l

Condensate collector system for multi-poise gas furnace system

A condensate collector system includes a condensate collector box having at least one condensate outlet port, and a condensate trap fluidly connected to the at least one condensate outlet port. The condensate trap is configured and disposed to be selectively positioned in multiple drain orientations relative to the condensate collector box to accommodate multiple installation configurations of the multi-poise gas furnace.




l

Pull-out guide

A pull-out guide for a baking oven. The pull-out guide includes a guide rail fixed in a position and configured as a hollow profile. The pull-out guide further includes a running rail movably mounted on the guide rail, and a bar inserted is into the guide rail, at least in sections.




l

Solar boiler tube panel supports

A solar boiler includes a boiler support defining an axis along an inboard-outboard direction. A hanger rod is rotatably mounted to the boiler support. A bracket is rotatably mounted to the hanger rod, and a solar boiler panel is mounted to the bracket. The solar boiler panel defines a longitudinal axis that is substantially perpendicular with the axis of the boiler support. The hanger rod connects between the boiler support and the bracket to support the weight of the solar boiler panel from the boiler support. The hanger rod and bracket are configured and adapted to maintain a substantially constant orientation of the bracket during inboard and outboard movement of the bracket relative to the boiler support.




l

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Combustible fluid cutting safety system

Embodiments of the present invention provide components and a system for providing a safer environment for using a cutting torch. The system includes a cutting torch and a control box. There is communication from the user to the control box to allow fluids to flow to the torch. The control box includes closed biased valve(s) such that if there is a condition where there is no instruction from the torch to the control box and/or power is lost, the valves will shut, preventing fluid from flowing into the torch.




l

Blast treatment method and blast treatment device

A blast treatment method capable of performing blast treatment of a treatment subject with a simple structure, with high efficiency, and at low cost, while inhibiting scattering of harmful substances or the like to the outside. The method includes: inside disposing an inside explosive for blasting a treatment subject around the treatment subject; disposing an outside explosive having a detonation velocity greater than that of the inside explosive at a position outside the inside explosive; and detonating the outside explosive using an initiation device, and initiating the inside explosive by detonation of the outside explosive, thereby performing blast treatment of the treatment subject by initiation of the inside explosive. The outside explosive disposing includes arranging a cord-like explosive member containing the outside explosive and having a shape extending in one direction so that a detonation propagation velocity in a specific direction of the inside explosive initiated by the outside explosive is greater than a detonation propagation velocity in the specific direction of the inside explosive.




l

Projectile and munition including projectile

A projectile (and munition including the projectile) and a method of assembling the same, includes a body having a cavity, a propellant disposed in the cavity and a base including an ignition flash column extending into the cavity containing the propellant and a nozzle formed so as to be openable and closeable.




l

Flexible fragmentation sleeve

A flexible fragmentation sleeve for use with a non-fragmenting explosive device is provided. The flexible fragmentation sleeve comprises a flexible cylindrical wall extending between opposing first and second ends along a longitudinal axis. The cylindrical wall includes an inner liner and an outer liner concentric to the inner liner. A first set of coupling elements extend parallel to the longitudinal axis of the cylindrical wall, and couple the inner liner with the outer liner. A second set of coupling elements extend circumferentially along the cylindrical wall. The second set of coupling elements is substantially perpendicular to the first set of coupling elements, and couple the inner liner with the outer liner. A plurality of pockets is defined intermediate the inner liner and the outer liner, and intermediate the first set of coupling elements and the second set of coupling elements. The flexible fragmentation sleeve of the illustrative embodiment further includes a plurality of fragmentation members. At least one fragmentation member is illustratively received within each pocket.




l

Motor-driven unit for clearing mines from and securing a hazardous route

The present disclosure relates to a motor-driven unit for clearing mines from and securing a hazardous route. According to the present method, system and device, a marker apparatus for a secured route is a liquid material for marking on the ground, and comprising dispensing members for providing one axial marking and two side markings on either side of said axial marking, respectively, for said route.




