ac Exploitation of dihydroorotate dehydrogenase (DHODH) and p53 activation as therapeutic targets: A case study in polypharmacology [Computational Biology] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 The tenovins are a frequently studied class of compounds capable of inhibiting sirtuin activity, which is thought to result in increased acetylation and protection of the tumor suppressor p53 from degradation. However, as we and other laboratories have shown previously, certain tenovins are also capable of inhibiting autophagic flux, demonstrating the ability of these compounds to engage with more than one target. In this study, we present two additional mechanisms by which tenovins are able to activate p53 and kill tumor cells in culture. These mechanisms are the inhibition of a key enzyme of the de novo pyrimidine synthesis pathway, dihydroorotate dehydrogenase (DHODH), and the blockage of uridine transport into cells. These findings hold a 3-fold significance: first, we demonstrate that tenovins, and perhaps other compounds that activate p53, may activate p53 by more than one mechanism; second, that work previously conducted with certain tenovins as SirT1 inhibitors should additionally be viewed through the lens of DHODH inhibition as this is a major contributor to the mechanism of action of the most widely used tenovins; and finally, that small changes in the structure of a small molecule can lead to a dramatic change in the target profile of the molecule even when the phenotypic readout remains static. Full Article
ac Palmitoylation of acetylated tubulin and association with ceramide-rich platforms is critical for ciliogenesis By www.jlr.org Published On :: 2020-12-30 Priyanka TripathiDec 30, 2020; 0:jlr.RA120001190v1-jlr.RA120001190Research Articles Full Article
ac Stimulation of ABCB4/MDR3 ATPase activity requires an intact phosphatidylcholine lipid By www.jlr.org Published On :: 2020-12-01 Martin PrescherDec 1, 2020; 61:1605-1616Research Articles Full Article
ac PLRP2 selectively localizes synaptic membrane proteins via acyl-chain remodeling of phospholipids By www.jlr.org Published On :: 2020-12-01 Hideaki KugeDec 1, 2020; 61:1747-1763Research Articles Full Article
ac Bioavailability and spatial distribution of fatty acids in the rat retina after dietary omega-3 supplementation By www.jlr.org Published On :: 2020-12-01 Elisa VidalDec 1, 2020; 61:1733-1746Research Articles Full Article
ac Depletion of essential isoprenoids and ER stress induction following acute liver-specific deletion of HMG-CoA reductase By www.jlr.org Published On :: 2020-12-01 Marco De GiorgiDec 1, 2020; 61:1675-1686Research Articles Full Article
ac Human glucocerebrosidase mediates formation of xylosyl-cholesterol by {beta}-xylosidase and transxylosidase reactions. By www.jlr.org Published On :: 2020-12-23 Daphne E.C. BoerDec 23, 2020; 0:jlr.RA120001043v1-jlr.RA120001043Research Articles Full Article
ac Myeloid deletion and therapeutic activation of AMPK do not alter atherosclerosis in male or female mice By www.jlr.org Published On :: 2020-12-01 Nicholas D. LeBlondDec 1, 2020; 61:1697-1706Research Articles Full Article
ac Insulin resistance dysregulates CYP7B1 leading to oxysterol accumulation: a pathway for NAFL to NASH transition By www.jlr.org Published On :: 2020-12-01 Genta KakiyamaDec 1, 2020; 61:1629-1644Research Articles Full Article
ac The anti-tubercular activity of simvastatin is mediated by cholesterol-driven autophagy via the AMPK-mTORC1-TFEB axis By www.jlr.org Published On :: 2020-12-01 Natalie BruinersDec 1, 2020; 61:1617-1628Research Articles Full Article
ac Accessible cholesterol is localized in bacterial plasma membrane protrusions By www.jlr.org Published On :: 2020-12-01 Michael E. AbramsDec 1, 2020; 61:1538-1538Images in Lipid Research Full Article
ac Deletion of lysophosphatidylcholine acyltransferase3 in myeloid cells worsens hepatic steatosis after a high fat diet By www.jlr.org Published On :: 2020-12-11 Thibaut BourgeoisDec 11, 2020; 0:jlr.RA120000737v1-jlr.RA120000737Research Articles Full Article
ac Human CETP lacks lipopolysaccharide transfer activity, but worsens inflammation and sepsis outcomes in mice By www.jlr.org Published On :: 2020-12-09 Aloïs DusuelDec 9, 2020; 0:jlr.RA120000704v1-jlr.RA120000704Research Articles Full Article
ac Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice By www.jlr.org Published On :: 2020-12-01 Abudukadier AbuliziDec 1, 2020; 61:1565-1576Research Articles Full Article
