us Neuregulin1 Nuclear Signaling Influences Adult Neurogenesis and Regulates a Schizophrenia Susceptibility Gene Network within the Mouse Dentate Gyrus By www.jneurosci.org Published On :: 2024-10-23 Prithviraj RajebhosaleOct 23, 2024; 44:e0063242024-e0063242024Cellular Full Article
us Musical Training Shapes Structural Brain Development By www.jneurosci.org Published On :: 2009-03-11 Krista L. HydeMar 11, 2009; 29:3019-3025Development Plasticity Repair Full Article
us Gender in Science, Technology, Engineering, and Mathematics: Issues, Causes, Solutions By www.jneurosci.org Published On :: 2019-09-11 Tessa E.S. CharlesworthSep 11, 2019; 39:7228-7243Viewpoints Full Article
us Loss of Dopamine Transporters in Methamphetamine Abusers Recovers with Protracted Abstinence By www.jneurosci.org Published On :: 2001-12-01 Nora D. VolkowDec 1, 2001; 21:9414-9418Behavioral Full Article
us A Gradient in Endogenous Rhythmicity and Oscillatory Drive Matches Recruitment Order in an Axial Motor Pool By www.jneurosci.org Published On :: 2012-08-08 Evdokia MenelaouAug 8, 2012; 32:10925-10939BehavioralSystemsCognitive Full Article
us To See or Not to See: Prestimulus {alpha} Phase Predicts Visual Awareness By www.jneurosci.org Published On :: 2009-03-04 Kyle E. MathewsonMar 4, 2009; 29:2725-2732BehavioralSystemsCognitive Full Article
us Topographic Mapping of a Hierarchy of Temporal Receptive Windows Using a Narrated Story By www.jneurosci.org Published On :: 2011-02-23 Yulia LernerFeb 23, 2011; 31:2906-2915BehavioralSystemsCognitive Full Article
us Symposium: What Does the Microbiome Tell Us about Prevention and Treatment of AD/ADRD? By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Alzheimer's disease (AD) and Alzheimer's disease-related dementias (ADRDs) are broad-impact multifactorial neurodegenerative diseases. Their complexity presents unique challenges for developing effective therapies. This review highlights research presented at the 2024 Society for Neuroscience meeting which emphasized the gut microbiome's role in AD pathogenesis by influencing brain function and neurodegeneration through the microbiota–gut–brain axis. This emerging evidence underscores the potential for targeting the gut microbiota to treat AD/ADRD. Full Article
us The Role of the Hippocampus in Consolidating Motor Learning during Wakefulness By www.jneurosci.org Published On :: 2024-10-09T09:30:20-07:00 Full Article
us Pupil-Linked Arousal Modulates Precision of Stimulus Representation in Cortex By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 Neural responses are naturally variable from one moment to the next, even when the stimulus is held constant. What factors might underlie this variability in neural population activity? We hypothesized that spontaneous fluctuations in cortical stimulus representations are created by changes in arousal state. We tested the hypothesis using a combination of fMRI, probabilistic decoding methods, and pupillometry. Human participants (20 female, 12 male) were presented with gratings of random orientation. Shortly after viewing the grating, participants reported its orientation and gave their level of confidence in this judgment. Using a probabilistic fMRI decoding technique, we quantified the precision of the stimulus representation in the visual cortex on a trial-by-trial basis. Pupil size was recorded and analyzed to index the observer's arousal state. We found that the precision of the cortical stimulus representation, reported confidence, and variability in the behavioral orientation judgments varied from trial to trial. Interestingly, these trial-by-trial changes in cortical and behavioral precision and confidence were linked to pupil size and its temporal rate of change. Specifically, when the cortical stimulus representation was more precise, the pupil dilated more strongly prior to stimulus onset and remained larger during stimulus presentation. Similarly, stronger pupil dilation during stimulus presentation was associated with higher levels of subjective confidence, a secondary measure of sensory precision, as well as improved behavioral performance. Taken together, our findings support the hypothesis that spontaneous fluctuations in arousal state modulate the fidelity of the stimulus representation in the human visual cortex, with clear consequences for behavior. Full Article