l

Precision water jet disruptor delivery system

A precision coaxial water jet disruption explosive device system that holds a blasting cap precisely to the surface of a cylindrically cut positioned plastic explosive that couples a detonation shock wave into water surrounding a hollow forming cavity. A pressure relief vent enables the water filled system to be assembled without deforming the thin walled hollow jet forming cavity, enabling forming repeatable supersonic jets on centerline axis. This system is positioned with two triangular pivot legs and aligned with two fan light beams or a line sight to define a projected jet route to deliver a water jet that can cut through over 1 inch of steel and disrupt target objects more than 9 feet away. This system is used to disable improvised explosive devices, and other dangerous objects, without detonating the targeted explosives and electronic devices such that the contents are destroyed without explosion sequences occurring.




l

Ammunition loader

A ammunition loading machine is provided. The ammunition loading machine includes a base frame. A rake assembly is mounted to the base frame and configured to index a linear row of cases along a first linear axis. A platen assembly is also mounted to the base frame and is movable relative to the base frame along a second linear axis that is orthogonal to the first linear axis. A propellant hopper is fixedly mounted to the base frame. The platen assembly is movable relative to the propellant hopper to transfer propellant from the propellant hopper to a propellant filling mechanism that is movable with the platen assembly. The rake assembly is adjustable to accommodate multiple different sizes of cartridges. The rake assembly and platen assembly are commonly linked to a cam drive mechanism for simultaneously moving the rake assembly and the platen assembly.




l

Automatic crimping tool

An automatic crimping tool may be used to seat and crimp a projectile in a cartridge case. The tool may include a center sleeve having a blind bore at one end, an outer surface, a spring stop disposed on the outer surface, and at least one opening extending through a wall of the blind bore. The tool may include an outer sleeve having a through bore. The center sleeve may be reciprocably disposed in the through bore of the outer sleeve. The through bore may include a counter bore at one end and an enlarged portion located distal from the counter bore. A spring may be disposed between a flat portion of the counter bore and the spring stop. A retainer may bear against the spring stop to limit axial motion of the center sleeve. An inner sleeve may be disposed in the blind bore. The inner sleeve may be selectively translatable with the center sleeve. A second spring may be disposed between a closed end of the blind bore and the inner sleeve.




l

Method of producing warheads containing explosives

The present invention is directed to a method for production preformed fabrication casing or associated parts intended to generate fragments initiated by the explosive of contained warhead charges. Molded parts having fragmentation bodies (4, 21, 34) embedded therein are produced by a two-stage powder compaction method followed by sintering together the compacted powder metal. The method described in the present invention defines how in an initial stage the fragmentation bodies (4, 21, 34) are fixed in position using a fixture (2) after which the bodies are covered with powder metal that is then compacted until the powder forms a single molded part (2) after which the fixture is replaced with a secondary quantity of powder that is also compacted to form a self-supporting unit (12) together with the first quantity of powder.




l

Composite projectile and cartridge with composite projectile

A projectile includes: (a) a cured, toughened polymer resin; and (b) a particulate filler distributed through the resin, the filler having a density greater than a density of the resin, wherein the projectile has average density less than the density of lead.




l

Shell destruction technique

An explosive assembly adapted to destruction of artillery and other large ordnance shells; said explosive assembly comprising a pair of hollow half shells; each of said half shells formed with an internal cavity conforming to at least a portion of external surfaces of an ordnance shell to be destroyed.




l

Case annealer

A portion of a work-hardened essentially tubular work piece such as a metallic firearm cartridge case is annealed by contact with solid or granular tooling material which has been heated to a temperature approximately that of the appropriate annealing temperature, thereby reducing the possibility of overheating the work piece, and also thereby permitting the annealing of only that portion of the work piece contacted or in close proximity to the point(s) of contact.




