cell Hexacosenoyl-CoA is the most abundant very long-chain acyl-CoA in ATP binding cassette transporter D1-deficient cells [Patient-Oriented and Epidemiological Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 X-linked adrenoleukodystrophy (X-ALD) is an inherited disorder caused by deleterious mutations in the ABCD1 gene. The ABCD1 protein transports very long-chain FAs (VLCFAs) from the cytosol into the peroxisome where the VLCFAs are degraded through β-oxidation. ABCD1 dysfunction leads to VLCFA accumulation in individuals with X-ALD. FAs are activated by esterification to CoA before metabolic utilization. However, the intracellular pools and metabolic profiles of individual acyl-CoA esters have not been fully analyzed. In this study, we profiled the acyl-CoA species in fibroblasts from X-ALD patients and in ABCD1-deficient HeLa cells. We found that hexacosenoyl (26:1)-CoA, but not hexacosanoyl (26:0)-CoA, was the most abundantly concentrated among the VLCFA-CoA species in these cells. We also show that 26:1-CoA is mainly synthesized from oleoyl-CoA, and the metabolic turnover rate of 26:1-CoA was almost identical to that of oleoyl-CoA in both WT and ABCD1-deficient HeLa cells. The findings of our study provide precise quantitative and metabolic information of each acyl-CoA species in living cells. Our results suggest that VLCFA is endogenously synthesized as VLCFA-CoA through a FA elongation pathway and is then efficiently converted to other metabolites, such as phospholipids, in the absence of ABCD1. Full Article
cell HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic {beta}-cells in vitro by activation of Smoothened [Research Articles] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 Loss of pancreatic β-cell mass and function as a result of sustained ER stress is a core step in the pathogenesis of diabetes mellitus type 2. The complex control of β-cells and insulin production involves hedgehog (Hh) signaling pathways as well as cholesterol-mediated effects. In fact, data from studies in humans and animal models suggest that HDL protects against the development of diabetes through inhibition of ER stress and β-cell apoptosis. We investigated the mechanism by which HDL inhibits ER stress and apoptosis induced by thapsigargin, a sarco/ER Ca2+-ATPase inhibitor, in β-cells of a rat insulinoma cell line, INS1e. We further explored effects on the Hh signaling receptor Smoothened (SMO) with pharmacologic agonists and inhibitors. Interference with sterol synthesis or efflux enhanced β-cell apoptosis and abrogated the anti-apoptotic activity of HDL. During ER stress, HDL facilitated the efflux of specific oxysterols, including 24-hydroxycholesterol (OHC). Supplementation of reconstituted HDL with 24-OHC enhanced and, in cells lacking ABCG1 or the 24-OHC synthesizing enzyme CYP46A1, restored the protective activity of HDL. Inhibition of SMO countered the beneficial effects of HDL and also LDL, and SMO agonists decreased β-cell apoptosis in the absence of ABCG1 or CYP46A1. The translocation of the SMO-activated transcription factor glioma-associated oncogene GLI-1 was inhibited by ER stress but restored by both HDL and 24-OHC. In conclusion, the protective effect of HDL to counter ER stress and β-cell death involves the transport, generation, and mobilization of oxysterols for activation of the Hh signaling receptor SMO Full Article
cell HDL and pancreatic {beta} cells: a SMO-king gun? [Commentary] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 Full Article
cell SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:28-07:00 Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement. Full Article
cell Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:28-07:00 Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation. Full Article
cell Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains. Full Article
cell The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Cellular membranes are not homogenous mixtures of proteins; rather, they are segregated into microdomains on the basis of preferential association between specific lipids and proteins. These microdomains, called lipid rafts, are well known for their role in receptor signaling on the plasma membrane (PM) and are essential to such cellular functions as signal transduction and spatial organization of the PM. A number of disease states, including atherosclerosis and other cardiovascular disorders, may be caused by dysfunctional maintenance of lipid rafts. Lipid rafts do not occur only in the PM but also have been found in intracellular membranes and extracellular vesicles (EVs). Here, we focus on discussing newly discovered functions of lipid rafts and microdomains in intracellular membranes, including lipid and protein trafficking from the ER, Golgi bodies, and endosomes to the PM, and we examine lipid raft involvement in the production and composition of EVs. Because lipid rafts are small and transient, visualization remains challenging. Future work with advanced techniques will continue to expand our knowledge about the roles of lipid rafts in cellular functioning. Full Article
cell Lipid rafts in glial cells: role in neuroinflammation and pain processing [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions. Full Article
cell Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy. Full Article
cell Commentary on SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect fatty acid translocation [Commentaries] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Full Article
cell GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells [Images In Lipid Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Full Article
cell Noncatalytic Bruton's tyrosine kinase activates PLC{gamma}2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells [Membrane Biology] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+]i), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+]i. Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs. Full Article
cell ER stress increases store-operated Ca2+ entry (SOCE) and augments basal insulin secretion in pancreatic beta cells [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Type 2 diabetes mellitus (T2DM) is characterized by impaired glucose-stimulated insulin secretion and increased peripheral insulin resistance. Unremitting endoplasmic reticulum (ER) stress can lead to beta-cell apoptosis and has been linked to type 2 diabetes. Although many studies have attempted to link ER stress and T2DM, the specific effects of ER stress on beta-cell function remain incompletely understood. To determine the interrelationship between ER stress and beta-cell function, here we treated insulin-secreting INS-1(832/13) cells or isolated mouse islets with the ER stress–inducer tunicamycin (TM). TM induced ER stress as expected, as evidenced by activation of the unfolded protein response. Beta cells treated with TM also exhibited concomitant alterations in their electrical activity and cytosolic free Ca2+ oscillations. As ER stress is known to reduce ER Ca2+ levels, we tested the hypothesis that the observed increase in Ca2+ oscillations occurred because of reduced ER Ca2+ levels and, in turn, increased store-operated Ca2+ entry. TM-induced cytosolic Ca2+ and membrane electrical oscillations were acutely inhibited by YM58483, which blocks store-operated Ca2+ channels. Significantly, TM-treated cells secreted increased insulin under conditions normally associated with only minimal release, e.g. 5 mm glucose, and YM58483 blocked this secretion. Taken together, these results support a critical role for ER Ca2+ depletion–activated Ca2+ current in mediating Ca2+-induced insulin secretion in response to ER stress. Full Article