us GluN3A and Excitatory Glycine Receptors in the Adult Hippocampus By www.jneurosci.org Published On :: 2024-10-16T09:30:18-07:00 The GluN3A subunit of N-methyl-D-aspartate receptors (NMDARs) plays an established role in synapse development, but its contribution to neural circuits in the adult brain is less clear. Recent work has demonstrated that in select cell populations, GluN3A assembles with GluN1 to form GluN1/GluN3A receptors that are insensitive to glutamate and instead serve as functional excitatory glycine receptors (eGlyRs). Our understanding of these eGlyRs, and how they contribute to intrinsic excitability and synaptic communication within relevant networks of the developing and the mature brain, is only beginning to be uncovered. Here, using male and female mice, we demonstrate that GluN3A subunits are enriched in the adult ventral hippocampus (VH), where they localize to synaptic and extrasynaptic sites and can assemble as functional eGlyRs on CA1 pyramidal cells. GluN3A expression was barely detectable in the adult dorsal hippocampus (DH). We also observed a high GluN2B content in the adult VH, characterized by slow NMDAR current decay kinetics and a high sensitivity to the GluN2B-containing NMDAR antagonist ifenprodil. Interestingly, the GluN2B enrichment in the adult VH was dependent on GluN3A as GluN3A deletion accelerated NMDAR decay and reduced ifenprodil sensitivity in the VH, suggesting that GluN3A expression can regulate the balance of conventional NMDAR subunit composition at synaptic sites. Lastly, we found that GluN3A knock-out also enhanced both NMDAR-dependent calcium influx and NMDAR-dependent long-term potentiation in the VH. Together, these data reveal a novel role for GluN3A and eGlyRs in the control of ventral hippocampal circuits in the mature brain. Full Article
us Erratum: Spencer et al., "Regulation of the Mouse Ventral Tegmental Area by Melanin-Concentrating Hormone" By www.jneurosci.org Published On :: 2024-10-23T09:30:30-07:00 Full Article
us Synaptotagmin 4 Supports Spontaneous Axon Sprouting after Spinal Cord Injury By www.jneurosci.org Published On :: 2024-10-23T09:30:30-07:00 Injuries to the central nervous system (CNS) can cause severe neurological deficits. Axonal regrowth is a fundamental process for the reconstruction of compensatory neuronal networks after injury; however, it is extremely limited in the adult mammalian CNS. In this study, we conducted a loss-of-function genetic screen in cortical neurons, combined with a Web resource-based phenotypic screen, and identified synaptotagmin 4 (Syt4) as a novel regulator of axon elongation. Silencing Syt4 in primary cultured cortical neurons inhibits neurite elongation, with changes in gene expression involved in signaling pathways related to neuronal development. In a spinal cord injury model, inhibition of Syt4 expression in cortical neurons prevented axonal sprouting of the corticospinal tract, as well as neurological recovery after injury. These results provide a novel therapeutic approach to CNS injury by modulating Syt4 function. Full Article
us Beyond Barrels: Diverse Thalamocortical Projection Motifs in the Mouse Ventral Posterior Complex By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Thalamocortical pathways from the rodent ventral posterior (VP) thalamic complex to the somatosensory cerebral cortex areas are a key model in modern neuroscience. However, beyond the intensively studied projection from medial VP (VPM) to the primary somatosensory area (S1), the wiring of these pathways remains poorly characterized. We combined micropopulation tract-tracing and single-cell transfection experiments to map the pathways arising from different portions of the VP complex in male mice. We found that pathways originating from different VP regions show differences in area/lamina arborization pattern and axonal varicosity size. Neurons from the rostral VPM subnucleus innervate trigeminal S1 in point-to-point fashion. In contrast, a caudal VPM subnucleus innervates heavily and topographically second somatosensory area (S2), but not S1. Neurons in a third, intermediate VPM subnucleus innervate through branched axons both S1 and S2, with markedly different laminar patterns in each area. A small anterodorsal subnucleus selectively innervates dysgranular S1. The parvicellular VPM subnucleus selectively targets the insular cortex and adjacent portions of S1 and S2. Neurons in the rostral part of the lateral VP nucleus (VPL) innervate spinal S1, while caudal VPL neurons simultaneously target S1 and S2. Rostral and caudal VP nuclei show complementary patterns of calcium-binding protein expression. In addition to the cortex, neurons in caudal VP subnuclei target the sensorimotor striatum. Our finding of a massive projection from VP to S2 separate from the VP projections to S1 adds critical anatomical evidence to the notion that different somatosensory submodalities are processed in parallel in S1 and S2. Full Article