ac rHDL modelling and the anchoring mechanism of LCAT activation By www.jlr.org Published On :: 2020-12-02 Tommaso LaurenziDec 2, 2020; 0:jlr.RA120000843v1-jlr.RA120000843Research Articles Full Article
ac Apolipoprotein C3 and apolipoprotein B colocalize in proximity to macrophages in atherosclerotic lesions in diabetes By www.jlr.org Published On :: 2020-12-08 Jenny E. KanterDec 8, 2020; 0:jlr.ILR120001217v1-jlr.ILR120001217Images in Lipid Research Full Article
ac Mass spectrometry characterization of light chain fragmentation sites in cardiac AL amyloidosis: insights into the timing of proteolysis [Genomics and Proteomics] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils. Full Article
ac Problem Notes for SAS®9 - 66487: Authentication to the CAS server fails with the error "Access denied..." when initiated on a SAS/CONNECT server in a Microsoft Windows environment By Published On :: Mon, 31 Aug 2020 10:33:55 EST You might see the following error messages: "ERROR: Connection failed. Server returned: SAS Logon Manager authentication failed: Access denied." and "ERROR: Unable to connect to Cloud Analytic Services host-name on port 5570. Veri Full Article CONNECT+SAS/CONNECT
ac Problem Notes for SAS®9 - 55516: Opening the Edit Action Columns dialog box requires that you wait up to a minute to display a window By Published On :: Fri, 28 Aug 2020 11:23:00 EST Editing and/or saving an action column can take up to a minute to display a window. There are no workarounds identified at this time. Full Article SCDOFR+SAS+Visual+Scenario+Designer
ac Problem Notes for SAS®9 - 33449: An error might occur when you use SAS 9 BULKLOAD= and BULKEXTRACT= options to load data to or extract data from the HP Neoview database on the HP Itanium platform By Published On :: Wed, 26 Aug 2020 16:21:08 EST An error might occur when you use the SAS 9 BULKLOAD= and BULKEXTRACT= options load data to or extract data from HP Neoview on the HP Itanium platform. The problem occurs because Hewlett-Packard changed the name of one of Full Article NEOVIEW+SAS/ACCESS+Interface+to+HP+Neovi
ac Problem Notes for SAS®9 - 46544: Store layout view has some areas displayed with black fill rather than gray in SAS® Retail Space Management By Published On :: Wed, 26 Aug 2020 16:14:45 EST In SAS Retail Space Management, it should be possible to click on any location object, then Show Properties, and change the location fill color. This can be done on the gray-filled objects. However, w Full Article RTLSPCMGT+SAS+Retail+Space+Management
ac Problem Notes for SAS®9 - 61815: SAS Episode Analytics 3.1 - Audit table is required in order to capture user interactions with the user interface By Published On :: Wed, 26 Aug 2020 16:09:53 EST SAS Episode Analytics 3.1 requires the ability to capture user interactions with the user interface for auditing purposes. To support the required functionality a new table has been add Full Article AVAECROFR+SAS+Episode+Analytics
ac Problem Notes for SAS®9 - 66535: You might intermittently see the error "RangeError: Maximum call stack exceeded..." when viewing a SAS Visual Analytics report By Published On :: Wed, 26 Aug 2020 15:06:43 EST When viewing a SAS Visual Analytics report, you might intermittently see an error that includes content similar to the following: Error Message: Full Article VISANLYTBNDL+SAS+Visual+Analytics
ac Problem Notes for SAS®9 - 66505: The OBS= option does not generate a limit clause when you use SAS/ACCESS Interface to PostgreSQL to access a Yellowbrick database By Published On :: Wed, 26 Aug 2020 11:35:41 EST When you use SAS/ACCESS Interface to PostgreSQL to query a Yellowbrick database, the SAS OBS= option is not generating a limit clause on the query that is passed to the database. Click the Full Article POSTGRESOFR+SAS/ACCESS+Interface+to+Post
ac Problem Notes for SAS®9 - 66507: The RegisterFontTask" install task fails during out-of-the-box, add-on, or upgrade-in-place deployments if Hot Fix D7G004 is applied By Published On :: Fri, 21 Aug 2020 11:05:36 EST The SAS 9.4M4 (TS1M4) Hot Fix D7G004 for ODS Templates installs national language support (NLS) content regardless of whether the languages were installed during the initial deployment. Having sparse Full Article