cell Delineating an extracellular redox-sensitive module in T-type Ca2+ channels [Membrane Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 T-type (Cav3) Ca2+ channels are important regulators of excitability and rhythmic activity of excitable cells. Among other voltage-gated Ca2+ channels, Cav3 channels are uniquely sensitive to oxidation and zinc. Using recombinant protein expression in HEK293 cells, patch clamp electrophysiology, site-directed mutagenesis, and homology modeling, we report here that modulation of Cav3.2 by redox agents and zinc is mediated by a unique extracellular module containing a high-affinity metal-binding site formed by the extracellular IS1–IS2 and IS3–IS4 loops of domain I and a cluster of extracellular cysteines in the IS1–IS2 loop. Patch clamp recording of recombinant Cav3.2 currents revealed that two cysteine-modifying agents, sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES) and N-ethylmaleimide, as well as a reactive oxygen species–producing neuropeptide, substance P (SP), inhibit Cav3.2 current to similar degrees and that this inhibition is reversed by a reducing agent and a zinc chelator. Pre-application of MTSES prevented further SP-mediated current inhibition. Substitution of the zinc-binding residue His191 in Cav3.2 reduced the channel's sensitivity to MTSES, and introduction of the corresponding histidine into Cav3.1 sensitized it to MTSES. Removal of extracellular cysteines from the IS1–IS2 loop of Cav3.2 reduced its sensitivity to MTSES and SP. We hypothesize that oxidative modification of IS1–IS2 loop cysteines induces allosteric changes in the zinc-binding site of Cav3.2 so that it becomes sensitive to ambient zinc. Full Article
cell Overexpression of GPR40 in Pancreatic {beta}-Cells Augments Glucose Stimulated Insulin Secretion and Improves Glucose Tolerance in Normal and Diabetic Mice By diabetes.diabetesjournals.org Published On :: 2009-02-10T11:50:44-08:00 Objective: GPR40 is a G protein-coupled receptor regulating free fatty acid-induced insulin secretion. We have generated transgenic mice overexpressing the human GPR40 gene (hGPR40-Tg) under control of the mouse insulin II promoter and have used them to examine the role of GPR40 in the regulation of insulin secretion and glucose homeostasis. Research Design and Methods: Normal (C57BL/6J) and diabetic (KK) mice overexpressing the human GPR40 gene under control of the insulin II promoter were generated, and their glucose metabolism and islet function were analyzed. Results: In comparison with nontransgenic littermates, hGPR40-Tg mice exhibited improved oral glucose tolerance with an increase in insulin secretion. Although islet morphological analysis showed no obvious differences between hGPR40-Tg and nontransgenic (NonTg) mice, isolated islets from hGPR40-Tg mice enhanced insulin secretion in response to high glucose (16 mM) than those from NonTg mice with unchanged low glucose (3 mM)-stimulated insulin secretion. In addition, hGPR40-Tg islets significantly increased insulin secretion against a naturally occurring agonist palmitate in the presence of 11 mM glucose. hGPR40-Tg mice were also found to be resistant to high fat diet-induced glucose intolerance, and hGPR40-Tg harboring KK mice showed augmented insulin secretion and improved oral glucose tolerance compared to nontransgenic littermates. Conclusions: Our results suggest that GPR40 may have a role in regulating glucose-stimulated insulin secretion and plasma glucose levels in vivo, and that pharmacological activation of GPR40 may provide a novel insulin secretagogue beneficial for the treatment of type 2 diabetes. Full Article
cell Adipose Triglyceride Lipase is a Key Lipase for the Mobilization of Lipid Droplets in Human Beta Cells and Critical for the Maintenance of Syntaxin1a Level in Beta Cells By diabetes.diabetesjournals.org Published On :: 2020-03-31T14:12:19-07:00 Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse beta cells, LDs are prominent in human beta cells, however, the regulation of LD mobilization (lipolysis) in human beta cells remains unclear. We found that glucose increases lipolysis in non-diabetic human islets, but not in type 2 diabetic (T2D) islets, indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets (shATGL) increased triglycerides, and the number and size of LDs indicating that ATGL is the principal lipase in human beta cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS) and insulin secretion to IBMX and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL deficient INS1 cells and human pseudoislets showed reduced Stx1a, a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human beta cells and supports insulin secretion by stabilizing Stx1a. The dysregulated lipolysis may contribute to LD accumulation and beta cell dysfunction in T2D islets. Full Article
cell Adipose Triglyceride Lipase is a Key Lipase for the Mobilization of Lipid Droplets in Human Beta Cells and Critical for the Maintenance of Syntaxin1a Level in Beta Cells By diabetes.diabetesjournals.org Published On :: 2020-04-20T08:51:08-07:00 Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse beta cells, LDs are prominent in human beta cells, however, the regulation of LD mobilization (lipolysis) in human beta cells remains unclear. We found that glucose increases lipolysis in non-diabetic human islets, but not in type 2 diabetic (T2D) islets, indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets (shATGL) increased triglycerides, and the number and size of LDs indicating that ATGL is the principal lipase in human beta cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS) and insulin secretion to IBMX and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL deficient INS1 cells and human pseudoislets showed reduced Stx1a, a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human beta cells and supports insulin secretion by stabilizing Stx1a. The dysregulated lipolysis may contribute to LD accumulation and beta cell dysfunction in T2D islets. Full Article
cell Coregulator Sin3a Promotes Postnatal Murine {beta}-Cell Fitness by Regulating Genes in Ca2+ Homeostasis, Cell Survival, Vesicle Biosynthesis, Glucose Metabolism, and Stress Response By diabetes.diabetesjournals.org Published On :: 2020-04-21T12:16:29-07:00 Swi-independent 3a and 3b (Sin3a and Sin3b) are paralogous transcriptional coregulators that direct cellular differentiation, survival, and function. Here, we report that mouse Sin3a and Sin3b are co-produced in most pancreatic cells during embryogenesis but become much more enriched in endocrine cells in adults, implying continued essential roles in mature endocrine-cell function. Mice with loss of Sin3a in endocrine progenitors were normal during early postnatal stages but gradually developed diabetes before weaning. These physiological defects were preceded by the compromised survival, insulin-vesicle packaging, insulin secretion, and nutrient-induced Ca2+ influx of Sin3a-deficient β-cells. RNA-seq coupled with candidate chromatin-immunoprecipitation assays revealed several genes that could be directly regulated by Sin3a in β-cells, which modulate Ca2+/ion transport, cell survival, vesicle/membrane trafficking, glucose metabolism, and stress responses. Lastly, mice with loss of both Sin3a and Sin3b in multipotent embryonic pancreatic progenitors had significantly reduced islet-cell mass at birth, caused by decreased endocrine-progenitor production and increased β-cell death. These findings highlight the stage-specific requirements for the presumed "general" coregulators Sin3a and Sin3b in islet β-cells, with Sin3a being dispensable for differentiation but required for postnatal function and survival. Full Article
cell Excitotoxicity and Overnutrition Additively Impair Metabolic Function and Identity of Pancreatic {beta}-cells By diabetes.diabetesjournals.org Published On :: 2020-04-24T09:55:27-07:00 A sustained increase in intracellular Ca2+ concentration (referred to herein as excitotoxicity), brought on by chronic metabolic stress, may contribute to pancreatic β-cell failure. To determine the additive effects of excitotoxicity and overnutrition on β-cell function and gene expression, we analyzed the impact of a high fat diet (HFD) on Abcc8 knock-out mice. Excitotoxicity caused β-cells to be more susceptible to HFD-induced impairment of glucose homeostasis, and these effects were mitigated by verapamil, a Ca2+ channel blocker. Excitotoxicity, overnutrition and the combination of both stresses caused similar but distinct alterations in the β-cell transcriptome, including additive increases in genes associated with mitochondrial energy metabolism, fatty acid β-oxidation and mitochondrial biogenesis, and their key regulator Ppargc1a. Overnutrition worsened excitotoxicity-induced mitochondrial dysfunction, increasing metabolic inflexibility and mitochondrial damage. In addition, excitotoxicity and overnutrition, individually and together, impaired both β-cell function and identity by reducing expression of genes important for insulin secretion, cell polarity, cell junction, cilia, cytoskeleton, vesicular trafficking, and regulation of β-cell epigenetic and transcriptional program. Sex had an impact on all β-cell responses, with male animals exhibiting greater metabolic stress-induced impairments than females. Together, these findings indicate that a sustained increase in intracellular Ca2+, by altering mitochondrial function and impairing β-cell identity, augments overnutrition-induced β-cell failure. Full Article