us Atp13a5 Marker Reveals Pericyte Specification in the Mouse Central Nervous System By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Perivascular mural cells including vascular smooth cells (VSMCs) and pericytes are integral components of the vascular system. In the central nervous system (CNS), pericytes are also indispensable for the blood–brain barrier (BBB), blood–spinal cord barrier, and blood–retinal barrier and play key roles in maintaining cerebrovascular and neuronal functions. However, the functional specifications of pericytes between CNS and peripheral organs have not been resolved at the genetic and molecular levels. Hence, the generation of reliable CNS pericyte-specific models and genetic tools remains very challenging. Here, we report a new CNS pericyte marker in mice. This putative cation-transporting ATPase 13A5 (Atp13a5) marker was identified through single-cell transcriptomics, based on its specificity to brain pericytes. We further generated a knock-in model with both tdTomato reporter and Cre recombinase. Using this model to trace the distribution of Atp13a5-positive pericytes in mice, we found that the tdTomato reporter reliably labels the CNS pericytes, including the ones in spinal cord and retina but not peripheral organs. Interestingly, brain pericytes are likely shaped by the developing neural environment, as Atp13a5-positive pericytes start to appear around murine embryonic day 15 (E15) and expand along the cerebrovasculature. Thus, Atp13a5 is a specific marker of CNS pericyte lineage, and this Atp13a5-based model is a reliable tool to explore the heterogeneity of pericytes and BBB functions in health and diseases. Full Article
us {mu}-Opioid Receptor Modulation of the Glutamatergic/GABAergic Midbrain Inputs to the Mouse Dorsal Hippocampus By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 We used virus-mediated anterograde and retrograde tracing, optogenetic modulation, immunostaining, in situ hybridization, and patch-clamp recordings in acute brain slices to study the release mechanism and μ-opioid modulation of the dual glutamatergic/GABAergic inputs from the ventral tegmental area and supramammillary nucleus to the granule cells of the dorsal hippocampus of male and female mice. In keeping with previous reports showing that the two transmitters are released by separate active zones within the same terminals, we found that the short-term plasticity and pharmacological modulation of the glutamatergic and GABAergic currents are indistinguishable. We further found that glutamate and GABA release at these synapses are both virtually completely mediated by N- and P/Q-type calcium channels. We then investigated μ-opioid modulation of these synapses and found that activation of μ-opioid receptors (MORs) strongly inhibits the glutamate and GABA release, mostly through inhibition of presynaptic N-type channels. However, the modulation by MORs of these dual synapses is complex, as it likely includes also a disinhibition due to downmodulation of local GABAergic interneurons which make direct axo-axonic contacts with the dual glutamatergic/GABAergic terminals. We discuss how this opioid modulation may enhance LTP at the perforant path inputs, potentially contributing to reinforce memories of drug-associated contexts. Full Article
us PDE4B Missense Variant Increases Susceptibility to Post-traumatic Stress Disorder-Relevant Phenotypes in Mice By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Large-scale genome-wide association studies (GWASs) have associated intronic variants in PDE4B, encoding cAMP-specific phosphodiesterase-4B (PDE4B), with increased risk for post-traumatic stress disorder (PTSD), as well as schizophrenia and substance use disorders that are often comorbid with it. However, the pathophysiological mechanisms of genetic risk involving PDE4B are poorly understood. To examine the effects of PDE4B variation on phenotypes with translational relevance to psychiatric disorders, we focused on PDE4B missense variant M220T, which is present in the human genome as rare coding variant rs775201287. When expressed in HEK-293 