ac Problem Notes for SAS®9 - 66294: The SAS Federation Server SPD driver fails to create a table that has a column name in UTF-8 encoding that also contains Latin5 characters By Published On :: Wed, 19 Aug 2020 15:57:34 EST Certain tables that are created in SAS Scalable Performance Data (SPD) Server might not be displayed correctly by SAS Federation Server Manager. Tables that have Latin5 characters in column names encounter this Full Article SPDS+SAS+Scalable+Peformance+Data+Server
ac Fatty acid oxidation and photoreceptor metabolic needs [Thematic Reviews] By www.jlr.org Published On :: 2020-02-24T12:30:36-08:00 Photoreceptors have high energy-demands and a high density of mitochondria that produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) of fuel substrates. Although glucose is the major fuel for central nervous system (CNS) brain neurons, in photoreceptors (also CNS), most glucose is not metabolized through OXPHOS but is instead metabolized into lactate by aerobic glycolysis. The major fuel sources for photoreceptor mitochondria remained unclear for almost six decades. Similar to other tissues (like heart and skeletal muscle) with high metabolic rates, photoreceptors were recently found to metabolize fatty acids (palmitate) through OXPHOS. Disruption of lipid entry into photoreceptors leads to extracellular lipid accumulation, suppressed glucose transporter expression, and a duel lipid/glucose fuel shortage. Modulation of lipid metabolism helps restore photoreceptor function. However, further elucidation of the types of lipids used as retinal energy sources, the metabolic interaction with other fuel pathways, as well as the crosstalk among retinal cells to provide energy to photoreceptors is not yet known. In this review, we will focus on the current understanding of photoreceptor energy demand and sources, and potential future investigations of photoreceptor metabolism. Full Article
ac Lipid Conformational Order and the Etiology of Cataract and Dry Eye [Thematic Reviews] By www.jlr.org Published On :: 2020-06-18T14:30:29-07:00 Lens and tear film lipids are as unique as the systems they reside in. The major lipid of the human lens is dihydrosphingomylein, found in quantity only in the lens. The lens contains a cholesterol to phospholipid molar ratio as high as 10:1, more than anywhere in the body. Lens lipids contribute to maintaining lens clarity, and alterations in lens lipid composition due to age are likely to contribute to cataract. Lens lipid composition reflects adaptations to the unique characteristics of the lens: no turnover of lens lipids or proteins; the lowest amount of oxygen than any other tissue and contains almost no intracellular organelles. The tear film lipid layer (TFLL) is also unique. The TFLL is a thin, 100 nm layer of lipid on the surface of tears covering the cornea that contributes to tear film stability. The major lipids of the TFLL are wax esters and cholesterol esters that are not found in the lens. The hydrocarbon chains associated with the esters are longer than those found anywhere in the body, as long as 32 carbons, and many are branched. Changes in the composition and structure of the 30,000 different moieties of TFLL contribute to the instability of tears. The focus of the current review is how spectroscopy has been used to elucidate the relationships between lipid composition, conformational order and function and the etiology of cataract and dry eye. Full Article
ac The emerging roles of the macular pigment carotenoids throughout the lifespan and in prenatal supplementation [Thematic Reviews] By www.jlr.org Published On :: 2020-07-24T07:33:25-07:00 Since the publication of the Age-Related Eye Disease Study (AREDS2) in 2013, the macular pigment carotenoids lutein and zeaxanthin have become well known to both the eye care community and the public. It is a fascinating aspect of evolution that primates have repurposed photoprotective pigments and binding proteins from plants and insects to protect and enhance visual acuity. Moreover, utilization of these plant-derived nutrients has been widely embraced for preventing vision loss from age-related macular degeneration (AMD). More recently, there has been growing awareness that these nutrients can also play a role in improving visual performance in adults. On the other hand, the potential benefits of lutein and zeaxanthin supplementation at very young ages have been underappreciated. In this review, we examine the biochemical mechanisms and supportive data for lutein and zeaxanthin supplementation throughout the lifespan, with particular emphasis on prenatal supplementation. We propose that prenatal nutritional recommendations may aim at improving maternal and infant carotenoid status. Prenatal supplementation with lutein and zeaxanthin might enhance infant visual development and performance and may even prevent retinopathy of prematurity, possibilities that should be examined in future clinical studies. Full Article