cell Revisiting Proinsulin Processing: Evidence That Human {beta}-Cells Process Proinsulin With Prohormone Convertase (PC) 1/3 But Not PC2 By diabetes.diabetesjournals.org Published On :: 2020-04-24T11:09:35-07:00 Insulin is first produced in pancreatic β-cells as the precursor prohormone proinsulin. Defective proinsulin processing has been implicated in the pathogenesis of both type 1 and type 2 diabetes. Though there is substantial evidence that mouse β-cells process proinsulin using prohormone convertase 1/3 (PC1/3) then prohormone convertase 2 (PC2), this finding has not been verified in human β-cells. Immunofluorescence with validated antibodies reveals that there was no detectable PC2 immunoreactivity in human β-cells and little PCSK2 mRNA by in situ hybridization. Similarly, rat β-cells were not immunoreactive for PC2. In all histological experiments, PC2 immunoreactivity in neighbouring α-cells acts as a positive control. In donors with type 2 diabetes, β-cells had elevated PC2 immunoreactivity, suggesting that aberrant PC2 expression may contribute to impaired proinsulin processing in β-cells of patients with diabetes. To support histological findings using a biochemical approach, human islets were used for pulse-chase experiments. Despite inhibition of PC2 function by temperature blockade, brefeldin-A, chloroquine, and multiple inhibitors that blocked production of mature glucagon from proglucagon, β-cells retained the ability to produce mature insulin. Conversely, suppression of PC1/3 blocked processing of proinsulin but not proglucagon. By demonstrating that healthy human β-cells process proinsulin by PC1/3 but not PC2 we suggest that there is a need to revise the longstanding theory of proinsulin processing. Full Article
cell Hybrid Insulin Peptides are Recognized by Human T Cells in the Context of DRB1*04:01 By diabetes.diabetesjournals.org Published On :: 2020-04-24T13:05:31-07:00 T cells isolated from the pancreatic infiltrates of non-obese diabetic mice have been shown to recognize epitopes formed by the covalent cross-linking of proinsulin and secretory granule peptides. Formation of such hybrid insulin peptides (HIPs) was confirmed through mass spectrometry and responses to HIPs were observed among the islet-infiltrating T cells of pancreatic organ donors and in the peripheral blood of individuals with type 1 diabetes (T1D). However, questions remain about the prevalence of HIP-specific T cells in humans, the sequences they recognize, and their role in disease. We identified six novel HIPs that are recognized in the context of DRB1*04:01, discovered by utilizing a library of theoretical HIP sequences derived from insulin fragments covalently linked to one another or to fragments of secretory granule proteins or other islet-derived proteins. We demonstrate that T cells that recognize these HIPs are detectable in the peripheral blood of subjects with T1D and exhibit an effector memory phenotype. HIP-reactive T cell clones produced Th1-associated cytokines and proliferated in response to human islet preparations. These results support the relevance of HIPs in human disease, further establishing a novel post-translational modification that may contribute to the loss of peripheral tolerance in T1D. Full Article
cell Hyperuricemia Predisposes to the Onset of Diabetes via Promoting Pancreatic {beta}-Cell Death in Uricase Deficiency Male Mice By diabetes.diabetesjournals.org Published On :: 2020-04-24T13:05:31-07:00 Clinical studies have shown a link between hyperuricemia (HU) and diabetes, while the exact effect of soluble serum urate on glucose metabolism remains elusive. This study aims to characterize the glucose metabolic phenotypes and investigate the underlying molecular mechanisms using a novel spontaneous HU mouse model in which the Uricase (Uox) gene is absent. In an attempt to study the role of HU in glycometabolism, we implemented external stimulation on Uox-knockout (KO) and wild-type (WT) males with a high-fat diet (HFD) and/or injections of multiple low-dose streptozotocin (MLD-STZ) to provoke the potential role of urate. Notably, while Uox-KO mice developed glucose intolerance in the basal condition, no mice spontaneously developed diabetes, even with aging. HFD-fed Uox-KO mice manifested similar insulin sensitivity compared with WT controls. HU augmented the existing glycometabolism abnormality induced by MLD-STZ and eventually led to diabetes, as evidenced by the increased random glucose. Reduced β-cell masses and increased terminal deoxynucleotidyl TUNEL-positive β-cells suggested that HU-mediated diabetes was cell death dependent. However, urate-lowering treatment (ULT) cannot ameliorate the diabetes incidence or reverse β-cell apoptosis with significance. ULT displayed a significant therapeutic effect of HU-crystal– associated kidney injury and tubulointerstitial damage in diabetes. Moreover, we present transcriptomic analysis of isolated islets, using Uox-KO versus WT mice and streptozotocin-induced diabetic WT (STZ-WT) versus diabetic Uox-KO (STZ-KO) mice. Shared differentially expressed genes of HU primacy revealed Stk17β is a possible target gene in HU-related β-cell death. Together, this study suggests that HU accelerates but does not cause diabetes by inhibiting islet β-cell survival. Full Article
cell Lactogens Reduce Endoplasmic Reticulum Stress-induced Rodent and Human {beta}-cell Death and Diabetes Incidence in Akita Mice By diabetes.diabetesjournals.org Published On :: 2020-04-24T14:58:49-07:00 Diabetes occurs due to a loss of functional β-cells, resulting from β-cell death and dysfunction. Lactogens protect rodent and human β-cells in vitro and in vivo against triggers of β-cell cytotoxicity relevant to diabetes, many of which converge onto a common pathway, endoplasmic reticulum (ER) stress. However, whether lactogens modulate the ER stress pathway is unknown. This study examines if lactogens can protect β-cells against ER stress and mitigate diabetes incidence in Akita mice, a rodent model of ER stress-induced diabetes, akin to neonatal diabetes in humans. We show that lactogens protect INS1 cells, primary rodent and human β-cells in vitro against two distinct ER stressors, tunicamycin and thapsigargin, through activation of the JAK2/STAT5 pathway. Lactogens mitigate expression of pro-apoptotic molecules in the ER stress pathway that are induced by chronic ER stress in INS1 cells and rodent islets. Transgenic expression of placental lactogen in β-cells of Akita mice drastically reduces the severe hyperglycemia, diabetes incidence, hypoinsulinemia, β-cell death, and loss of β-cell mass observed in Akita littermates. These are the first studies in any cell type demonstrating lactogens modulate the ER stress pathway, causing enhanced β-cell survival and reduced diabetes incidence in the face of chronic ER stress. Full Article
cell TWIST1-Reprogrammed Endothelial Cell Transplantation Potentiates Neovascularization-Mediated Diabetic Wound Tissue Regeneration By diabetes.diabetesjournals.org Published On :: 2020-04-24T20:01:59-07:00 Hypo-vascularised diabetic non-healing wounds are due to reduced number and impaired physiology of endogenous endothelial progenitor cell (EPC) population that, limits their recruitment and mobilization at the wound site. To enrich the EPC repertoire from non-endothelial precursors, abundantly available mesenchymal stromal cells (MSCs) were reprogrammed into induced-endothelial cells (iECs). We identified cell signaling molecular targets by meta-analysis of microarray datasets. BMP-2 induction leads to the expression of inhibitory Smad 6/7-dependent negative transcriptional regulation of ID1, rendering the latter's reduced binding to TWIST1 during transdifferentiation of WJ-MSC into iEC. TWIST1, in turn, regulates endothelial genes transcription, positively of pro-angiogenic-KDR and negatively, in part, of anti-angiogenic-SFRP4. Twist1 reprogramming enhanced the endothelial lineage commitment of WJ-MSC, increased the vasculogenic potential of reprogrammed EC (rEC). Transplantation of stable TWIST1-rECs into full-thickness type 1 and 2 diabetic-splinted wound healing murine model enhanced the microcirculatory blood flow and accelerated the wound tissue regeneration. An increased or decreased co-localization of GFP with KDR/SFRP4 and CD31 in the regenerated diabetic wound bed with TWIST1 overexpression or silencing (piLenti-TWIST1-shRNA-GFP), respectively further confirmed improved neovascularization. This study depicted the reprogramming of WJ-MSCs into rECs using unique transcription factors, TWIST1 for an efficacious cell transplantation therapy to induce neovascularization–mediated diabetic wound tissue regeneration. Full Article
