three-dimensional environments [RESEARCH ARTICLE]

Asja Guzman, Rachel C. Avard, Alexander J. Devanny, Oh Sang Kweon, and Laura J. Kaufman

The study of cancer cell invasion in 3D environments in vitro has revealed a variety of invasive modes, including amoeboid migration, characterized by primarily round cells that invade in a protease- and adhesion-independent manner. Here, we delineate a contractility-dependent migratory mode of primarily round breast cancer cells that is associated with extensive integrin-mediated extracellular matrix (ECM) reorganization that occurs at membrane blebs, with bleb necks sites of integrin clustering and integrin-dependent ECM alignment. We show that the spatiotemporal distribution of blebs and their utilization for ECM reorganization is mediated by functional β1 integrin receptors and other components of focal adhesions. Taken together, the work presented here characterizes a migratory mode of primarily round cancer cells in complex 3D environments and reveals a fundamentally new function for membrane blebs in cancer cell invasion.




va

CXL146, a Novel 4H-Chromene Derivative, Targets GRP78 to Selectively Eliminate Multidrug-Resistant Cancer Cells [Articles]

The 78-kDa glucose-regulated protein (GRP78), an endoplasmic reticulum (ER) chaperone, is a master regulator of the ER stress. A number of studies revealed that high levels of GRP78 protein in cancer cells confer multidrug resistance (MDR) to therapeutic treatment. Therefore, drug candidate that reduces GRP78 may represent a novel approach to eliminate MDR cancer cells. Our earlier studies showed that a set of 4H-chromene derivatives induced selective cytotoxicity in MDR cancer cells. In the present study, we elucidated its selective mechanism in four MDR cancer cell lines with one lead candidate (CXL146). Cytotoxicity results confirmed the selective cytotoxicity of CXL146 toward the MDR cancer cell lines. We noted significant overexpression of GRP78 in all four MDR cell lines compared with the parental cell lines. Unexpectedly, CXL146 treatment rapidly and dose-dependently reduced GRP78 protein in MDR cancer cell lines. Using human leukemia (HL) 60/mitoxantrone (MX) 2 cell line as the model, we demonstrated that CXL146 treatment activated the unfolded protein response (UPR); as evidenced by the activation of inositol-requiring enzyme 1α, protein kinase R–like ER kinase, and activating transcription factor 6. CXL146-induced UPR activation led to a series of downstream events, including extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase activation, which contributed to CXL146-induced apoptosis. Targeted reduction in GRP78 resulted in reduced sensitivity of HL60/MX2 toward CXL146. Long-term sublethal CXL146 exposure also led to reduction in GRP78 in HL60/MX2. These data collectively support GRP78 as the target of CXL146 in MDR treatment. Interestingly, HL60/MX2 upon long-term sublethal CXL146 exposure regained sensitivity to mitoxantrone treatment. Therefore, further exploration of CXL146 as a novel therapy in treating MDR cancer cells is warranted.

SIGNIFICANCE STATEMENT

Multidrug resistance is one major challenge to cancer treatment. This study provides evidence that cancer cells overexpress 78-kDa glucose-regulated protein (GRP78) as a mechanism to acquire resistance to standard cancer therapies. A chromene-based small molecule, CXL146, selectively eliminates cancer cells with GRP78 overexpression via activating unfolded protein response–mediated apoptosis. Further characterization indicates that CXL146 and standard therapies complementarily target different populations of cancer cells, supporting the potential of CXL146 to overcome multidrug resistance in cancer treatment.




va

Proteinase-Activated Receptor 4 Activation Triggers Cell Membrane Blebbing through RhoA and {beta}-Arrestin [Articles]