cells, PDE4B1-M220T exhibited an attenuated response to a forskolin-elicited increase in the intracellular cAMP concentration. In behavioral tests, homozygous Pde4bM220T male mice with a C57BL/6JJcl background exhibited increased reactivity to novel environments, startle hyperreactivity, prepulse inhibition deficits, altered cued fear conditioning, and enhanced spatial memory, accompanied by an increase in cAMP signaling pathway-regulated expression of BDNF in the hippocampus. In response to a traumatic event (10 tone–shock pairings), neuronal activity was decreased in the cortex but enhanced in the amygdala and hippocampus of Pde4bM220T mice. At 24 h post-trauma, Pde4bM220T mice exhibited increased startle hyperreactivity and decreased plasma corticosterone levels, similar to phenotypes exhibited by PTSD patients. Trauma-exposed Pde4bM220T mice also exhibited a slower decay in freezing at 15 and 30 d post-trauma, demonstrating enhanced persistence of traumatic memories, similar to that exhibited by PTSD patients. These findings provide substantive mouse model evidence linking PDE4B variation to PTSD-relevant phenotypes and thus highlight how genetic variation of PDE4B may contribute to PTSD risk. Full Article
us Neuregulin1 Nuclear Signaling Influences Adult Neurogenesis and Regulates a Schizophrenia Susceptibility Gene Network within the Mouse Dentate Gyrus By www.jneurosci.org Published On :: 2024-10-23T09:30:29-07:00 Neuregulin1 (Nrg1) signaling is critical for neuronal development and function from fate specification to synaptic plasticity. Type III Nrg1 is a synaptic protein which engages in bidirectional signaling with its receptor ErbB4. Forward signaling engages ErbB4 phosphorylation, whereas back signaling engages two known mechanisms: (1) local axonal PI3K-AKT signaling and (2) cleavage by -secretase resulting in cytosolic release of the intracellular domain (ICD), which can traffic to the nucleus (Bao et al., 2003; Hancock et al., 2008). To dissect the contribution of these alternate signaling strategies to neuronal development, we generated a transgenic mouse with a missense mutation (V321L) in the Nrg1 transmembrane domain that disrupts nuclear back signaling with minimal effects on forward signaling or local back signaling and was previously found to be associated with psychosis (Walss-Bass et al., 2006). We combined RNA sequencing, retroviral fate mapping of neural stem cells, behavioral analyses, and various network analyses of transcriptomic data to investigate the effect of disrupting Nrg1 nuclear back signaling in the dentate gyrus (DG) of male and female mice. The V321L mutation impairs nuclear translocation of the Nrg1 ICD and alters gene expression in the DG. V321L mice show reduced stem cell proliferation, altered cell cycle dynamics, fate specification defects, and dendritic dysmorphogenesis. Orthologs of known schizophrenia (SCZ)-susceptibility genes were dysregulated in the V321L DG. These genes coordinated a larger network with other dysregulated genes. Weighted gene correlation network analysis and protein interaction network analyses revealed striking similarity between DG transcriptomes of V321L mouse and humans with SCZ. Full Article
us Investigation of Metaplasticity Associated with Transcranial Focused Ultrasound Neuromodulation in Humans By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 Low-intensity transcranial focused ultrasound stimulation (TUS) is a novel technique for noninvasive brain stimulation (NIBS). TUS delivered in a theta (5 Hz) burst pattern (tbTUS) induces plasticity in the human primary motor cortex (M1) for 30–60 min, showing promise for therapeutic development. Metaplasticity refers to activity-dependent changes in neural functions governing synaptic plasticity; depotentiation is the reversal of long-term potentiation (LTP) by a subsequent protocol with no effect alone. Metaplasticity can enhance plasticity induction and clinical efficacy of NIBS protocols. In our study, we compared four NIBS protocol combinations to investigate metaplasticity on tbTUS in humans of either sex. We delivered four interventions: (1) sham continuous theta burst stimulation with 150 pulses (cTBS150) followed by real tbTUS (tbTUS only), (2) real cTBS150 followed by sham tbTUS (cTBS only), (3) real cTBS150 followed by real tbTUS (metaplasticity), and (4) real tbTUS followed by real cTBS150 (depotentiation). We measured motor-evoked potential amplitude, short-interval intracortical