l

Case activation bullet feeder

A bullet feeding device has an expandable collet insertable into a die body. The die body receives bullets from a source and directs the bullets to the expandable collet. The expandable collet restricts the passage of the bullet through the die body until the mouth of a cartridge case is inserted into the die body opposite the bullet. The mouth of the cartridge case causes the expandable collet to expand and allow the single bullet to pass through the expandable collet and be placed in the mouth of the cartridge case. As the completed cartridge is drawn from the die body, the expandable collet and prevents the passage of additional bullets until a new cartridge case is inserted. The bullet feeding device may accept bullets of different lengths and shapes. The collet is interchangeable with expandable collets of other sizes to be compatible with bullets of different sizes.




l

Loading machine for feeding a receiver

A loading machine for feeding a receiver includes, but is not limited to, a drum cam that is configured to rotate. The drum cam includes, but is not limited to, a first cam path, and a second cam path. A rammer subassembly is positioned proximate the drum cam. The rammer subassembly includes, but is not limited to, a first member that is configured to engage the first cam path and to move longitudinally with respect to the drum cam upon a rotation of the drum cam, and a second member that is configured to telescopically engage the first member and further configured to engage the second cam path and telescopically move with respect to the first member upon the rotation of the drum cam.




l

Cost-effective high-volume method to produce metal cubes with rounded edges

This disclosure generally relates to high-volume and cost-effective methods for producing non-spherical metal particles, particularly methods for producing metal cubes having rounded edges. The metal cubes having rounded edges are useful as ballistic shot in shotshell loads for hunting, where the particle shape imparted by the disclosed process packs to a higher density than spherical shot in the same volume.




l

Apparatus and methods for cartridge case annealing

A method and apparatus for annealing cylindrical cases for ammunition cartridges or other tubular casings is provided. In one embodiment, a case annealing apparatus is provided. The case annealing apparatus includes a base, a feeding device having a first end tapering to a second end that is coupled to the base, a rotatable feed wheel assembly disposed adjacent a second end of the feeding device, a linear slide mechanism disposed adjacent the rotatable feed wheel assembly defining a portion of a case receiving region, and a heating device disposed adjacent the case receiving region, the heating device operable to heat a portion of a case retained in the case receiving region.




l

Method for producing a large-caliber explosive projectile

A method is provided for producing a large-calibre explosive projectile having a projectile casing with an ogival front part, which surrounds an internal area filled with a plastic-bonded explosive charge and, at a nose end, has a mouth closed by a nose fuze, wherein an elastic liner is arranged between the explosive charge and the inner wall of the projectile casing. The projectile casing is produced in two parts, such that, in the direction of the longitudinal axis of the projectile casing, a tail-end projectile casing section and an annular front projectile casing section, which contains the mouth, can be connected to one another in the area of the ogival front part, via a screw connection. The liner is introduced into the tail-end projectile casing section and the explosive charge is introduced into the liner before the two projectile casing sections are connected to one another.




l

Three component bullet with core retention feature and method of manufacturing the bullet

A three component bullet with an improved core retention feature and a method of manufacturing the bullet is described including a cylindrical jacket having an open end and a closed end containing a malleable metal core which is forced into a forming die having a bottleneck shaped interior resulting in a bottleneck shaped pre-form wherein the outside diameter of the open-ended forward portion of the jacket is smaller than the outside diameter of its closed rearward portion. The open end of the pre-form may be dropped through or forced through a malleable locking band of appropriate height, diameter and wall thickness. A relatively tight-fitting punch enters the open end of the pre-form generating sufficient axial force against the face of the metal core to radially swell the core and subsequently portions of the jacket fore and aft of the locking band, thereby securing the locking band in place while at the same time producing an inwardly-extending annular band of jacket material which embeds itself into the core material with the result that the core is permanently locked inside the jacket.




l

Methods for identifying wireless devices connected to potentially threatening devices