Proteinase-activated receptors (PARs) are a four-member family of G-protein–coupled receptors that are activated via proteolysis. PAR4 is a member of this family that is cleaved and activated by serine proteinases such as thrombin, trypsin, and cathepsin-G. PAR4 is expressed in a variety of tissues and cell types, including platelets, vascular smooth muscle cells, and neuronal cells. In studying PAR4 signaling and trafficking, we observed dynamic changes in the cell membrane, with spherical membrane protrusions that resemble plasma membrane blebbing. Since nonapoptotic membrane blebbing is now recognized as an important regulator of cell migration, cancer cell invasion, and vesicular content release, we sought to elucidate the signaling pathway downstream of PAR4 activation that leads to such events. Using a combination of pharmacological inhibition and CRISPR/CRISPR-associated protein 9 (Cas9)–mediated gene editing approaches, we establish that PAR4-dependent membrane blebbing occurs independently of the Gαq/11- and Gαi-signaling pathways and is dependent on signaling via the β-arrestin-1/2 and Ras homolog family member A (RhoA) signaling pathways. Together these studies provide further mechanistic insight into PAR4 regulation of cellular function.

SIGNIFICANCE STATEMENT

We find that the thrombin receptor PAR4 triggers cell membrane blebbing in a RhoA–and β-arrestin–dependent manner. In addition to identifying novel cellular responses mediated by PAR4, these data provide further evidence for biased signaling in PAR4 since membrane blebbing was dependent on some, but not all, signaling pathways activated by PAR4.




va

Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution [Review Articles]

Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe.

Significance Statement

Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.




va

Evaluation of an Automated Module Synthesis and a Sterile Cold Kit-Based Preparation of 68Ga-PSMA-11 in Patients with Prostate Cancer

68Ga-labeled urea-based inhibitors of the prostate-specific membrane antigen (PSMA), such as 68Ga-PSMA-11, are promising small molecules for targeting prostate cancer (PCa). Although this radiopharmaceutical was produced mostly by means of manual synthesis and automated synthesis modules, a sterile cold kit was recently introduced. The aim of our study was to evaluate the image quality of 68Ga-PSMA-11 PET/CT (PSMA-PET) in a population of PCa patients after the injection of comparable activities of 68Ga-PSMA-11 obtained with the 2 different synthetic procedures. A secondary aim was to identify secondary factors that may have an impact on image quality and, thus, final interpretation. Methods: Two different groups of 100 consecutive PCa patients who underwent PSMA-PET were included in the study. The first group of patients was imaged with 68Ga-PSMA-11 obtained using synthesis modules, whereas the second group’s tracer activity was synthesized using a sterile cold kit. All PET images were independently reviewed by 2 nuclear medicine diagnosticians with at least 2 y of experience in PSMA-based imaging and unaware of the patients’ clinical history. The 2 reviewers independently rated the quality of each PSMA-PET scan using a 3-point Likert-type scale. In cases of discordance, the operators together reviewed the images and reached a consensus. Performance was evaluated on the basis of the expected biodistribution, lesion detection rate, and physiologic background uptake. Results: Overall, 104 of 200 (52%) PSMA-PET scans were positive for PCa-related findings. No significant differences in image quality between cold kits and synthesis modules were found (P = 0.13), although a higher proportion of images was rated as excellent by the observers for kits than for modules (45% vs. 34%). Furthermore, after image quality had been dichotomized as excellent or not excellent, multivariate regression analysis found several factors to be significantly associated with a not-excellent quality: an increase in patient age (+5 y: odds ratio [OR], 1.40; 95% confidence interval [CI], 1.12–1.75), an increase in patient weight (+5 kg: OR, 1.89; 95% CI, 1.53–2.32), an increase in 68Ga-PSMA-11 uptake time (+10 min: OR, 1.45; 95% CI, 1.08–1.96), and a decrease in injected activity (–10 MBq: OR, 1.28; 95% CI, 1.07–1.52). Conclusion: No significant differences were identified between the 2 groups of patients undergoing PSMA-PET; therefore, we were not able to ascertain any significant influences of tracer production methodology on final scan quality. However, increased patient age, increased patient weight, decreased injected activity, and increased 68Ga-PSMA-11 uptake time were significantly associated with an overall poorer image quality.