inhibition, long-interval intracortical inhibition, intracortical facilitation (ICF), and short-interval intracortical facilitation before and up to 90 min after plasticity intervention. Plasticity effects lasted at least 60 min longer when tbTUS was primed with cTBS150 compared with tbTUS alone. Plasticity was abolished when cTBS150 was delivered after tbTUS. cTBS150 alone had no significant effect. No changes in M1 intracortical circuits were observed. Plasticity induction by tbTUS can be modified in manners consistent with homeostatic metaplasticity and depotentiation. This substantiates evidence that tbTUS induces LTP-like processes and suggests that metaplasticity can be harnessed in the therapeutic development of TUS. Full Article
us Retinal Input to Macaque Superior Colliculus Derives from Branching Axons Projecting to the Lateral Geniculate Nucleus By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 The superior colliculus receives a direct projection from retinal ganglion cells. In primates, it remains unknown if the same ganglion cells also supply the lateral geniculate nucleus. To address this issue, a double-label experiment was performed in two male macaques. The animals fixated a target while injection sites were scouted in the superior colliculus by recording and stimulating with a tetrode. Once suitable sites were identified, cholera toxin subunit B-Alexa Fluor 488 was injected via an adjacent micropipette. In a subsequent acute experiment, cholera toxin subunit B-Alexa Fluor 555 was injected into the lateral geniculate nucleus at matching retinotopic locations. After a brief survival period, ganglion cells were examined in retinal flatmounts. The percentage of double-labeled cells varied locally, depending on the relative efficiency of retrograde transport by each tracer and the precision of retinotopic overlap of injection sites in each target nucleus. In counting boxes with extensive overlap, 76–98% of ganglion cells projecting to the superior colliculus were double labeled. Cells projecting to the superior colliculus constituted 4.0–6.7% of the labeled ganglion cell population. In one particularly large zone, there were 5,746 cells labeled only by CTB-AF555, 561cells double labeled by CTB-AF555 and CTB-AF488, but no cell labeled only by CTB-AF488. These data indicate that retinal input to the macaque superior colliculus arises from a collateral axonal branch supplied by ~5% of the ganglion cells that project to the lateral geniculate nucleus. Surprisingly, there exist no ganglion cells that project exclusively to the SC. Full Article
us Differential Encoding of Two-Tone Harmonics in the Male and Female Mouse Auditory Cortex By www.jneurosci.org Published On :: 2024-10-30T09:30:22-07:00 Harmonics are an integral part of music, speech, and vocalizations of animals. Since the rest of the auditory environment is primarily made up of nonharmonic sounds, the auditory system needs to perceptually separate the above two kinds of sounds. In mice, harmonics, generally with two-tone components (two-tone harmonic complexes, TTHCs), form an important component of vocal communication. Communication by pups during isolation from the mother and by adult males during courtship elicits typical behaviors in female mice—dams and adult courting females, respectively. Our study shows that the processing of TTHC is specialized in mice providing neural basis for perceptual differences between tones and TTHCs and also nonharmonic sounds. Investigation of responses in the primary auditory cortex (Au1) from in vivo extracellular recordings and two-photon Ca2+ imaging of excitatory and inhibitory neurons to TTHCs exhibit enhancement, suppression, or no-effect with respect to tones. Irrespective of neuron type, harmonic enhancement is maximized, and suppression is minimized when the fundamental frequencies (F0) match the neuron's best fundamental frequency (BF0). Sex-specific processing of TTHC is evident from differences in the distributions of neurons’ best frequency (BF) and best fundamental frequency (BF0) in single units, differences in harmonic suppressed cases re-BF0, independent of neuron types, and from pairwise noise correlations among excitatory and parvalbumin inhibitory interneurons. Furthermore, TTHCs elicit a higher response compared with two-tone nonharmonics in females, but not in males. Thus, our study shows specialized neural processing of TTHCs over tones and nonharmonics, highlighting local network specialization among different neuronal types. Full Article