cell Potential Protection Against Type 2 Diabetes in Obesity Through Lower CD36 Expression and Improved Exocytosis in {beta}-Cells By diabetes.diabetesjournals.org Published On :: 2020-04-27T15:42:34-07:00 Obesity is a risk factor for type 2 diabetes (T2D), however not all obese individuals develop the disease. In this study, we aimed to investigate the cause of differential insulin secretion capacity of pancreatic islets from T2D and non-T2D (ND) especially obese donors (BMI ≥30 kg/m2). Islets from obese T2D donors had reduced insulin secretion, decreased β-cell exocytosis and higher expression of fatty acid translocase CD36. We tested the hypothesis that CD36 is a key molecule in the reduced insulin secretion capacity. Indeed, CD36 overexpression led to decreased insulin secretion, impaired exocytosis and reduced granule docking. This was accompanied with reduced expression of the exocytotic proteins, SNAP25, STXBP1 and VAMP2, likely because CD36 induced down-regulation of the IRS proteins, suppressed insulin signaling PI3K-AKT pathway and increased nuclear localization of the transcription factor FoxO1. CD36 antibody treatment of the human β-cell line, EndoC-βH1, increased IRS1 and exocytotic protein levels, improved granule docking and enhanced insulin secretion. Our results demonstrate that β-cells from obese T2D donors have dysfunctional exocytosis likely due to an abnormal lipid handling represented by differential CD36 expression. Hence, CD36 could be a key molecule to limit β-cell function in T2D associated with obesity. Full Article
cell Dextran Sulfate Protects Pancreatic {beta}-Cells, Reduces Autoimmunity and Ameliorates Type 1 Diabetes By diabetes.diabetesjournals.org Published On :: 2020-05-07T07:53:04-07:00 A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low molecular weight dextran sulfate (DS) is a sulfated semi-synthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties in vitro. However, whether DS can protect pancreatic β-cells, reduce autoimmunity and ameliorate T1D is unknown. Here we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity in vitro. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a pro-inflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in pre-diabetic non-obese diabetic (NOD) mice, and most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/heparan sulfate proteoglycan (HSPG) expression and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory co-stimulatory molecule programmed death-1 (PD-1) in T-cells, reduces interferon-+ CD4+ and CD8+ T-cells and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation and immunomodulation can reverse diabetes in NOD mice highlighting its therapeutic potential for the treatment of T1D. Full Article
cell Nutrient-Induced Metabolic Stress, Adaptation, Detoxification, and Toxicity in the Pancreatic {beta}-Cell By diabetes.diabetesjournals.org Published On :: 2020-02-20T11:55:30-08:00 Paraphrasing the Swiss physician and father of toxicology Paracelsus (1493–1541) on chemical agents used as therapeutics, "the dose makes the poison," it is now realized that this aptly applies to the calorigenic nutrients. The case here is the pancreatic islet β-cell presented with excessive levels of nutrients such as glucose, lipids, and amino acids. The short-term effects these nutrients exert on the β-cell are enhanced insulin biosynthesis and secretion and changes in glucose sensitivity. However, chronic fuel surfeit triggers additional compensatory and adaptive mechanisms by β-cells to cope with the increased insulin demand or to protect itself. When these mechanisms fail, toxicity due to the nutrient surplus ensues, leading to β-cell dysfunction, dedifferentiation, and apoptosis. The terms glucotoxicity, lipotoxicity, and glucolipotoxicity have been widely used, but there is some confusion as to what they mean precisely and which is most appropriate for a given situation. Here we address the gluco-, lipo-, and glucolipo-toxicities in β-cells by assessing the evidence both for and against each of them. We also discuss potential mechanisms and defend the view that many of the identified "toxic" effects of nutrient excess, which may also include amino acids, are in fact beneficial adaptive processes. In addition, candidate fuel-excess detoxification pathways are evaluated. Finally, we propose that a more general term should be used for the in vivo situation of overweight-associated type 2 diabetes reflecting both the adaptive and toxic processes to mixed calorigenic nutrients excess: "nutrient-induced metabolic stress" or, in brief, "nutri-stress." Full Article
cell Glucolipotoxicity, {beta}-Cells, and Diabetes: The Emperor Has No Clothes By diabetes.diabetesjournals.org Published On :: 2020-02-20T11:55:30-08:00 Reduction of β-cell mass and function is central to the pathogenesis of type 2 diabetes. The terms glucotoxicity, lipotoxicity, and glucolipotoxicity are used to describe potentially responsible processes. The premise is that chronically elevated glucose levels are toxic to β-cells, that elevated lipid levels in the form of circulating free fatty acids (FFA) also have toxic effects, and that the combination of the two, glucolipotoxicity, is particularly harmful. Much work has shown that high concentrations of FFA can be very damaging to β-cells when used for in vitro experiments, and when infused in large amounts in humans and rodents they produce suppression of insulin secretion. The purpose of this Perspective is to raise doubts about whether the FFA levels found in real-life situations are ever high enough to cause problems. Evidence supporting the importance of glucotoxicity is strong because there is such a tight correlation between defective insulin secretion and rising glucose levels. However, there is virtually no convincing evidence that the alterations in FFA levels occurring during progression to diabetes are pathogenic. Thus, the terms lipotoxicity and glucolipotoxicity should be used with great caution, if at all, because evidence supporting their importance has not yet emerged. Full Article
cell Stress-Induced Translational Regulation Mediated by RNA Binding Proteins: Key Links to {beta}-Cell Failure in Diabetes By diabetes.diabetesjournals.org Published On :: 2020-03-20T11:50:28-07:00 In type 2 diabetes, β-cells endure various forms of cellular stress, including oxidative stress and endoplasmic reticulum stress, secondary to increased demand for insulin production and extracellular perturbations, including hyperglycemia. Chronic exposure to stress causes impaired insulin secretion, apoptosis, and loss of cell identity, and a combination of these processes leads to β-cell failure and severe hyperglycemia. Therefore, a better understanding of the molecular mechanisms underlying stress responses in β-cells promises to reveal new therapeutic opportunities for type 2 diabetes. In this perspective, we discuss posttranscriptional control of gene expression as a critical, but underappreciated, layer of regulation with broad importance during stress responses. Specifically, regulation of mRNA translation occurs pervasively during stress to activate gene expression programs; however, the convenience of RNA sequencing has caused translational regulation to be overlooked compared with transcriptional controls. We highlight the role of RNA binding proteins in shaping selective translational regulation during stress and the mechanisms underlying this level of regulation. A growing body of evidence indicates that RNA binding proteins control an array of processes in β-cells, including the synthesis and secretion of insulin. Therefore, systematic evaluations of translational regulation and the upstream factors shaping this level of regulation are critical areas of investigation to expand our understanding of β-cell failure in type 2 diabetes. Full Article