Techniques for determining whether a cellular device is suspect, i.e., perhaps serving as an activator for a device such as a bomb. One way of doing this with cellular telephones that are in the idle state is to use a baiting beacon to bait and automatically call all the cellular telephones in an area that are in the idle state. If the call to a given cellular telephone is not answered by a human voice, the cellular telephone is suspect. Another way of doing this with cellular telephones that are in the traffic state is to use surgical analysis to examine the DTX pattern for the telephone. If it indicates persistent silence, the cellular telephone is suspect. The surgical analysis may also be used to trace the DTX pattern back to another telephone that is controlling the suspect cellular device.




l

Sleeve for accommodating propellant charge powder

The invention relates to a combustible sleeve for accommodating propellant charge powder, to munitions designed using such a sleeve, and to a production method for such sleeves. The sleeve according to the invention is designed for accommodating propellant charge powder and has a jacket wall made of combustible felted fibrous material and an inlay of intersecting threads in the jacket wall. The threads are disposed therein at a distance from one another such that felted fibrous material reaches through the regions between the threads. The method comprises the following steps: preparing a jacket wall made of combustible felted fibrous material and inserting an inlay made of intersecting threads into the jacket wall. The threads are disposed therein at a distance from one another such that the felted fibrous material extends through the regions between the threads.




l

Firearm projectiles and cartridges and methods of manufacturing the same

Firearm projectiles and methods of manufacturing firearm projectiles from a supply of clad wire. In some embodiments, the clad wire is manufactured as electrical wire, such as copper-clad steel wire. Bullets and shot, as well as methods of forming bullets and shot, from clad wire are disclosed.




l

Reactive material breaching device

A breaching device that may be used to create a linear and, if desired, continuous, cut or breach in a metal structure. The cut or breach created may be non-linear in shape and not deviate from the functionality of the device. The device includes a plurality of containers joined together, such as by a metal wire or the like to form a series of cutting charges. One or more of the containers includes Reactive Material (RM) that may be ignited electronically or some other activation mechanism. The containers that do contain RM are sealed with the RM therein and preferably fabricated to be sufficiently heat resistant so that the RM is only ignited intentionally. The RM that is contained in the containers may be fired simultaneously, sequentially or in a programmed pattern, depending on the requirements of the application.




l

Method and system to detect improvised explosive devices

A method and system to detect an improvised explosive device is disclosed. In a particular embodiment, the method includes dispersing a mixture containing a fluorescent material uniformly over a ground cover, illuminating the ground cover with wavelengths of visible light or ultraviolet (UV) light causing the fluorescent material to fluoresce in a visible light spectrum, and detecting where the mixture has been disturbed on the ground cover by visually observing inconsistencies in the fluorescent material on the ground cover that is fluorescing to indicate a location of the improvised explosive device. The method also includes that the mixture is adapted to cling to a person, clothes, or any combination thereof, upon contact.




l

Method of making shaped charges and explosively formed projectiles

A method of making a liner for a shaped charge or an explosively formed projectile may include making a liner substrate using a 3D additive manufacturing process. At least a portion of the surface of the liner substrate may be surface finished. The surface finished portion may be electroplated with a metal to form a multi-layer liner.




l

Bullet projectile and case feeding device

The present invention relates to a bullet-projectile and case feeding device, characterized in that it comprises a drum (1) internally provided with at least two compartments: a concentric inner compartment (6), and another outer compartment (7), wherein the compartments (6, 7) are suitable for housing cases or bullets-projectiles. The bottom of the drum (1) has an inclination of essentially 45° to 70°, the compartments are provided with: first housings (8) and second housings (9) forming positioning means for positioning the bullets-projectiles and cases, and one inner tube (3) and one outer tube (4) per compartment for feeding the assembly press, said bullets-projectiles and cases being moved in a disorderly manner when the drum rotates (1) and accessing said inner tube (3) and outer tube (4). The device is used in a feeding method for feeding bullets and cases to an assembly press and in a case annealing method.




l

Method for combating explosive-charged weapon units, and projectile designed for the same