va

Back-Table Fluorescence-Guided Imaging for Circumferential Resection Margin Evaluation Using Bevacizumab-800CW in Patients with Locally Advanced Rectal Cancer

Negative circumferential resection margins (CRM) are the cornerstone for the curative treatment of locally advanced rectal cancer (LARC). However, in up to 18.6% of patients, tumor-positive resection margins are detected on histopathology. In this proof-of-concept study, we investigated the feasibility of optical molecular imaging as a tool for evaluating the CRM directly after surgical resection to improve tumor-negative CRM rates. Methods: LARC patients treated with neoadjuvant chemoradiotherapy received an intravenous bolus injection of 4.5 mg of bevacizumab-800CW, a fluorescent tracer targeting vascular endothelial growth factor A, 2–3 d before surgery (ClinicalTrials.gov identifier: NCT01972373). First, for evaluation of the CRM status, back-table fluorescence-guided imaging (FGI) of the fresh surgical resection specimens (n = 8) was performed. These results were correlated with histopathology results. Second, for determination of the sensitivity and specificity of bevacizumab-800CW for tumor detection, a mean fluorescence intensity cutoff value was determined from the formalin-fixed tissue slices (n = 42; 17 patients). Local bevacizumab-800CW accumulation was evaluated by fluorescence microscopy. Results: Back-table FGI correctly identified a tumor-positive CRM by high fluorescence intensities in 1 of 2 patients (50%) with a tumor-positive CRM. For the other patient, low fluorescence intensities were shown, although (sub)millimeter tumor deposits were present less than 1 mm from the CRM. FGI correctly identified 5 of 6 tumor-negative CRM (83%). The 1 patient with false-positive findings had a marginal negative CRM of only 1.4 mm. Receiver operating characteristic curve analysis of the fluorescence intensities of formalin-fixed tissue slices yielded an optimal mean fluorescence intensity cutoff value for tumor detection of 5,775 (sensitivity of 96.19% and specificity of 80.39%). Bevacizumab-800CW enabled a clear differentiation between tumor and normal tissue up to a microscopic level, with a tumor-to-background ratio of 4.7 ± 2.5 (mean ± SD). Conclusion: In this proof-of-concept study, we showed the potential of back-table FGI for evaluating the CRM status in LARC patients. Optimization of this technique with adaptation of standard operating procedures could change perioperative decision making with regard to extending resections or applying intraoperative radiation therapy in the case of positive CRM.




va

Early 18F-FDG PET/CT Response Predicts Survival in Relapsed or Refractory Hodgkin Lymphoma Treated with Nivolumab

Monoclonal antibodies (mAbs) against programmed cell death 1 (PD-1), such as nivolumab and pembrolizumab, are associated with high response rates in patients with relapsed or refractory classic Hodgkin lymphoma (HL). To date, no prognostic factor for overall survival (OS) has been established with these agents in HL. We examined whether the first early response assessment evaluated using 18F-FDG PET/CT may be associated with OS in this setting. Methods: This retrospective study included 45 patients from 34 institutions. In a masked, centralized review, 3 independent radiologists classified PET/CT scans obtained at a median of 2.0 mo (interquartile range, 1.7–3.7 mo) after nivolumab initiation using existing criteria (i.e., 2014 Lugano classification and 2016 LYRIC). Patients were classified according to 4 possible response categories: complete metabolic response (CMR), partial metabolic response (PMR), no metabolic response (NMR), or progressive metabolic disease (PMD). Because the OS of patients with NMR and PMR was similar, they were grouped together. OS was estimated using the Kaplan–Meier method and compared between groups using log-rank testing. Results: Eleven patients (24%) died after a median follow-up of 21.2 mo. The classification was identical between Lugano and LYRIC because all 16 progression events classified as indeterminate response per LYRIC were confirmed on subsequent evaluations. Both Lugano and LYRIC classified patients as CMR in 13 cases (29%), PMD in 16 (36%), NMR in 4 (9%), and PMR in 12 (27%). The 2-y OS probability was significantly different in patients with PMD (0.53; 95% confidence interval [95%CI], 0.32–0.87), NMR or PMR (0.80; 95%CI, 0.63–1.00), and CMR (1.00; 95%CI, 1.00–1.00) in the overall population (P = 0.02, 45 patients), as well as according to a landmark analysis at 3 mo (P = 0.05, 32 patients). Conclusion: In relapsed or refractory HL patients treated with anti-PD-1 mAbs, the first early PET/CT assessment using either Lugano or LYRIC predicted OS and allowed early risk stratification, suggesting that PET/CT might be used to develop risk-adapted strategies.