cell The FKH domain in FOXP3 mRNA frequently contains mutations in hepatocellular carcinoma that influence the subcellular localization and functions of FOXP3 [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 The transcription factor forkhead box P3 (FOXP3) is a biomarker for regulatory T cells and can also be expressed in cancer cells, but its function in cancer appears to be divergent. The role of hepatocyte-expressed FOXP3 in hepatocellular carcinoma (HCC) is unknown. Here, we collected tumor samples and clinical information from 115 HCC patients and used five human cancer cell lines. We examined FOXP3 mRNA sequences for mutations, used a luciferase assay to assess promoter activities of FOXP3's target genes, and employed mouse tumor models to confirm in vitro results. We detected mutations in the FKH domain of FOXP3 mRNAs in 33% of the HCC tumor tissues, but in none of the adjacent nontumor tissues. None of the mutations occurred at high frequency, indicating that they occurred randomly. Notably, the mutations were not detected in the corresponding regions of FOXP3 genomic DNA, and many of them resulted in amino acid substitutions in the FKH region, altering FOXP3's subcellular localization. FOXP3 delocalization from the nucleus to the cytoplasm caused loss of transcriptional regulation of its target genes, inactivated its tumor-inhibitory capability, and changed cellular responses to histone deacetylase (HDAC) inhibitors. More complex FKH mutations appeared to be associated with worse prognosis in HCC patients. We conclude that mutations in the FKH domain of FOXP3 mRNA frequently occur in HCC and that these mutations are caused by errors in transcription and are not derived from genomic DNA mutations. Our results suggest that transcriptional mutagenesis of FOXP3 plays a role in HCC. Full Article
cell Cell-specific expression of the transcriptional regulator RHAMM provides a timing mechanism that controls appropriate wound re-epithelialization [Glycobiology and Extracellular Matrices] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Prevention of aberrant cutaneous wound repair and appropriate regeneration of an intact and functional integument require the coordinated timing of fibroblast and keratinocyte migration. Here, we identified a mechanism whereby opposing cell-specific motogenic functions of a multifunctional intracellular and extracellular protein, the receptor for hyaluronan-mediated motility (RHAMM), coordinates fibroblast and keratinocyte migration speed and ensures appropriate timing of excisional wound closure. We found that, unlike in WT mice, in Rhamm-null mice, keratinocyte migration initiates prematurely in the excisional wounds, resulting in wounds that have re-surfaced before the formation of normal granulation tissue, leading to a defective epidermal architecture. We also noted aberrant keratinocyte and fibroblast migration in the Rhamm-null mice, indicating that RHAMM suppresses keratinocyte motility but increases fibroblast motility. This cell context–dependent effect resulted from cell-specific regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation and expression of a RHAMM target gene encoding matrix metalloprotease 9 (MMP-9). In fibroblasts, RHAMM promoted ERK1/2 activation and MMP-9 expression, whereas in keratinocytes, RHAMM suppressed these activities. In keratinocytes, loss of RHAMM function or expression promoted epidermal growth factor receptor–regulated MMP-9 expression via ERK1/2, which resulted in cleavage of the ectodomain of the RHAMM partner protein CD44 and thereby increased keratinocyte motility. These results identify RHAMM as a key factor that integrates the timing of wound repair by controlling cell migration. Full Article
cell Proline-rich 11 (PRR11) drives F-actin assembly by recruiting the actin-related protein 2/3 complex in human non-small cell lung carcinoma [DNA and Chromosomes] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 The actin cytoskeleton is extremely dynamic and supports diverse cellular functions in many physiological and pathological processes, including tumorigenesis. However, the mechanisms that regulate the actin-related protein 2/3 (ARP2/3) complex and thereby promote actin polymerization and organization in cancer cells are not well-understood. We previously implicated the proline-rich 11 (PRR11) protein in lung cancer development. In this study, using immunofluorescence staining, actin polymerization assays, and siRNA-mediated gene silencing, we uncovered that cytoplasmic PRR11 is involved in F-actin polymerization and organization. We found that dysregulation of PRR11 expression results in F-actin rearrangement and nuclear instability in non-small cell lung cancer cells. Results from molecular mechanistic experiments indicated that PRR11 associates with and recruits the ARP2/3 complex, facilitates F-actin polymerization, and thereby disrupts the F-actin cytoskeleton, leading to abnormal nuclear lamina assembly and chromatin reorganization. Inhibition of the ARP2/3 complex activity abolished irregular F-actin polymerization, lamina assembly, and chromatin reorganization due to PRR11 overexpression. Notably, experiments with truncated PRR11 variants revealed that PRR11 regulates F-actin through different regions. We found that deletion of either the N or C terminus of PRR11 abrogates its effects on F-actin polymerization and nuclear instability and that deletion of amino acid residues 100–184 or 100–200 strongly induces an F-actin structure called the actin comet tail, not observed with WT PRR11. Our findings indicate that cytoplasmic PRR11 plays an essential role in regulating F-actin assembly and nuclear stability by recruiting the ARP2/3 complex in human non-small cell lung carcinoma cells. Full Article
cell S-Palmitoylation of the sodium channel Nav1.6 regulates its activity and neuronal excitability [Cell Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 S-Palmitoylation is a reversible post-translational lipid modification that dynamically regulates protein functions. Voltage-gated sodium channels are subjected to S-palmitoylation and exhibit altered functions in different S-palmitoylation states. Our aim was to investigate whether and how S-palmitoylation regulates Nav1.6 channel function and to identify S-palmitoylation sites that can potentially be pharmacologically targeted. Acyl-biotin exchange assay showed that Nav1.6 is modified by S-palmitoylation in the mouse brain and in a Nav1.6 stable HEK 293 cell line. Using whole-cell voltage clamp, we discovered that enhancing S-palmitoylation with palmitic acid increases Nav1.6 current, whereas blocking S-palmitoylation with 2-bromopalmitate reduces Nav1.6 current and shifts the steady-state inactivation in the hyperpolarizing direction. Three S-palmitoylation sites (Cys1169, Cys1170, and Cys1978) were identified. These sites differentially modulate distinct Nav1.6 properties. Interestingly, Cys1978 is exclusive to Nav1.6 among all Nav isoforms and is evolutionally conserved in Nav1.6 among most species. Cys1978 S-palmitoylation regulates current amplitude uniquely in Nav1.6. Furthermore, we showed that eliminating S-palmitoylation at specific sites alters Nav1.6-mediated excitability in dorsal root ganglion neurons. Therefore, our study reveals S-palmitoylation as a potential isoform-specific mechanism to modulate Nav activity and neuronal excitability in physiological and diseased conditions. Full Article
cell Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes [Cell Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 The developing nervous system is remarkably sensitive to environmental signals, including disruptive toxins, such as polybrominated diphenyl ethers (PBDEs). PBDEs are an environmentally pervasive class of brominated flame retardants whose neurodevelopmental toxicity mechanisms remain largely unclear. Using dissociated cortical neurons from embryonic Rattus norvegicus, we found here that chronic exposure to 6-OH–BDE-47, one of the most prevalent hydroxylated PBDE metabolites, suppresses both spontaneous and evoked neuronal electrical activity. On the basis of our previous work on mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) (MEK) biology and our observation that 6-OH–BDE-47 is structurally similar to kinase inhibitors, we hypothesized that certain hydroxylated PBDEs mediate neurotoxicity, at least in part, by impairing the MEK–ERK axis of MAPK signal transduction. We tested this hypothesis on three experimental platforms: 1) in silico, where modeling ligand–protein docking suggested that 6-OH–BDE-47 is a promiscuous ATP-competitive kinase inhibitor; 2) in vitro in dissociated neurons, where 6-OH–BDE-47 and another specific hydroxylated BDE metabolite similarly impaired phosphorylation of MEK/ERK1/2 and activity-induced transcription of a neuronal immediate early gene; and 3) in vivo in Drosophila melanogaster, where developmental exposures to 6-OH–BDE-47 and a MAPK inhibitor resulted in offspring displaying similarly increased frequency of mushroom-body β–lobe midline crossing, a metric of axonal guidance. Taken together, our results support that certain ortho-hydroxylated PBDE metabolites are promiscuous kinase inhibitors and can cause disruptions of critical neurodevelopmental processes, including neuronal electrical activity, pre-synaptic functions, MEK–ERK signaling, and axonal guidance. Full Article