The invention relates to a method of with a projectile (1) comprising a reactive charge (4), combating an explosive-charged weapon unit (7), preferably an enemy shell, so that undesirable harmful effects on the environment are reduced, wherein the projectile (1) is configured to penetrate the surface (8) of the weapon unit (7) upon impact so that a passage (9) is opened into the explosive (10) of the weapon unit (7), through which passage (9) the reactive charge (4), under the influence of the kinetic energy of the projectile (1), is transferred to the explosive (10) of the weapon unit (7). The method can be deemed to be characterized in that the reactive charge (4), upon contact with the explosive (10) of the weapon unit (7), reacts and starts a hypergolic reaction with the explosive (10). The invention also relates to a projectile (1) for the said method.




l

Multi-petal projectile adapter for a dearmer

A multi-petal adapter that enables projectiles of different sizes to be used in a single dearmer. The adapter includes a plurality of petals that are secured, in a detachable way, to a base. The main function of the base is to secure the petals until the projectile is fired from the dearmer. Whereupon, the adapter will start petalling until the petals become detached from the base, so that the adapter imparts minimal or no energy or damage to the intended target. The adapter fully regulates the energy imparted to the various projectiles, by allowing propellant gases to bleed through channels that are formed between the petals. As a result, the present adapter fully supports a proper projectile launch and ensures its proper orientation toward the target.




l

Spin or aerodynamically stabilized ammunition

Disclosed is spin-stabilized ammunition for use in grooved or smooth bore handheld firearms with calibers up to 60 mm. The projectile of the ammunition features a body in the shape of a truncated cone at the top of a cylinder with proportions of the cone length to the cylinder length varying between from one-to-six to one-to-three depending on the expected initial speed of the projectile after the ammunition has been discharged. A central longitudinal barrel extends through the projectile with a proportion of the entrance diameter and exit diameter of 1.38-to-one for expected discharge speeds near sound velocity or of 1.22-to-one for expected discharge of hypersonic velocities. Finally, nozzles within the projectile create a spinning motion around the projectile's axis, the nozzles being located between cavities for propellant charges.




l

Water air-bubble fragment recovery test apparatus

A water air-bubble fragment recovery test apparatus that facilitates accurate assessment of fragmentation characteristics and lethality that are normally detonated in air. An airtight, waterproof plastic container encloses a test warhead; the plastic container may then also be filled with a gas or just with air. The container is then embedded in a water-gas-bubble mixture found in a water tank, for the warhead to be detonated therein, and the fragments to then be later recovered.




l

Device for improved method of blasting

An explosive cartridge comprising: an explosive composition;a deactivating agent that is capable of desensitising the explosive composition; anda barrier element that prevents contact between the explosive composition and the deactivating agent and that is adapted to be at least partially removed on use of the explosive cartridge.




l

Cartridged projectile

The present invention describes an improved cartridged projectile (100). The cartridged projectile (100) comprises a projectile (110) seating at a mouth of a cartridge case (130). The cartridge case (130) has a base (134) that houses a high pressure chamber (150). A side of the high pressure chamber (150) is capped by a pressure disc (170), which is secured onto the base of the cartridge case by a nozzle ring (160). The nozzle ring (160) has a tapered or conical surface that allows the pressure disc (170) to flex, and a surface (171) of the pressure disc (170) exterior of the high pressure chamber has intersecting V-shaped grooves (172). When propellant in the high pressure chamber (150) is burned efficiently, high pressure gases developing inside the high pressure chamber cause the pressure disc (170) to rupture at a predetermined pressure along the grooves (172) so that the gases propel the projectile (110) out of a barrel at a higher speed of about 100 m/s or more.




l

Method of manufacturing colored shot for shot shells

A method for providing permanently colored steel shot for shot shells through anodizing and shells manufactured utilizing the shot.




l

Muzzle loader powder increment using celluloid combustible container

An encapsulated propellant charge comprised a sealed combustible container comprised of a consumable material and having a substantially cylindrical shape. The sealed combustible container comprises a top wall, a bottom wall, and a side wall therebetween. The top wall, the bottom wall and the side wall define a chamber; which contains a propellant composition.