us The Effect of Congruent versus Incongruent Distractor Positioning on Electrophysiological Signals during Perceptual Decision-Making By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Key event-related potentials (ERPs) of perceptual decision-making such as centroparietal positivity (CPP) elucidate how evidence is accumulated toward a given choice. Furthermore, this accumulation can be impacted by visual target selection signals such as the N2 contralateral (N2c). How these underlying neural mechanisms of perceptual decision-making are influenced by the spatial congruence of distractors relative to target stimuli remains unclear. Here, we used electroencephalography (EEG) in humans of both sexes to investigate the effect of distractor spatial congruency (same vs different hemifield relative to targets) on perceptual decision-making. We confirmed that responses for perceptual decisions were slower for spatially incongruent versus congruent distractors of high salience. Similarly, markers of target selection (N2c peak amplitude) and evidence accumulation (CPP slope) were found to be lower when distractors were spatially incongruent versus congruent. To evaluate the effects of congruency further, we applied drift diffusion modeling to participant responses, which showed that larger amplitudes of both ERPs were correlated with shorter nondecision times when considering the effect of congruency. The modeling also suggested that congruency's effect on behavior occurred prior to and during evidence accumulation when considering the effects of the N2c peak and CPP slope. These findings point to spatially incongruent distractors, relative to congruent distractors, influencing decisions as early as the initial sensory processing phase and then continuing to exert an effect as evidence is accumulated throughout the decision-making process. Overall, our findings highlight how key electrophysiological signals of perceptual decision-making are influenced by the spatial congruence of target and distractor. Full Article
us Erratum: McCosh et al., "Norepinephrine Neurons in the Nucleus of the Solitary Tract Suppress Luteinizing Hormone Secretion in Female Mice" By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Full Article
us The Hippocampus Preorders Movements for Skilled Action Sequences By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 Plasticity in the subcortical motor basal ganglia–thalamo–cerebellar network plays a key role in the acquisition and control of long-term memory for new procedural skills, from the formation of population trajectories controlling trained motor skills in the striatum to the adaptation of sensorimotor maps in the cerebellum. However, recent findings demonstrate the involvement of a wider cortical and subcortical brain network in the consolidation and control of well-trained actions, including a brain region traditionally associated with declarative memory—the hippocampus. Here, we probe which role these subcortical areas play in skilled motor sequence control, from sequence feature selection during planning to their integration during sequence execution. An fMRI dataset (N = 24; 14 females) collected after participants learnt to produce four finger press sequences entirely from memory with high movement and timing accuracy over several days was examined for both changes in BOLD activity and their informational content in subcortical regions of interest. Although there was a widespread activity increase in effector-related striatal, thalamic, and cerebellar regions, in particular during sequence execution, the associated activity did not contain information on the motor sequence identity. In contrast, hippocampal activity increased during planning and predicted the order of the upcoming sequence of movements. Our findings suggest that the hippocampus preorders movements for skilled action sequences, thus contributing to the higher-order control of skilled movements that require flexible retrieval. These findings challenge the traditional taxonomy of episodic and procedural memory and carry implications for the rehabilitation of individuals with neurodegenerative disorders. Full Article