cell Catabolic degradation of endothelial VEGFA via autophagy [Glycobiology and Extracellular Matrices] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Extracellular matrix-evoked angiostasis and autophagy within the tumor microenvironment represent two critical, but unconnected, functions of the small leucine-rich proteoglycan, decorin. Acting as a partial agonist of vascular endothelial growth factor 2 (VEGFR2), soluble decorin signals via the energy sensing protein, AMP-activated protein kinase (AMPK), in the autophagic degradation of intracellular vascular endothelial growth factor A (VEGFA). Here, we discovered that soluble decorin evokes intracellular catabolism of endothelial VEGFA that is mechanistically independent of mTOR, but requires an autophagic regulator, paternally expressed gene 3 (PEG3). We found that administration of autophagic inhibitors such as chloroquine or bafilomycin A1, or depletion of autophagy-related 5 (ATG5), results in accumulation of intracellular VEGFA, indicating that VEGFA is a basal autophagic substrate. Mechanistically, decorin increased the VEGFA clearance rate by augmenting autophagic flux, a process that required RAB24 member RAS oncogene family (RAB24), a small GTPase that facilitates the disposal of autophagic compartments. We validated these findings by demonstrating the physiological relevance of this process in vivo. Mice starved for 48 h exhibited a sharp decrease in overall cardiac and aortic VEGFA that could be blocked by systemic chloroquine treatment. Thus, our findings reveal a unified mechanism for the metabolic control of endothelial VEGFA for autophagic clearance in response to decorin and canonical pro-autophagic stimuli. We posit that the VEGFR2/AMPK/PEG3 axis integrates the anti-angiogenic and pro-autophagic bioactivities of decorin as the molecular basis for tumorigenic suppression. These results support future therapeutic use of decorin as a next-generation protein therapy to combat cancer. Full Article
cell Prominins control ciliary length throughout the animal kingdom: New lessons from human prominin-1 and zebrafish prominin-3 [Cell Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Prominins (proms) are transmembrane glycoproteins conserved throughout the animal kingdom. They are associated with plasma membrane protrusions, such as primary cilia, as well as extracellular vesicles derived thereof. Primary cilia host numerous signaling pathways affected in diseases known as ciliopathies. Human PROM1 (CD133) is detected in both somatic and cancer stem cells and is also expressed in terminally differentiated epithelial and photoreceptor cells. Genetic mutations in the PROM1 gene result in retinal degeneration by impairing the proper formation of the outer segment of photoreceptors, a modified cilium. Here, we investigated the impact of proms on two distinct examples of ciliogenesis. First, we demonstrate that the overexpression of a dominant-negative mutant variant of human PROM1 (i.e. mutation Y819F/Y828F) significantly decreases ciliary length in Madin–Darby canine kidney cells. These results contrast strongly to the previously observed enhancing effect of WT PROM1 on ciliary length. Mechanistically, the mutation impeded the interaction of PROM1 with ADP-ribosylation factor–like protein 13B, a key regulator of ciliary length. Second, we observed that in vivo knockdown of prom3 in zebrafish alters the number and length of monocilia in the Kupffer's vesicle, resulting in molecular and anatomical defects in the left-right asymmetry. These distinct loss-of-function approaches in two biological systems reveal that prom proteins are critical for the integrity and function of cilia. Our data provide new insights into ciliogenesis and might be of particular interest for investigations of the etiologies of ciliopathies. Full Article
cell DHHC7-mediated palmitoylation of the accessory protein barttin critically regulates the functions of ClC-K chloride channels [Cell Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Barttin is the accessory subunit of the human ClC-K chloride channels, which are expressed in both the kidney and inner ear. Barttin promotes trafficking of the complex it forms with ClC-K to the plasma membrane and is involved in activating this channel. Barttin undergoes post-translational palmitoylation that is essential for its functions, but the enzyme(s) catalyzing this post-translational modification is unknown. Here, we identified zinc finger DHHC-type containing 7 (DHHC7) protein as an important barttin palmitoyl acyltransferase, whose depletion affected barttin palmitoylation and ClC-K-barttin channel activation. We investigated the functional role of barttin palmitoylation in vivo in Zdhhc7−/− mice. Although palmitoylation of barttin in kidneys of Zdhhc7−/− animals was significantly decreased, it did not pathologically alter kidney structure and functions under physiological conditions. However, when Zdhhc7−/− mice were fed a low-salt diet, they developed hyponatremia and mild metabolic alkalosis, symptoms characteristic of human Bartter syndrome (BS) type IV. Of note, we also observed decreased palmitoylation of the disease-causing R8L barttin variant associated with human BS type IV. Our results indicate that dysregulated DHHC7-mediated barttin palmitoylation appears to play an important role in chloride channel dysfunction in certain BS variants, suggesting that targeting DHHC7 activity may offer a potential therapeutic strategy for reducing hypertension. Full Article
cell The cytochrome P450 enzyme CYP24A1 increases proliferation of mutant KRAS-dependent lung adenocarcinoma independent of its catalytic activity [Cell Biology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 We previously reported that overexpression of cytochrome P450 family 24 subfamily A member 1 (CYP24A1) increases lung cancer cell proliferation by activating RAS signaling and that CYP24A1 knockdown inhibits tumor growth. However, the mechanism of CYP24A1-mediated cancer cell proliferation remains unclear. Here, we conducted cell synchronization and biochemical experiments in lung adenocarcinoma cells, revealing a link between CYP24A1 and anaphase-promoting complex (APC), a key cell cycle regulator. We demonstrate that CYP24A1 expression is cell cycle–dependent; it was higher in the G2-M phase and diminished upon G1 entry. CYP24A1 has a functional destruction box (D-box) motif that allows binding with two APC adaptors, CDC20-homologue 1 (CDH1) and cell division cycle 20 (CDC20). Unlike other APC substrates, however, CYP24A1 acted as a pseudo-substrate, inhibiting CDH1 activity and promoting mitotic progression. Conversely, overexpression of a CYP24A1 D-box mutant compromised CDH1 binding, allowing CDH1 hyperactivation, thereby hastening degradation of its substrates cyclin B1 and CDC20, and accumulation of the CDC20 substrate p21, prolonging mitotic exit. These activities also occurred with a CYP24A1 isoform 2 lacking the catalytic cysteine (Cys-462), suggesting that CYP24A1's oncogenic potential is independent of its catalytic activity. CYP24A1 degradation reduced clonogenic survival of mutant KRAS-driven lung cancer cells, and calcitriol treatment increased CYP24A1 levels and tumor burden in Lsl-KRASG12D mice. These results disclose a catalytic activity-independent growth-promoting role of CYP24A1 in mutant KRAS-driven lung cancer. This suggests that CYP24A1 could be therapeutically targeted in lung cancers in which its expression is high. Full Article