va

Incidental Findings Suggestive of COVID-19 in Asymptomatic Patients Undergoing Nuclear Medicine Procedures in a High-Prevalence Region

Infection with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may remain asymptomatic, leading to under-recognition of the related disease, coronavirus disease, 2019 (COVID-19), and to incidental findings in nuclear imaging procedures performed for standard clinical indications. Here, we report about our local experience in a region with high COVID-19 prevalence and dynamically increasing infection rates. Methods: Within the 8-d period of March 16–24, 2020, hybrid imaging studies of asymptomatic patients who underwent 18F-FDG PET/CT or 131I SPECT/CT for standard oncologic indications at our institution in Brescia, Italy, were analyzed for findings suggestive of COVID-19. The presence, radiologic features, and metabolic activity of interstitial pneumonia were identified, correlated with the subsequent short-term clinical course, and described in a case series. Results: Six of 65 patients (9%) who underwent PET/CT for various malignancies showed unexpected signs of interstitial pneumonia on CT and elevated regional 18F-FDG avidity. Additionally, 1 of 12 patients who received radioiodine for differentiated thyroid carcinoma also showed interstitial pneumonia on SPECT/CT. Five of 7 patients had subsequent proof of COVID-19 by reverse-transcriptase polymerase chain reaction. The remaining 2 patients were not tested immediately but underwent quarantine and careful monitoring. Conclusion: Incidental findings suggestive of COVID-19 may not be infrequent in hybrid imaging of asymptomatic patients in regions with an expansive spread of SARS-CoV-2. Nuclear medicine services should prepare accordingly.




va

Diagnostic Evaluation of Pulmonary Embolism During the COVID-19 Pandemic




va

SNMMI Leadership Update: SNMMI Strong: Advancing the Profession through Advocacy, Collaboration, and Awareness




va

Autophagy promotes mammalian survival by suppressing oxidative stress and p53 [Research Papers]

Autophagy captures intracellular components and delivers them to lysosomes for degradation and recycling. Conditional autophagy deficiency in adult mice causes liver damage, shortens life span to 3 mo due to neurodegeneration, and is lethal upon fasting. As autophagy deficiency causes p53 induction and cell death in neurons, we sought to test whether p53 mediates the lethal consequences of autophagy deficiency. Here, we conditionally deleted Trp53 (p53 hereafter) and/or the essential autophagy gene Atg7 throughout adult mice. Compared with Atg7/ mice, the life span of Atg7/p53/ mice was extended due to delayed neurodegeneration and resistance to death upon fasting. Atg7 also suppressed apoptosis induced by p53 activator Nutlin-3, suggesting that autophagy inhibited p53 activation. To test whether increased oxidative stress in Atg7/ mice was responsible for p53 activation, Atg7 was deleted in the presence or absence of the master regulator of antioxidant defense nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2–/–Atg7/ mice died rapidly due to small intestine damage, which was not rescued by p53 codeletion. Thus, Atg7 limits p53 activation and p53-mediated neurodegeneration. In turn, NRF2 mitigates lethal intestine degeneration upon autophagy loss. These findings illustrate the tissue-specific roles for autophagy and functional dependencies on the p53 and NRF2 stress response mechanisms.




va

Increased Cardiovascular Response to a 6-Minute Walk Test in People With Type 2 Diabetes

Background and objective

Exercise is a cornerstone of management for type 2 diabetes; however, little is known about the cardiovascular (CV) response to submaximal functional exercise in people with type 2 diabetes. The aim of this study was to compare performance and CV response during a 6-minute walk test (6MWT) between people with type 2 diabetes and matched control subjects.

