l

Display device

A display device capable of displaying both a 3D image and a 2D image is provided. The display device includes a plurality of optical filter regions where light-blocking panels for producing binocular disparity are arranged in matrix. The light-blocking panel can select whether to transmit light emitted from a display panel in each of the plurality of optical filter regions. Thus, in the display device, some regions where binocular disparity is produced can be provided. Consequently, the display device can display both a 3D image and a 2D image.




l

Display device

To provide an active matrix display device in which power consumption of a signal line driver circuit can be suppressed, so that power consumption of the entire memory can be suppressed. A plurality of memory circuits which can write data of a video signal input to a pixel in one line period and can hold the data are provided in a signal line driver circuit of a display device. Then, the data held in each memory circuit is input to a pixel of a corresponding line as a video signal. By providing two or more memory circuits in a driver circuit, pieces of data of video signals corresponding to two or more line periods can be concurrently held in the memory circuits.




l

Tuning display devices

A technique comprising: determining a correction to a drive voltage for the front plane common electrode of a first display device according to the result of one or more measurements of an optical property for the first display device and the result of one or more measurements of said optical property for one or more other devices including an optical medium having the same optical response as the first display device.




l

Integrated assemblage of 3D building models and 2D construction drawings

In one embodiment, a viewer executing on an electronic device having a touch sensitive display shows a three-dimensional (3D) model of a building created using computer aided design (CAD) software. A plurality of selectable interface nodes are provided at respective locations within the 3D model. Each interface node is linked to at least one corresponding two-dimensional (2D) construction drawing that shows a section view, a plan view, an elevation view or a detail view of the building related to the location of the interface node. In response to receiving input from a user indicating selection of a particular interface node, a menu is displayed with one or more selectable menu options. In response to receiving additional input from the user indicating selection of a particular menu option, a corresponding 2D construction drawing for the particular interface node is displayed in context of the 3D model of the building.




l

Methods, apparatus and systems for generating digital-media-enhanced searchable electronic records of underground facility locate and/or marking operations

Generating a digital-media-enhanced electronic record of a locate and/or marking operation performed by a locate technician. The locate and/or marking operation comprises locating and/or identifying, using at least one physical locate mark, a presence or an absence of at least one underground facility within a dig area, wherein at least a portion of the dig area may be excavated or disturbed during excavation activities. A location of the at least one underground facility and/or the at least one physical locate mark is electronically rendered on a display device so as to generate an electronic visual representation of the locate and/or marking operation. At least one digital media file representation of a corresponding digital media file relating to at least one aspect of the locate and/or marking operation or an environment of the dig area is also electronically rendered on the display device, so as to generate a digital-media-annotated representation of the locate and/or marking operation. Information relating to the digital-media-annotated representation of the locate and/or marking operation is electronically transmitted and/or stored so as to generate the digital-media-enhanced electronic record of the locate and/or marking operation.




l

Liquid crystal display device

A liquid crystal display device comprising a backlight and a pixel portion including first to 2n-th scan lines, wherein, in a first case of expressing a color image, first pixels controlled by the first to n-th scan lines are configured to express a first image using at least one of first to third hues supplied in a first rotating order, and second pixels controlled by the (n+1)-th to 2n-th scan lines are configured to express a second image using at least one of the first to third hues supplied in a second rotating order, wherein, in a second case of expressing a monochrome image, the first and second pixels controlled by the first to 2n-th scan lines are configured to express the monochrome image by external light reflected by the reflective pixel electrode, and wherein the first rotating order is different from the second rotating order.




l

Display apparatus and driving method therefor

A display apparatus disclosed herein includes a plurality of pixel circuits, each having a plurality of switches configured to receive a driving signal of a predetermined period and to be controlled for opening and closing operation by the driving signal, a drive circuit configured to control the open/closed state of the switches, being operable to scan the pixel circuits and open and close the switches in periods independent of each other.




l

Conductor winding and inductors arranged to form a balun having a figure eight shape

A balun including a first conductor winding, a first inductor, a second inductor, a third inductor, and a fourth inductor. The first conductor winding has a figure eight shape including a first loop and a second loop. The first inductor and the second inductor substantially surround the first loop. The third inductor and the fourth inductor substantially surround the second loop.




l

Parasitic capacitance compensating transmission line

A transmission line is provided in which a first portion of the transmission line is configured to be connected to a source, and a second portion of the transmission line is configured to be connected to a load. A capacitive element is coupled to the transmission line and is configured to compensate for an impedance difference between the load and at least one of the source or the transmission line, at a frequency within a frequency bandwidth of the load. A difference between an internal capacitance of the first portion of the transmission line and the second portion of the transmission line substantially matches the capacitance of the capacitive element.