l

Explosive system for destruction of overpacked munitions

The present invention provides a method for explosively destroying munitions in an overpacked container within a sealed detonation chamber, utilizing a plurality of specially shaped linear-shaped charges and/or a combination of special linear-shaped charges in conjunction with an explosively formed projectile, resulting in penetrating both the side wall of the overpacked container and the side wall of the projectile.




l

Method for neutralizing explosives and electronics

Disclosed is a system for detonating a buried explosive device by discharging an electric discharge with at least five joules of energy to detonate the buried explosive device.




l

Hand operated rifle cartridge loading press affording a repeatable degree of crimping

A hand operated press for reloading metal rifle cartridges including indicating means for providing for an operator of the press discrete indications of the different forces that can be manually applied through the drive mechanism during use of the press to crimp the second end of a cartridge against a bullet in the cartridge to allow the operator to use one of those indications to manually apply the same force to form essentially the same degree of crimp of the second ends of identical cartridges against identical bullets in the cartridges.




l

Tool for handling a cartridge

A cartridge retention tool may be used for restraining a spent cartridge during primer pocket cleaning. The tool may have jaws that may be sized to approximately fit the cartridge and secure it from moving during the cleaning process. The tool may employ mechanical leverage to reduce the amount of force required to restrain the cartridge within the jaws.




l

Mobile platform for the delivery of bulk explosive

The present invention is directed to a mobile platform for the delivery of bulk explosives to a blast hole. One embodiment of the platform provides the ability to obtain weight information relating to the contents of a tank that is associated with the platform and that, in operation, contains either the bulk explosive or a constituent of the explosive. The platform comprises a vehicle with a frame, a tank, a load cell structure for connecting the frame and the tank and providing weight data relating to the contents of the tank, and a suspension system that prevents relative movement of the frame and the tank that could compromise the load cell structure. Another embodiment of the platform provides a tank for holding an explosive composition and a rotary shaft that supports a mixing blade that mixes the explosive composition within the tank. The platform further comprises bearing structure for supporting the rotary shaft that is located to deter any of the explosive composition from entering the bearing. A further embodiment of the platform comprises a conduit structure for discharging a bulk explosive into a blast hole that includes a substantially rigid tube with an outlet port for discharging a bulk explosive into the blast hole. The tube is adapted to rotate about a vertical axis such that the outlet port can be moved towards and away from the vehicle along an arc of less than 180°. In one embodiment, the outlet port can be positioned substantially adjacent to an operator's station to allow an operator to readily view the loading of the explosive into the blast hole.




l

Firearm projectiles and cartridges and methods of manufacturing the same

Firearm projectiles and methods of manufacturing firearm projectiles from a supply of clad wire. In some embodiments, the clad wire is manufactured as electrical wire, such as copper-clad steel wire. Bullets and shot, as well as methods of forming bullets and shot, from clad wire are disclosed.




l

Method for commercial production of small-arms cartridge cases

The invention provides methods for producing varying sizes and types of small firearm cartridge cases using earlier produced cartridge cases as work stock. The preexisting cartridge cases are subjected to a number of machining operations to obtain the desired different sizes and/or types of cartridge cases. The invention considerably shortens the production cycle and substantially decreases the costs of production versus the conventional method of manufacturing new cartridge cases.




l

Method and apparatus for the delaboration of ammunition

The invention relates to a method and apparatus for the delaboration of ammunition, in particular shells having a housing with a tubular housing portion made of steel and open at one end, a cone made of ductile metal and fitted into the tubular housing portion, the cone having a base with a tubular rim, and an explosive charge contained between the housing and the cone. The method comprises a) inserting an extraction tool through the open end into the tubular housing portion for extracting the cone, b) axially compressing the tubular rim of the cone between the extraction tool and the explosive charge, c) deforming a portion of the tubular rim into a form fit with the extraction tool, d) withdrawing the extraction tool from the housing portion, and e) at least partially withdrawing the cone from the housing portion together with the extraction tool.