us Glucocorticoids Rapidly Modulate CaV1.2-Mediated Calcium Signals through Kv2.1 Channel Clusters in Hippocampal Neurons By www.jneurosci.org Published On :: 2024-11-06T09:30:07-08:00 The precise regulation of Ca2+ signals plays a crucial role in the physiological functions of neurons. Here, we investigated the rapid effect of glucocorticoids on Ca2+ signals in cultured hippocampal neurons from both female and male rats. In cultured hippocampal neurons, glucocorticoids inhibited the spontaneous somatic Ca2+ spikes generated by Kv2.1-organized Ca2+ microdomains. Furthermore, glucocorticoids rapidly reduced the cell surface expressions of Kv2.1 and CaV1.2 channels in hippocampal neurons. In HEK293 cells transfected with Kv2.1 alone, glucocorticoids significantly reduced the surface expression of Kv2.1 with little effect on K+ currents. In HEK293 cells transfected with CaV1.2 alone, glucocorticoids inhibited CaV1.2 currents but had no effect on the cell surface expression of CaV1.2. Notably, in the presence of wild-type Kv2.1, glucocorticoids caused a decrease in the surface expression of CaV1.2 channels in HEK293 cells. However, this effect was not observed in the presence of nonclustering Kv2.1S586A mutant channels. Live-cell imaging showed that glucocorticoids rapidly decreased Kv2.1 clusters on the plasma membrane. Correspondingly, Western blot results indicated a significant increase in the cytoplasmic level of Kv2.1, suggesting the endocytosis of Kv2.1 clusters. Glucocorticoids rapidly decreased the intracellular cAMP concentration and the phosphorylation level of PKA in hippocampal neurons. The PKA inhibitor H89 mimicked the effect of glucocorticoids on Kv2.1, while the PKA agonist forskolin abrogated the effect. In conclusion, glucocorticoids rapidly suppress CaV1.2-mediated Ca2+ signals in hippocampal neurons by promoting the endocytosis of Kv2.1 channel clusters through reducing PKA activity. Full Article
us How Century-Old Paintings Reveal the Indigenous Roots and Natural History of New England Landscapes By www.smithsonianmag.com Published On :: Thu, 19 Sep 2024 12:00:00 +0000 Seven guest collaborators bring new eyes to a Smithsonian museum founder’s collection of American art Full Article
us How an Indigenous Weaver’s Mastery of Color Infuses Her Tapestries With a Life Force By www.smithsonianmag.com Published On :: Wed, 16 Oct 2024 18:17:46 +0000 The work of Diné artist DY Begay, now on view at the National Museum of the American Indian, blends tradition and modernity Full Article
us See What Happened When One Museum Asked Artists to Define ‘Home’ By www.smithsonianmag.com Published On :: Mon, 04 Nov 2024 15:30:00 +0000 The Smithsonian Design Triennial presents 25 commissions that explore the physical and conceptual ideas of shelter and refuge Full Article
us Quincy Jones Was a ‘Musician’s Musician’ Who Was Uniquely Beloved in the Cutthroat Music Industry By www.smithsonianmag.com Published On :: Mon, 04 Nov 2024 20:30:37 +0000 A Smithsonian curator reflects back on the artistic legend, a "Renaissance man" with 28 Grammys to his name, who died Sunday at 91 years old Full Article
us FAO calls for “paradigm shift” towards sustainable agriculture and family farming By www.fao.org Published On :: Mon, 29 Sep 2014 00:00:00 GMT Policy makers should support a broad array of approaches to overhauling global food systems, [...] Full Article
us FAO urges Europe to support nutrition and sustainable farming By www.fao.org Published On :: Tue, 30 Sep 2014 00:00:00 GMT Milan - European governments must help combat [...] Full Article
us Ministers meet at FAO to discuss role of commodity markets By www.fao.org Published On :: Mon, 06 Oct 2014 00:00:00 GMT Rome - Governments ought to review the [...] Full Article
us Building on trust By www.fao.org Published On :: Thu, 06 Nov 2014 00:00:00 GMT The Joint Meeting of the Finance and Programme Committees met yesterday morning. In [...] Full Article
us FAO Council closure: Director-General urges Members to focus on implementation early in 2015 By www.fao.org Published On :: Fri, 05 Dec 2014 00:00:00 GMT 5 December 2014, Rome – At the closure of the FAO Council held today, the [...] Full Article
us Consensus at Council By www.fao.org Published On :: Tue, 31 Mar 2015 00:00:00 GMT Last Friday the Council closed its week-long session with a standing ovation having reached consensus on the Programme of Work and Budget. In the past, budget negotiations have extended well [...] Full Article
us FAO to provide UN Security Council with regular analysis of food security statuses in countries in conflict By www.fao.org Published On :: Wed, 30 Mar 2016 00:00:00 GMT New York- FAO Director-General José Graziano da Silva and the President of the UN Security Council (UNSC), Ambassador Ismael Gaspar Martins, have concurred upon the importance of using FAO’s regular [...] Full Article