cell Effects of deficiency in the RLBP1-encoded visual cycle protein CRALBP on visual dysfunction in humans and mice [Cell Biology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Mutations in retinaldehyde-binding protein 1 (RLBP1), encoding the visual cycle protein cellular retinaldehyde-binding protein (CRALBP), cause an autosomal recessive form of retinal degeneration. By binding to 11-cis-retinoid, CRALBP augments the isomerase activity of retinoid isomerohydrolase RPE65 (RPE65) and facilitates 11-cis-retinol oxidation to 11-cis-retinal. CRALBP also maintains the 11-cis configuration and protects against unwanted retinaldehyde activity. Studying a sibling pair that is compound heterozygous for mutations in RLBP1/CRALBP, here we expand the phenotype of affected individuals, elucidate a previously unreported phenotype in RLBP1/CRALBP carriers, and demonstrate consistencies between the affected individuals and Rlbp1/Cralbp−/− mice. In the RLBP1/CRALBP-affected individuals, nonrecordable rod-specific electroretinogram traces were recovered after prolonged dark adaptation. In ultrawide-field fundus images, we observed radially arranged puncta typical of RLBP1/CRALBP-associated disease. Spectral domain-optical coherence tomography (SD-OCT) revealed hyperreflective aberrations within photoreceptor-associated bands. In short-wavelength fundus autofluorescence (SW-AF) images, speckled hyperautofluorescence and mottling indicated macular involvement. In both the affected individuals and their asymptomatic carrier parents, reduced SW-AF intensities, measured as quantitative fundus autofluorescence (qAF), indicated chronic impairment in 11-cis-retinal availability and provided information on mutation severity. Hypertransmission of the SD-OCT signal into the choroid together with decreased near-infrared autofluorescence (NIR-AF) provided evidence for retinal pigment epithelial cell (RPE) involvement. In Rlbp1/Cralbp−/− mice, reduced 11-cis-retinal levels, qAF and NIR-AF intensities, and photoreceptor loss were consistent with the clinical presentation of the affected siblings. These findings indicate that RLBP1 mutations are associated with progressive disease involving RPE atrophy and photoreceptor cell degeneration. In asymptomatic carriers, qAF disclosed previously undetected visual cycle deficiency. Full Article
cell SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation [Protein Synthesis and Degradation] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 SUMOylation is a posttranslational modification (PTM) at a lysine residue and is crucial for the proper functions of many proteins, particularly of transcription factors, in various biological processes. Zinc finger homeobox 3 (ZFHX3), also known as AT motif-binding factor 1 (ATBF1), is a large transcription factor that is active in multiple pathological processes, including atrial fibrillation and carcinogenesis, and in circadian regulation and development. We have previously demonstrated that ZFHX3 is SUMOylated at three or more lysine residues. Here, we investigated which enzymes regulate ZFHX3 SUMOylation and whether SUMOylation modulates ZFHX3 stability and function. We found that SUMO1, SUMO2, and SUMO3 each are conjugated to ZFHX3. Multiple lysine residues in ZFHX3 were SUMOylated, but Lys-2806 was the major SUMOylation site, and we also found that it is highly conserved among ZFHX3 orthologs from different animal species. Using molecular analyses, we identified the enzymes that mediate ZFHX3 SUMOylation; these included SUMO1-activating enzyme subunit 1 (SAE1), an E1-activating enzyme; SUMO-conjugating enzyme UBC9 (UBC9), an E2-conjugating enzyme; and protein inhibitor of activated STAT2 (PIAS2), an E3 ligase. Multiple analyses established that both SUMO-specific peptidase 1 (SENP1) and SENP2 deSUMOylate ZFHX3. SUMOylation at Lys-2806 enhanced ZFHX3 stability by interfering with its ubiquitination and proteasomal degradation. Functionally, Lys-2806 SUMOylation enabled ZFHX3-mediated cell proliferation and xenograft tumor growth of the MDA-MB-231 breast cancer cell line. These findings reveal the enzymes involved in, and the functional consequences of, ZFHX3 SUMOylation, insights that may help shed light on ZFHX3's roles in various cellular and pathophysiological processes. Full Article
cell A flexible network of vimentin intermediate filaments promotes migration of amoeboid cancer cells through confined environments [Cell Biology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Tumor cells can spread to distant sites through their ability to switch between mesenchymal and amoeboid (bleb-based) migration. Because of this difference, inhibitors of metastasis must account for each migration mode. However, the role of vimentin in amoeboid migration has not been determined. Because amoeboid leader bleb–based migration (LBBM) occurs in confined spaces and vimentin is known to strongly influence cell-mechanical properties, we hypothesized that a flexible vimentin network is required for fast amoeboid migration. To this end, here we determined the precise role of the vimentin intermediate filament system in regulating the migration of amoeboid human cancer cells. Vimentin is a classic marker of epithelial-to-mesenchymal transition and is therefore an ideal target for a metastasis inhibitor. Using a previously developed polydimethylsiloxane slab–based approach to confine cells, RNAi-based vimentin silencing, vimentin overexpression, pharmacological treatments, and measurements of cell stiffness, we found that RNAi-mediated depletion of vimentin increases LBBM by ∼50% compared with control cells and that vimentin overexpression and simvastatin-induced vimentin bundling inhibit fast amoeboid migration and proliferation. Importantly, these effects were independent of changes in actomyosin contractility. Our results indicate that a flexible vimentin intermediate filament network promotes LBBM of amoeboid cancer cells in confined environments and that vimentin bundling perturbs cell-mechanical properties and inhibits the invasive properties of cancer cells. Full Article
cell The short variant of optic atrophy 1 (OPA1) improves cell survival under oxidative stress [Bioenergetics] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Optic atrophy 1 (OPA1) is a dynamin protein that mediates mitochondrial fusion at the inner membrane. OPA1 is also necessary for maintaining the cristae and thus essential for supporting cellular energetics. OPA1 exists as membrane-anchored long form (L-OPA1) and short form (S-OPA1) that lacks the transmembrane region and is generated by cleavage of L-OPA1. Mitochondrial dysfunction and cellular stresses activate the inner membrane–associated zinc metallopeptidase OMA1 that cleaves L-OPA1, causing S-OPA1 accumulation. The prevailing notion has been that L-OPA1 is the functional form, whereas S-OPA1 is an inactive cleavage product in mammals, and that stress-induced OPA1 cleavage causes mitochondrial fragmentation and sensitizes cells to death. However, S-OPA1 contains all functional domains of dynamin proteins, suggesting that it has a physiological role. Indeed, we recently demonstrated that S-OPA1 can maintain cristae and energetics through its GTPase activity, despite lacking fusion activity. Here, applying oxidant insult that induces OPA1 cleavage, we show that cells unable to generate S-OPA1 are more sensitive to this stress under obligatory respiratory conditions, leading to necrotic death. These findings indicate that L-OPA1 and S-OPA1 differ in maintaining mitochondrial function. Mechanistically, we found that cells that exclusively express L-OPA1 generate more superoxide and are more sensitive to Ca2+-induced mitochondrial permeability transition, suggesting that S-OPA1, and not L-OPA1, protects against cellular stress. Importantly, silencing of OMA1 expression increased oxidant-induced cell death, indicating that stress-induced OPA1 cleavage supports cell survival. Our findings suggest that S-OPA1 generation by OPA1 cleavage is a survival mechanism in stressed cells. Full Article