Methods

CV response and distance walked during the 6MWT were assessed in 30 people with type 2 diabetes, matched for age, body composition, physical activity, and estimated aerobic capacity with 34 control subjects (type 2 diabetes group: 16 men, 59.8 ± 8.8 years of age, 33.3 ± 10.9% body fat, physical activity of 7,968 ± 3,236 steps·day–1, estimated aerobic capacity 31.9 ± 11.1 mLO2·kg–1·min–1; control group: 19 men, 59.3 ± 8.8 years of age, 32.7 ± 8.5% body fat, physical activity 8,228 ± 2,941 steps·day–1, estimated aerobic capacity 34.9 ± 15.4 mLO2·kg–1·min–1).

Results

People with type 2 diabetes walked a similar distance (590 ± 75 vs. 605 ± 69 m; P = 0.458) compared with control subjects during the 6MWT and had similar ratings of perceived exertion (RPE) after the 6MWT (4.19 ± 1.56 vs. 3.65 ± 1.54, P = 0.147). However, at the end of the 6MWT, people with type 2 diabetes had a higher heart rate (108 ± 23 vs. 95 ± 18 beats·min–1; P = 0.048), systolic blood pressure (169 ± 26 vs. 147 ± 22 mmHg, P = 0.003), and rate-pressure product (18,762 ± 5,936 vs. 14,252 ± 4,330, P = 0.009) than control subjects.

Conclusion

Although people with type 2 diabetes had similar performance and RPE during the 6MWT compared with control subjects, the CV response was greater for people with type 2 diabetes, indicating greater cardiac effort for similar perceived effort and performance of 6MWT. These data suggest that observation and prescription of exercise intensity should include both perceived effort and CV response.




va

Overview of Therapeutic Inertia in Diabetes: Prevalence, Causes, and Consequences

Many people with diabetes do not achieve individualized treatment targets. Therapeutic inertia, the underuse of effective therapies in preventing serious clinical end points, is a frequent, important contributor to this failure. Clinicians, patients, health systems, payors, and producers of medications, devices, and other products for those with diabetes all play a role in the development of therapeutic inertia and can all help to reduce it.




va

Mobilising community networks for early identification of tuberculosis and treatment initiation in Cambodia: an evaluation of a seed-and-recruit model

Background and objectives

The effects of active case finding (ACF) models that mobilise community networks for early identification and treatment of tuberculosis (TB) remain unknown. We investigated and compared the effect of community-based ACF using a seed-and-recruit model with one-off roving ACF and passive case finding (PCF) on the time to treatment initiation and identification of bacteriologically confirmed TB.

Methods

In this retrospective cohort study conducted in 12 operational districts in Cambodia, we assessed relationships between ACF models and: 1) the time to treatment initiation using Cox proportional hazards regression; and 2) the identification of bacteriologically confirmed TB using modified Poisson regression with robust sandwich variance.

Results

We included 728 adults with TB, of whom 36% were identified via the community-based ACF using a seed-and-recruit model. We found community-based ACF using a seed-and-recruit model was associated with shorter delay to treatment initiation compared to one-off roving ACF (hazard ratio 0.81, 95% CI 0.68–0.96). Compared to one-off roving ACF and PCF, community-based ACF using a seed-and-recruit model was 45% (prevalence ratio (PR) 1.45, 95% CI 1.19–1.78) and 39% (PR 1.39, 95% CI 0.99–1.94) more likely to find and detect bacteriologically confirmed TB, respectively.