ac Hepatic Deletion of Mboat7 (Lpiat1) Causes Activation of SREBP-1c and Fatty Liver [Research Articles] By www.jlr.org Published On :: 2020-08-28T09:33:17-07:00 Genetic variants that increase the risk of fatty liver disease (FLD) and cirrhosis have recently been identified in the proximity of membrane bound O-acyltransferase domain-containing 7 (MBOAT7). To elucidate the link between these variants and FLD we characterized Mboat7 liver-specific knock-out mice (Mboat7-LSKO). Chow-fed Mboat7-LSKO mice developed fatty livers and associated liver injury. Lipidomic analysis of liver using mass spectrometry revealed a pronounced reduction in 20-carbon polyunsaturated fatty acid content in phosphatidylinositols (PIs), but not in other phospholipids. The change in fatty acid composition of PIs in these mice was associated with a marked increase in de novo lipogenesis due to activation of SREBP-1c, a transcription factor that coordinates the activation of genes encoding enzymes in the fatty acid biosynthesis pathway. Hepatic removal of both SREBP cleavage activating protein (Scap) and Mboat7 normalized hepatic triglycerides relative to Scap only hepatic knock-out showing increased SREBP-1c processing is required for Mboat7 induced steatosis. This study reveals a clear relationship between PI fatty acid composition and regulation of hepatic fat synthesis and delineates the mechanism by which mutations in MBOAT7 cause hepatic steatosis. Full Article
ac rHDL modelling and the anchoring mechanism of LCAT activation [Research Articles] By www.jlr.org Published On :: 2020-12-02T13:30:37-08:00 Lecithin:cholesterol-acyl-transferase (LCAT) plays a major role in cholesterol metabolism as it is the only extracellular enzyme able to esterify cholesterol. LCAT activity is required for lipoprotein remodelling and, most specifically, for the growth and maturation of HDLs. In fact, genetic alterations affecting LCAT func- tionality may cause a severe reduction in plasma levels of HDL-cholesterol with important clinical consequences. Although several hypotheses were formulated, the exact molecular recognition mechanism between LCAT and HDLs is still unknown. We employed a combination of structural bioinformatics procedures to deepen the insights into the HDL-LCAT interplay that promotes LCAT activation and cholesterol esterification. We have generated a data-driven model of reconstituted HDL (rHDL) and studied the dynamics of an assembled rHDL::LCAT supramolecular complex, pinpointing the conformational changes originating from the interaction between LCAT and apolipoprotein A-I (apoA-I) that are necessary for LCAT activation. Specifically, we propose a mechanism in which the anchoring of LCAT lid to apoA-I helices allows the formation of a hydrophobic hood that expands LCAT active site and shields it from the solvent, allowing the enzyme to process large hydrophobic substrates. Full Article
ac Apolipoprotein C3 and apolipoprotein B colocalize in proximity to macrophages in atherosclerotic lesions in diabetes [Images in Lipid Research] By www.jlr.org Published On :: 2020-12-08T14:30:11-08:00 Full Article
ac Human CETP lacks lipopolysaccharide transfer activity, but worsens inflammation and sepsis outcomes in mice [Research Articles] By www.jlr.org Published On :: 2020-12-09T11:36:34-08:00 Bacterial lipopolysaccharides (LPSs or endotoxins) can bind most proteins of the lipid transfer/LPS-binding protein (LT/LBP) family in host organisms. The LPS-bound LT/LBP proteins then trigger either an LPS-induced proinflammatory cascade or LPS binding to lipoproteins that are involved in endotoxin inactivation and detoxification. Cholesteryl ester transfer protein (CETP) is an LT/LBP member, but its impact on LPS metabolism and sepsis outcome is unclear. Here, we performed fluorescent LPS transfer assays to assess the ability of CETP to bind and transfer LPS. The effects of