us FAO uses unearmarked funding strategically By www.fao.org Published On :: Mon, 28 Nov 2016 00:00:00 GMT The FMM is a funding mechanism for partners willing to contribute unearmarked funds or slightly earmarked funds. Created in 2010, the FMM is currently supported by the Kingdoms of Belgium, [...] Full Article
us Launch of The State of Food and Agriculture 2017 – Leveraging food systems for inclusive rural transformation By www.fao.org Published On :: Fri, 06 Oct 2017 00:00:00 GMT Since the 1990s, rural transformations have helped millions of people exit poverty while remaining in rural areas. This underscores an important fact: revitalising rural economies helps create jobs for rural [...] Full Article
us The 159th session of the FAO Council came to a close last Friday, following intense week-long deliberations, concluding in consensus By www.fao.org Published On :: Mon, 11 Jun 2018 00:00:00 GMT Addressing the plenary meeting in the closing session of the 159th Session of the Council, the Director-General expressed his appreciation to delegates for their commitment and hard work to [...] Full Article
us A new phase for the Africa Solidarity Trust Fund, a Council Side Event By www.fao.org Published On :: Thu, 06 Dec 2018 00:00:00 GMT On Friday, 7 December during the 160th session of the Council, a side event on the Africa Solidarity Trust [...] Full Article
us Join us: virtual symposium on Agricultural Heritage and Family Farming By www.fao.org Published On :: Fri, 24 Sep 2021 00:00:00 GMT The Food and Agriculture Organization of the United Nations, through the Globally Important Agricultural Heritage Systems (GIAHS) Programme, will organise the International Symposium on Globally Important Agricultural Heritage Systems and Family Farming from [...] Full Article
us Join us: International Conference on Globally Important Agricultural Heritage Systems 2021 By www.fao.org Published On :: Mon, 15 Nov 2021 00:00:00 GMT The Food and Agriculture Organization of the United Nations (FAO), through the Globally Important Agricultural Heritage Systems (GIAHS) Programme, is organizing the International Conference on Globally Important Agricultural Heritage Systems 2021 [...] Full Article
us New partnership focuses on plant health as a key step towards food security By www.fao.org Published On :: Fri, 19 Nov 2021 00:00:00 GMT Rome – The Food and Agriculture Organization of the United Nations (FAO), on behalf of the International Plant Protection Convention (IPPC) has joined forces with the Comité de [...] Full Article
us “Celebrating World Pulses Day: Pulses to empower youth in achieving sustainable agrifood systems” By www.fao.org Published On :: Thu, 03 Feb 2022 00:00:00 GMT The World Pulses Day Secretariat welcomes your participation in an open event to celebrate World Pulses Day 2022 Thursday, 10 February [...] Full Article
us New Scenarios on Global Food Security based on Russia-Ukraine Conflict By www.fao.org Published On :: Thu, 10 Mar 2022 00:00:00 GMT by Qu Dongyu, Director-General of the Food and Agriculture Organization of the United Nations (FAO). Full Article
us The importance of Ukraine and the Russian Federation for global agricultural markets and the risks associated with the current conflict By www.fao.org Published On :: Fri, 11 Mar 2022 00:00:00 GMT Information Note. Full Article
us In Focus: FAO responds to the Ukraine crisis By www.fao.org Published On :: Fri, 08 Apr 2022 00:00:00 GMT FAO’s responses to the crisis in Ukraine and its impacts on global food security: data analyses, policy recommendations, and actions on the ground. Full Article
us World food commodity prices dip for fifth month in a row in August By www.fao.org Published On :: Fri, 02 Sep 2022 00:00:00 GMT The barometer for world food commodity prices declined for the fifth consecutive month in August, as quotations for most benchmark items dropped, according to a new report released today by [...] Full Article
us FAO Global Conference on Sustainable Plant Production By www.fao.org Published On :: Wed, 19 Oct 2022 00:00:00 GMT Hybrid event (FAO headquarters and Zoom) Wednesday, 2 November 2022 from 9:30 to 20:00 hours (CET) – with reception from [...] Full Article
us FAO in Review: How the Organization changed its Business Model through innovation By www.fao.org Published On :: Mon, 05 Dec 2022 00:00:00 GMT Read the seriesFull Article