Conclusion

Mobilising community networks to find TB cases was associated with early initiation of TB treatment in Cambodia. This approach was more likely to find bacteriologically confirmed TB cases, contributing to the reduction of risk of transmission within the community.




va

Ivacaftor decreases monocyte sensitivity to interferon-{gamma} in people with cystic fibrosis

Management of cystic fibrosis has been revolutionised by the introduction of cystic fibrosis transmembrane conductance regulator (CFTR) modulators. These compounds treat the underlying molecular basis of the disease by increasing activity of defective CFTR channels, which improves many clinical parameters and enhances patient quality of life [1]. Next-generation modulators, also known as triple combination therapy, promise to be highly efficacious in up to 90% of patients [2] and will likely dramatically change the landscape of cystic fibrosis disease. Studies examining individuals before and after initiation of CFTR modulators have revealed novel functions of CFTR and shown that CFTR modulators do not reverse all disease manifestations [3–5]. Thus, knowledge of the post-modulator cystic fibrosis disease state is crucial for understanding what continued therapies will be needed for people with cystic fibrosis and what new challenges may arise.




va

Prevalence and incidence of, and risk factors for chronic cough in the adult population: the Rotterdam Study

Chronic cough is a common complaint in the general population but there are no precise data on the incidence of, and prospectively examined risk factors for chronic cough in a population-based setting. Therefore, we investigated the period prevalence, incidence and risk factors for chronic cough in adult subjects.

In a prospective population-based cohort study among subjects aged ≥45 years, data on chronic cough were collected on two separate occasions using a standardised questionnaire. Chronic cough was defined as daily coughing for at least 3 months duration during the preceding 2 years. Potential risk factors were gathered by interview, physical examination and several investigations.

Of the 9824 participants in this study, 1073 (10.9%) subjects had chronic cough at baseline. The prevalence of chronic cough increased with age and peaked in the eighth decade. In subjects aged <70 years, chronic cough was more common in women. During an average follow-up of 6 years, 439 incident cases of chronic cough occurred with an overall incidence rate of 11.6 per 1000 person-years (95% CI 10.6–12.8). In current smokers, the incidence of chronic cough was higher in men. In the multivariable analysis, current smoking, gastro-oesophageal reflux disease (GORD), asthma and COPD were identified as risk factors for chronic cough.

Chronic cough is common among adults and highly prevalent in the older population. Current smoking, GORD, asthma and COPD are independent risk factors for chronic cough. Individuals at risk of developing chronic cough may benefit from smoking cessation and control of the underlying disease.




va

Survival benefit of lung transplantation compared with medical management and pulmonary rehabilitation for patients with end-stage COPD

Background

COPD patients account for a large proportion of lung transplants; lung transplantation survival benefit for COPD patients is not well established.

Methods

We identified 4521 COPD patients in the United Network for Organ Sharing (UNOS) dataset transplanted from May 2005 to August 2016, and 604 patients assigned to receive pulmonary rehabilitation and medical management in the National Emphysema Treatment Trial (NETT). After trimming the populations for NETT eligibility criteria and data completeness, 1337 UNOS and 596 NETT patients remained. Kaplan–Meier estimates of transplant-free survival from transplantation for UNOS, and NETT randomisation, were compared between propensity score-matched UNOS (n=401) and NETT (n=262) patients.

Results

In propensity-matched analyses, transplanted patients had better survival compared to medically managed patients in NETT (p=0.003). Stratifying on 6 min walk distance (6 MWD) and FEV1, UNOS patients with 6 MWD <1000 ft (~300 m) or FEV1 <20% of predicted had better survival than NETT counterparts (median survival 5.0 years UNOS versus 3.4 years NETT; log-rank p<0.0001), while UNOS patients with 6 MWD ≥1000 ft (~300 m) and FEV1 ≥20% had similar survival to NETT counterparts (median survival, 5.4 years UNOS versus 4.9 years NETT; log-rank p=0.73), interaction p=0.01.