cell Inhibition of glycosphingolipid biosynthesis reverts multidrug resistance by differentially modulating ABC transporters in chronic myeloid leukemias [Cell Biology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Multidrug resistance (MDR) in cancer arises from cross-resistance to structurally- and functionally-divergent chemotherapeutic drugs. In particular, MDR is characterized by increased expression and activity of ATP-binding cassette (ABC) superfamily transporters. Sphingolipids are substrates of ABC proteins in cell signaling, membrane biosynthesis, and inflammation, for example, and their products can favor cancer progression. Glucosylceramide (GlcCer) is a ubiquitous glycosphingolipid (GSL) generated by glucosylceramide synthase, a key regulatory enzyme encoded by the UDP-glucose ceramide glucosyltransferase (UGCG) gene. Stressed cells increase de novo biosynthesis of ceramides, which return to sub-toxic levels after UGCG mediates incorporation into GlcCer. Given that cancer cells seem to mobilize UGCG and have increased GSL content for ceramide clearance, which ultimately contributes to chemotherapy failure, here we investigated how inhibition of GSL biosynthesis affects the MDR phenotype of chronic myeloid leukemias. We found that MDR is associated with higher UGCG expression and with a complex GSL profile. UGCG inhibition with the ceramide analog d-threo-1-(3,4,-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (EtDO-P4) greatly reduced GSL and monosialotetrahexosylganglioside levels, and co-treatment with standard chemotherapeutics sensitized cells to mitochondrial membrane potential loss and apoptosis. ABC subfamily B member 1 (ABCB1) expression was reduced, and ABCC-mediated efflux activity was modulated by competition with nonglycosylated ceramides. Consistently, inhibition of ABCC-mediated transport reduced the efflux of exogenous C6-ceramide. Overall, UGCG inhibition impaired the malignant glycophenotype of MDR leukemias, which typically overcomes drug resistance through distinct mechanisms. This work sheds light on the involvement of GSL in chemotherapy failure, and its findings suggest that targeted GSL modulation could help manage MDR leukemias. Full Article
cell Genetic lineage tracing with multiple DNA recombinases: A user's guide for conducting more precise cell fate mapping studies [Methods and Resources] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Site-specific recombinases, such as Cre, are a widely used tool for genetic lineage tracing in the fields of developmental biology, neural science, stem cell biology, and regenerative medicine. However, nonspecific cell labeling by some genetic Cre tools remains a technical limitation of this recombination system, which has resulted in data misinterpretation and led to many controversies in the scientific community. In the past decade, to enhance the specificity and precision of genetic targeting, researchers have used two or more orthogonal recombinases simultaneously for labeling cell lineages. Here, we review the history of cell-tracing strategies and then elaborate on the working principle and application of a recently developed dual genetic lineage-tracing approach for cell fate studies. We place an emphasis on discussing the technical strengths and caveats of different methods, with the goal to develop more specific and efficient tracing technologies for cell fate mapping. Our review also provides several examples for how to use different types of DNA recombinase–mediated lineage-tracing strategies to improve the resolution of the cell fate mapping in order to probe and explore cell fate–related biological phenomena in the life sciences. Full Article
cell Endorepellin evokes an angiostatic stress signaling cascade in endothelial cells [Glycobiology and Extracellular Matrices] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Endorepellin, the C-terminal fragment of the heparan sulfate proteoglycan perlecan, influences various signaling pathways in endothelial cells by binding to VEGFR2. In this study, we discovered that soluble endorepellin activates the canonical stress signaling pathway consisting of PERK, eIF2α, ATF4, and GADD45α. Specifically, endorepellin evoked transient activation of VEGFR2, which, in turn, phosphorylated PERK at Thr980. Subsequently, PERK phosphorylated eIF2α at Ser51, upregulating its downstream effector proteins ATF4 and GADD45α. RNAi-mediated knockdown of PERK or eIF2α abrogated the endorepellin-mediated up-regulation of GADD45α, the ultimate effector protein of this stress signaling cascade. To functionally validate these findings, we utilized an ex vivo model of angiogenesis. Exposure of the aortic rings embedded in 3D fibrillar collagen to recombinant endorepellin for 2–4 h activated PERK and induced GADD45α vis à vis vehicle-treated counterparts. Similar effects were obtained with the established cellular stress inducer tunicamycin. Notably, chronic exposure of aortic rings to endorepellin for 7–9 days markedly suppressed vessel sprouting, an angiostatic effect that was rescued by blocking PERK kinase activity. Our findings unravel a mechanism by which an extracellular matrix protein evokes stress signaling in endothelial cells, which leads to angiostasis. Full Article
cell The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis [Cell Biology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome–manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain–containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype. Full Article
cell Targeting the polyamine pathway—“a means” to overcome chemoresistance in triple-negative breast cancer [Cell Biology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Triple-negative breast cancer (TNBC) is characterized by its aggressive biology, early metastatic spread, and poor survival outcomes. TNBC lacks expression of the targetable receptors found in other breast cancer subtypes, mandating use of cytotoxic chemotherapy. However, resistance to chemotherapy is a significant problem, encountered in about two-thirds of TNBC patients, and new strategies are needed to mitigate resistance. In this issue of the Journal of Biological Chemistry, Geck et al. report that TNBC cells are highly sensitive to inhibition of the de novo polyamine synthesis pathway and that inhibition of this pathway sensitizes cells to TNBC-relevant chemotherapy, uncovering new opportunities for addressing chemoresistance. Full Article
cell Structural basis of specific inhibition of extracellular activation of pro- or latent myostatin by the monoclonal antibody SRK-015 [Molecular Biophysics] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor β superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor β superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen–antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms. Full Article
cell Structural basis of cell-surface signaling by a conserved sigma regulator in Gram-negative bacteria [Molecular Biophysics] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Cell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 Å resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-β-fold, followed by a secretin/TonB, short N-terminal subdomain at the C terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pulldown assays, isothermal titration calorimetry, and thermal denaturation CD spectroscopy, we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation. Full Article
cell Glycation-mediated inter-protein cross-linking is promoted by chaperone-client complexes of {alpha}-crystallin: Implications for lens aging and presbyopia [Glycobiology and Extracellular Matrices] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Lens proteins become increasingly cross-linked through nondisulfide linkages during aging and cataract formation. One mechanism that has been implicated in this cross-linking is glycation through formation of advanced glycation end products (AGEs). Here, we found an age-associated increase in stiffness in human lenses that was directly correlated with levels of protein–cross-linking AGEs. α-Crystallin in the lens binds to other proteins and prevents their denaturation and aggregation through its chaperone-like activity. Using a FRET-based assay, we examined the stability of the αA-crystallin–γD-crystallin complex for up to 12 days and observed that this complex is stable in PBS and upon incubation with human lens–epithelial cell lysate or lens homogenate. Addition of 2 mm ATP to the lysate or homogenate did not decrease the stability of the complex. We also generated complexes of human αA-crystallin or αB-crystallin with alcohol dehydrogenase or citrate synthase by applying thermal stress. Upon glycation under physiological conditions, the chaperone–client complexes underwent greater extents of cross-linking than did uncomplexed protein mixtures. LC-MS/MS analyses revealed that the levels of cross-linking AGEs were significantly higher in the glycated chaperone–client complexes than in glycated but uncomplexed protein mixtures. Mouse lenses subjected to thermal stress followed by glycation lost resilience more extensively than lenses subjected to thermal stress or glycation alone, and this loss was accompanied by higher protein cross-linking and higher cross-linking AGE levels. These results uncover a protein cross-linking mechanism in the lens and suggest that AGE-mediated cross-linking of α-crystallin–client complexes could contribute to lens aging and presbyopia. Full Article