intravenous (iv) infusion of purified LPS or polymicrobial infection (cecal ligation and puncture [CLP]) were compared in transgenic mice expressing human CETP and wild-type mice naturally having no CETP activity. CETP displayed no LPS transfer activity in vitro, but it tended to reduce biliary excretion of LPS in vivo. The CETP expression in mice was associated with significantly lower basal plasma lipid levels and with higher mortality rates in both models of endotoxemia and sepsis. Furthermore, CETPTg plasma modified cytokine production of macrophages in vitro. In conclusion, despite having no direct LPS binding and transfer property, human CETP worsens sepsis outcomes in mice by altering the protective effects of plasma lipoproteins against endotoxemia, inflammation, and infection. Full Article
ac Deletion of lysophosphatidylcholine acyltransferase3 in myeloid cells worsens hepatic steatosis after a high fat diet [Research Articles] By www.jlr.org Published On :: 2020-12-11T09:30:19-08:00 Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3’s role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approx. 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation. Full Article
ac Human glucocerebrosidase mediates formation of xylosyl-cholesterol by {beta}-xylosidase and transxylosidase reactions. [Research Articles] By www.jlr.org Published On :: 2020-12-23T13:30:20-08:00 Deficiency of glucocerebrosidase (GBA), a lysosomal β-glucosidase, causes Gaucher disease. The enzyme hydrolyzes β-glucosidic substrates and transglucosylates cholesterol to cholesterol-β-glucoside. Here we show that recombinant human GBA also cleaves β-xylosides and transxylosylates cholesterol. The xylosyl-cholesterol formed acts as acceptor for subsequent formation of di-xylosyl-cholesterol. Common mutant forms of GBA from patients with Gaucher disease with reduced β-glucosidase activity were similarly impaired in β-xylosidase, transglucosidase and transxylosidase activities, except for a slightly reduced xylosidase/glucosidase activity ratio of N370S GBA and a slightly reduced transglucosylation/glucosidase activity ratio of D409H GBA. XylChol was found to be reduced in spleen from Gaucher disease patients. The origin of newly identified XylChol in mouse and human tissues was investigated. Cultured human cells exposed to exogenous β-xylosides generated XylChol in a manner dependent on active lysosomal GBA but not the cytosol-facing β-glucosidase GBA2. We later sought an endogenous β-xyloside acting as donor in transxylosylation reactions, identifying xylosylated ceramide (XylCer) in cells and tissues that serve as donor in the formation of XylChol. UDP-glucosylceramide synthase (GCS) was unable to synthesize XylChol but could catalyse formation of XylCer. Thus, food-derived β-D-xyloside and XylCer are potential donors for the GBA-mediated formation of XylChol in cells. The enzyme GCS produces XylCer at a low rate. Our findings point to further catalytic versatility of GBA and prompt a systematic exploration of the distribution and role of xylosylated lipids. Full Article
ac Palmitoylation of acetylated tubulin and association with ceramide-rich platforms is critical for ciliogenesis [Research Articles] By www.jlr.org Published On :: 2020-12-30T10:30:23-08:00 Microtubules are polymers composed of αβ-tubulin subunits that provide structure to cells and play a crucial role in in the development and function of neuronal processes and cilia, microtubule-driven extensions of the plasma membrane that have sensory (primary cilia) or motor (motile cilia) functions. To stabilize microtubules in neuronal processes and cilia, α tubulin is modified by the posttranslational addition of an acetyl group, or acetylation. We discovered that acetylated tubulin in microtubules interacts with the membrane sphingolipid, ceramide. However, the molecular mechanism and function of this interaction are not understood. Here, we show that in human iPS cell-derived neurons, ceramide stabilizes microtubules, which indicates a similar function in cilia. Using proximity ligation assays, we detected complex formation of ceramide with acetylated tubulin in C. reinhardtii flagella and cilia of human embryonic kidney (HEK293T) cells, primary cultured mouse astrocytes, and ependymal cells. Using incorporation of palmitic azide and click chemistry-mediated addition of fluorophores, we show that