Conclusions

Overall survival is better for matched lung transplant patients compared with medical management alone. Patients who derive maximum benefit are those with 6 MWD <1000 ft (~300 m) or FEV1 <20% of predicted, compared with pulmonary rehabilitation and medical management.




va

Subtle Variations in Dietary-Fiber Fine Structure Differentially Influence the Composition and Metabolic Function of Gut Microbiota

ABSTRACT

The chemical structures of soluble fiber carbohydrates vary from source to source due to numerous possible linkage configurations among monomers. However, it has not been elucidated whether subtle structural variations might impact soluble fiber fermentation by colonic microbiota. In this study, we tested the hypothesis that subtle structural variations in a soluble polysaccharide govern the community structure and metabolic output of fermenting microbiota. We performed in vitro fecal fermentation studies using arabinoxylans (AXs) from different classes of wheat (hard red spring [AXHRS], hard red winter [AXHRW], and spring red winter [AXSRW]) with identical initial microbiota. Carbohydrate analyses revealed that AXSRW was characterized by a significantly shorter backbone and increased branching compared with those of the hard varieties. Amplicon sequencing demonstrated that fermentation of AXSRW resulted in a distinct community structure of significantly higher richness and evenness than those of hard-AX-fermenting cultures. AXSRW favored OTUs within Bacteroides, whereas AXHRW and AXHRS favored Prevotella. Accordingly, metabolic output varied between hard and soft varieties; higher propionate production was observed with AXSRW and higher butyrate and acetate with AXHRW and AXHRS. This study showed that subtle changes in the structure of a dietary fiber may strongly influence the composition and function of colonic microbiota, further suggesting that physiological functions of dietary fibers are highly structure dependent. Thus, studies focusing on interactions among dietary fiber, gut microbiota, and health outcomes should better characterize the structures of the carbohydrates employed.

IMPORTANCE Diet, especially with respect to consumption of dietary fibers, is well recognized as one of the most important factors shaping the colonic microbiota composition. Accordingly, many studies have been conducted to explore dietary fiber types that could predictably manipulate the colonic microbiota for improved health. However, the majority of these studies underappreciate the vastness of fiber structures in terms of their microbial utilization and omit detailed carbohydrate structural analysis. In some cases, this causes conflicting results to arise between studies using (theoretically) the same fibers. In this investigation, by performing in vitro fecal fermentation studies using bran arabinoxylans obtained from different classes of wheat, we showed that even subtle changes in the structure of a dietary fiber result in divergent microbial communities and metabolic outputs. This underscores the need for much higher structural resolution in studies investigating interactions of dietary fibers with gut microbiota, both in vitro and in vivo.




va

Advances in the use of isotopes in geochemical exploration: instrumentation and applications in understanding geochemical processes

Among the emerging techniques to detect the real footprint of buried ore deposits is isotope tracing. Novel and automated preparation systems such as continuous flow isotope ratio mass spectrometry, off-axis integrated cavity output spectroscopy for isotopic compositions of selected molecules, multi-collector inductively coupled-plasma mass spectrometry (ICP-MS), triple quadrupole ICP-MS, laser ablation ICP-MS, and a multitude of inline preparation systems have facilitated the use of isotopes as tracers in mineral exploration, as costs for isotope analyses have decreased and the time required for the analyses has improved. In addition, the isotope systems being used have expanded beyond the traditional light stable and Pb isotopes to include a multitude of elements that behave differently during processes that promote the mobilization of elements during both primary and secondary dispersion. Isotopes are also being used to understand barren areas that lack a critical process to form an ore deposit and to reveal precise redox mechanisms. The goal is to be able to use isotopes to reflect a definitive process that occurs in association with the deposit and not in barren systems, and then to relate these to something that is easier to measure, namely elemental concentrations. As new generations of exploration and environmental scientists are becoming more comfortable with the application of isotopes to effectively trace processes involved in geoscience, and new technologies for rapid and inexpensive analyses of isotopes are continually being developed, novel applications of isotope tracing are becoming more mainstream.