l

Blast treatment method and blast treatment device

A blast treatment method capable of more reliably treating an object to be treated which is accommodated in an outer container is provided. The blast treatment method includes: a step for spacing a plurality of blasting explosives (20) from one another at positions on the outer side surface of an outer container (60) in a direction surrounding a central axis (C2) of the outer container (60) and arranging the blasting explosives (20) in such a manner as to extend approximately parallel to the central axis (C2); a step for installing the outer container (60) within a chamber (90); and a step for detonating the blasting explosives (20) within the chamber to perform blast treatment of an object (10) to be treated with the detonation energy, wherein the blasting explosives (20) are detonated at the blast timing at which fragments of the outer container (60) or shock waves, which are generated in the vicinity of the blasting explosives (20) by the detonation energy of the blasting explosives (20), collide with or propagate to a bombshell (10) in less time difference than that in the case in which the plurality of blasting explosives (20) are detonated at the same time.




l

Ammunition articles and methods for making the same

A method of making an ammunition article and associated ammunition article is provided. The ammunition article is interchangeable with standard ammunition articles and to operate in standard chambers of standard weapons systems and of the type having a casing including a sidewall that defines a casing volume within. The method includes determining a desired propellant charge volume for a given ammunition article, determining a thickness of the casing sidewall such that the casing volume substantially corresponds to the desired propellant charge volume, and forming the casing having the determined thickness.




l

Multistage heat exchanging duct comprising a parallel conduit

The heat exchanger having a heat exchanging channel (11, 21, 31) comprises an inlet (9) and an outlet (33) for a medium flowing through the heat exchanging channel. The heat exchanger has at least two stages (10, 20, 30) being arranged one after the other in view to the flowing direction of the medium, each stage having a heat exchanging channel (11, 21, 31). The first stage has at least one guiding channel (12) arranged parallel to the heat exchanging channel (11). The heat exchanging channel (11, 21, 31) has at the end of the respective stage (10, 20, 30) at least one outlet (13, 23, 33) and the guiding channel (12, 22) of the respective stage is connected with the heat exchanging channel (21, 31) of the next following stage (20, 30). By this unused heat transfer medium is fed to each stage, said heat transfer medium having a higher temperature difference with respect to the respective heat exchanging channel. By this a good heat transfer efficiency is realized even with relatively long flow pathes.




l

Heat transport fluid passage device with hydrophobic membrane

A heat transport fluid passage device for a heat transport circuit has a wall defining a passage through which a heat transport fluid flows. The heat transport fluid contains a solvent made of water or an organic substance and fine particles dispersed in the solvent. A hydrophobic membrane is formed on a surface of the wall.




l

Adjustable tank for bar-plate heat exchanger

A heat exchanger includes a core and a pair of end tanks attached to the end of the core. Each end tank extends over an outermost peripheral end of the core such that the core extends into a chamber defined by the end tank. The end tank is welded to the core at the outer surface of the core and a lower end surface of the tank.




l

Arrangement in a liquid cooler

Arrangement for circulating liquid in a liquid cooler (11) intended particularly for power electronics appliances, inside which cooler at least two longitudinal main ducts (22, 23) are arranged and transverse ducts (21) arranged between them and connecting them, and in which cooler at least one of the longitudinal ducts is an input duct (22), into which liquid from coming from outside is led via an input joint (12) and one is an output duct (23), from where the liquid is led out via the output joint (13), inside which output duct a tubular additional part (41) having an open end at least on the side of the output joint is installed, and which additional part is arranged detached from the output duct such that a gap remains between the outer surface of the additional part and the inner surface of the output duct for enabling a liquid flow in the output duct outside the additional part, and in which arrangement a first aperture or first apertures (P, N, P2) are arranged in the part of the additional part on the output joint side and/or in the output joint and/or between them for enabling a first path of passage for a part of the nominal total flow to the output joint, and a second aperture or second apertures (T, P1) are arranged in the part of the additional part that is farther from the output joint or between the additional part and the output duct for enabling a second path of passage for the remaining part of the total flow into the additional part and via it onwards to the output joint.