a portion of acetylated tubulin is S-palmitoylated. S-palmitoylated acetylated tubulin is colocalized with ceramide-rich platforms (CRPs) in the ciliary membrane, and it is coimmunoprecipitated with Arl13b, a GTPase that mediates transport of proteins into cilia. Inhibition of S-palmitoylation with 2-bromo palmitic acid or inhibition of ceramide biosynthesis with fumonisin B1 reduces formation of the Arl13b-acetylated tubulin complex and its transport into cilia, concurrent with impairment of ciliogenesis. Together, these data show, for the first time, that CRPs mediate membrane anchoring and interaction of S-palmitoylated proteins that are critical for cilium formation, stabilization, and function. Full Article
ac Developing a vaccine against Zika By www.bmj.com Published On :: Thursday, November 10, 2016 - 16:26 Full Article
ac How changes to drug prohibition could be good for the UK—an essay by Molly Meacher and Nick Clegg By www.bmj.com Published On :: Monday, November 14, 2016 - 23:30 Full Article
ac Chronic insomnia: diagnosis and non-pharmacological management By www.bmj.com Published On :: Wednesday, November 16, 2016 - 10:46 Full Article
ac Babies with microcephaly in Brazil are struggling to access care By www.bmj.com Published On :: Wednesday, November 16, 2016 - 13:46 Full Article
ac Thiazide diuretics seem to protect against fracture By www.bmj.com Published On :: Tuesday, November 22, 2016 - 11:26 Full Article
ac First case of Zika virus spread through sexual contact is detected in UK By www.bmj.com Published On :: Thursday, December 1, 2016 - 15:45 Full Article
ac Doctors face manslaughter charge for failing to raise alarm over killer nurse By www.bmj.com Published On :: Thursday, December 1, 2016 - 18:06 Full Article
ac Time for a detente in the war on the mechanism of cellular fatty acid uptake [Letters to the Editor] By www.jlr.org Published On :: 2020-09-01T00:05:14-07:00 Full Article
ac Generation and characterization of LPA-KIV9, a murine monoclonal antibody binding a single site on apolipoprotein (a) [Research Articles] By www.jlr.org Published On :: 2020-09-01T00:05:14-07:00 Lipoprotein (a) [Lp(a)] is a risk factor for CVD and a target of therapy, but Lp(a) measurements are not globally standardized. Commercially available assays generally use polyclonal antibodies that detect multiple sites within the kringle (K)IV2 repeat region of Lp(a) and may lead to inaccurate assessments of plasma levels. With increasing awareness of Lp(a) as a cardiovascular risk factor and the active clinical development of new potential therapeutic approaches, the broad availability of reagents capable of providing isoform independence of Lp(a) measurements is paramount. To address this issue, we generated a murine monoclonal antibody that binds to only one site on apo(a). A BALB/C mouse was immunized with a truncated version of apo(a) that contained eight total KIV repeats, including only one copy of KIV2. We generated hybridomas, screened them, and successfully produced a KIV2-independent monoclonal antibody, named LPA-KIV9. Using a variety of truncated apo(a) constructs to map its binding site, we found that LPA-KIV9 binds to KIV9 without binding to plasminogen. Fine peptide mapping revealed that LPA-KIV9 bound to the sequence 4076LETPTVV4082 on KIV9. In conclusion, the generation of monoclonal antibody LPA-KIV9 may be a useful reagent in basic research studies and in the clinical application of Lp(a) measurements. Full Article
ac ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPLs hydrolase domain [Images In Lipid Research] By www.jlr.org Published On :: 2020-09-01T00:05:14-07:00 Full Article
ac Accessibility of cholesterol at cell surfaces [Images In Lipid Research] By www.jlr.org Published On :: 2020-10-01T00:05:17-07:00 Full Article