Thematic collection: This article is part of the Exploration 17 collection available at: https://www.lyellcollection.org/cc/exploration-17




va

Recent advances in the application of mineral chemistry to exploration for porphyry copper-gold-molybdenum deposits: detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration

In the past decade, significant research efforts have been devoted to mineral chemistry studies to assist porphyry exploration. These activities can be divided into two major fields of research: (1) porphyry indicator minerals (PIMs), which are used to identify the presence of, or potential for, porphyry-style mineralization based on the chemistry of magmatic minerals such as zircon, plagioclase and apatite, or resistate hydrothermal minerals such as magnetite; and (2) porphyry vectoring and fertility tools (PVFTs), which use the chemical compositions of hydrothermal minerals such as epidote, chlorite and alunite to predict the likely direction and distance to mineralized centres, and the potential metal endowment of a mineral district. This new generation of exploration tools has been enabled by advances in and increased access to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), short-wave length infrared (SWIR), visible near-infrared (VNIR) and hyperspectral technologies. PIMs and PVFTs show considerable promise for exploration and are starting to be applied to the diversity of environments that host porphyry and epithermal deposits globally. Industry has consistently supported development of these tools, and in the case of PVFTs encouraged by several successful blind tests where deposit centres have successfully been predicted from distal propylitic settings. Industry adoption is steadily increasing but is restrained by a lack of the necessary analytical equipment and expertise in commercial laboratories, and also by the ongoing reliance on well-established geochemical exploration techniques (e.g. sediment, soil and rock chip sampling) that have aided the discovery of near-surface resources over many decades, but are now proving less effective in the search for deeply buried mineral resources and for those concealed under cover.

Thematic collection: This article is part of the Exploration 17 collection available at: https://www.lyellcollection.org/cc/exploration-17




va

Advances in ICP-MS technology and the application of multi-element geochemistry to exploration

There have been several advances in inductively coupled plasma-mass spectrometer (ICP-MS) analytical technologies in the last decade. Collision/reaction cell ICP-MS and triple quadrupole ICP-MS techniques can produce lower detection limits for select elements that experience interferences with a standard quadrupole (e.g. Se and As). Triple quadrupole ICP-MS, in particular, can eliminate virtually all polyatomic or isobaric interferences for highly accurate measurements of some element isotopes systematics that are of great interest in mineral exploration, namely Pb/Pb. Laser ablation ICP-MS has become more popular as an effective analytical tool to measure mineral grain trace elements, which could assist in vectoring to mineralization or exploration drill targets. The ablation of a spot on a Li-borate fused glass disk paired with XRF analysis has also gained popularity as an alternative to total whole rock characterization packages that employ several separate digestions and analytical methods. While there have been several advancements in ICP-MS technologies in exploration geochemistry, they have not been widely accepted or implemented. This slow adaptation could be due to the extended recession in the mining industry between 2012 and 2017. It is also possible that standard ICP-MS data (i.e. no collision/reaction cell) is still fit for purpose. This stands in stark contrast to implementation of ICP-MS in the previous decade (1997–2007), which was transformational for the industry.

Consideration of all elements from large multi-element ICP-MS analytical suites for mineral exploration can be an extremely powerful tool in the exploration toolkit. The discovery of the White Gold District, Yukon, is a prime example of how the utilization of soil geochemical data, when plotted spatially, can vector to gold mineralization. The presence of Au + As + Sb soil anomalies were key to delineating mineralization, especially when accompanied by publicly available geological, geographical and geophysical data. Additionally, elements and element ratios not typically considered in Au exploration, including Ni and U, were utilized to determine the lithological and structural controls on mineralization. The availability of multi-element ICP-MS data was also useful in the discovery of the Cascadero Copper Taron Caesium deposit. Ore-grade Cs was discovered only because Cs was included in the multi-element ICP-MS exploration geochemistry suite. Before the availability of ICP-MS, it is unlikely that this deposit would have been discovered.

Thematic collection: This article is part of the Exploration 17 collection available at: https://www.lyellcollection.org/cc/exploration-17