ac Quantification of common and planar bile acids in tissues and cultured cells [Methods] By www.jlr.org Published On :: 2020-11-01T00:05:43-07:00 Bile acids (BAs) have been established as ubiquitous regulatory molecules implicated in a large variety of healthy and pathological processes. However, the scope of BA heterogeneity is often underrepresented in current literature. This is due in part to inadequate detection methods, which fail to distinguish the individual constituents of the BA pool. Thus, the primary aim of this study was to develop a method that would allow the simultaneous analysis of specific C24 BA species, and to apply that method to biological systems of interest. Herein, we describe the generation and validation of an LC-MS/MS assay for quantification of numerous BAs in a variety of cell systems and relevant biofluids and tissue. These studies included the first baseline level assessment for planar BAs, including allocholic acid, in cell lines, biofluids, and tissue in a nonhuman primate (NHP) laboratory animal, Macaca mulatta, in healthy conditions. These results indicate that immortalized cell lines make poor models for the study of BA synthesis and metabolism, whereas human primary hepatocytes represent a promising alternative model system. We also characterized the BA pool of M. mulatta in detail. Our results support the use of NHP models for the study of BA metabolism and pathology in lieu of murine models. Moreover, the method developed here can be applied to the study of common and planar C24 BA species in other systems. Full Article
ac A sensitive S-Trap-based approach to the analysis of T cell lipid raft proteome [Methods] By www.jlr.org Published On :: 2020-11-01T00:05:43-07:00 The analysis of T cell lipid raft proteome is challenging due to the highly dynamic nature of rafts and the hydrophobic character of raft-resident proteins. We explored an innovative strategy for bottom-up lipid raftomics based on suspension-trapping (S-Trap) sample preparation. Mouse T cells were prepared from splenocytes by negative immunoselection, and rafts were isolated by a detergent-free method and OptiPrep gradient ultracentrifugation. Microdomains enriched in flotillin-1, LAT, and cholesterol were subjected to proteomic analysis through an optimized protocol based on S-Trap and high pH fractionation, followed by nano-LC-MS/MS. Using this method, we identified 2,680 proteins in the raft-rich fraction and established a database of 894 T cell raft proteins. We then performed a differential analysis on the raft-rich fraction from nonstimulated versus anti-CD3/CD28 T cell receptor (TCR)-stimulated T cells. Our results revealed 42 proteins present in one condition and absent in the other. For the first time, we performed a proteomic analysis on rafts from ex vivo T cells obtained from individual mice, before and after TCR activation. This work demonstrates that the proposed method utilizing an S-Trap-based approach for sample preparation increases the specificity and sensitivity of lipid raftomics. Full Article
ac Tetracosahexaenoylethanolamide, a novel N-acylethanolamide, is elevated in ischemia and increases neuronal output [Research Articles] By www.jlr.org Published On :: 2020-11-01T00:05:43-07:00 N-acylethanolamines (NAEs) are endogenous lipid-signaling molecules derived from fatty acids that regulate numerous biological functions, including in the brain. Interestingly, NAEs are elevated in the absence of fatty acid amide hydrolase (FAAH) and following CO2-induced ischemia/hypercapnia, suggesting a neuroprotective response. Tetracosahexaenoic acid (THA) is a product and precursor to DHA; however, the NAE product, tetracosahexaenoylethanolamide (THEA), has never been reported. Presently, THEA was chemically synthesized as an authentic standard to confirm THEA presence in biological tissues. Whole brains were collected and analyzed for unesterified THA, total THA, and THEA in wild-type and FAAH-KO mice that were euthanized by either head-focused microwave fixation, CO2 + microwave, or CO2 only. PPAR activity by transient transfection assay and ex vivo neuronal output in medium spiny neurons (MSNs) of the nucleus accumbens by patch clamp electrophysiology were determined following THEA exposure. THEA in the wild-type mice was nearly doubled (P < 0.05) following ischemia/hypercapnia (CO2 euthanization) and up to 12 times higher (P < 0.001) in the FAAH-KO compared with wild-type. THEA did not increase (P > 0.05) transcriptional activity of PPARs relative to control, but 100 nM of THEA increased (P < 0.001) neuronal output in MSNs of the nucleus accumbens. Here were identify a novel NAE, THEA, in the brain that is elevated upon ischemia/hypercapnia and by KO of the FAAH enzyme. While THEA did not activate PPAR, it augmented the excitability of MSNs in the nucleus accumbens. Overall, our results suggest that THEA is a novel NAE that is produced in the brain upon ischemia/hypercapnia and regulates neuronal excitation. Full Article