l

Balun transformer

A balun transformer includes an unbalanced terminal, two balanced terminals, a directional coupler, a low pass filter, and a high pass filter. The directional coupler includes first, second, third and fourth terminals. The first terminal is connected to the unbalanced terminal. A predetermined phase difference exists between the output signal of the second terminal and the output signal of the third terminal. The second terminal is connected to the first terminal by a line constituting the directional coupler. The low pass filter is connected between the second terminal and one of the balanced terminals. The high pass filter is connected between the third terminal and the other balanced terminal.




l

Directional coupler

A directional coupler includes in a laminate block, a first main line, a first sub-line, a second sub-line, and a second main line sequentially provided in a lamination direction of layers. Further, each of the first main line, the first sub-line, the second sub-line, and the second main line is divided into at least two divided coil conductors. Furthermore, at least two divided ground conductors are provided between the first sub-line and the second sub-line.




l

Three dimensional branchline coupler using through silicon vias and design structures

A three dimensional (3D) branchline coupler using through silicon vias (TSV), methods of manufacturing the same and design structures are disclosed. The method includes forming a first waveguide structure in a first dielectric material. The method further includes forming a second waveguide structure in a second dielectric material. The method further includes forming through silicon vias through a substrate formed between the first dielectric material and the second dielectric material, which connects the first waveguide structure to the second waveguide structure.




l

Duplexer, communication module component, and communication device

A duplexer has an antenna terminal, a first terminal, and second terminals and provided with a first filter arranged between the antenna terminal and first terminal and including a parallel resonator for forming a ladder type filter circuit, a second filter arranged between the antenna terminal and the second terminal and having a passband higher than a passband of the first filter, and an electromagnetic coupling element arranged between the parallel resonator of the first filter and a ground part and electromagnetically coupled with the antenna terminal.




l

Ladder filter, duplexer and module

A ladder filter includes at least one series resonator connected in series between an input terminal and an output terminal, at least one parallel resonator connected in parallel with the at least one series resonator, an additional resonator connected in series between the at least one series resonator and one of the input terminal and the output terminal, and an inductor connected in series to the additional resonator, the additional resonator having a resonance frequency higher than an anti-resonance frequency of the at least one series resonator.




l

Filter for removing noise

The present invention discloses a filter for removing noise, which includes: a lower magnetic substrate; a coil layer disposed on the lower magnetic substrate and including at least one conductor pattern and an insulating layer covering the conductor pattern; an upper magnetic substrate disposed on the coil layer; and a magnetic permeability enhancing layer disposed on the magnetic substrate with lower magnetic permeability of the lower magnetic substrate and the upper magnetic substrate. According to the present invention, it is possible to implement a filter for removing noise with high performance, characteristics, and reliability by increasing magnetic permeability to improve impedance characteristics and improving an effect of shielding electromagnetic waves such as jamming.




l

Multilayer band pass filter

In a multilayer band pass filter, via-electrodes and strip electrodes define inductors of LC parallel resonators in four stages. A capacitor electrode and a ground electrode define a capacitor of a first-stage LC parallel resonator. A capacitor electrode and the ground electrode define a capacitor of a fourth-stage LC parallel resonator. Capacitor electrodes define a second-stage LC parallel resonator. Capacitor electrodes define a third-stage LC parallel resonator. Among four or more of the LC parallel resonators, the coupling between certain LC parallel resonators is easily defined, and the attenuation characteristic of a filter is definable with a high degree of freedom.




l

SAW filter circuit having improved ESD resistance

A SAW filter circuit having improved ESD resistance is specified, in which a series interconnection composed of SAW resonators is interconnected between a first signal port and a dual-mode SAW filter port. The static capacitance of the series interconnection is at most four times the static capacitance of the dual-mode SAW filter transducers interconnected therewith.




l

Frequency-tunable filter

A frequency tunable filter is disclosed. The frequency tunable filter includes a filter unit that can tune a frequency band of a frequency signal being filtered, a communication module that receives a control signal for controlling the tuning of the frequency band, and a control unit that controls the tuning of the frequency band based on the control signals. The disclosed filter can control the tuning of the filter's frequency band wirelessly.




l

Electromagnetic interface secured by using an indirect compression force to slidably engage first and second force transfer features

In an example embodiment, an electromagnetic interface can comprise: a first component comprising a first waveguide channel, a first interface surface, and a first force transfer feature; a second component comprising a second waveguide channel, a second interface surface, and a second force transfer feature; and a fastener that can be configured to force the first force transfer feature in sliding engagement with the second force transfer feature. The first and second force transfer features can be configured to interoperate to create an indirect force holding the first interface surface in contact with the second interface surface and holding the first waveguide channel in alignment with the second waveguide channel.




l

Quarter wave plate polarizer with two phase-shifting portions

A right circular cylindrical body of an isotropic dielectric such as a cross-linked styrene copolymer, has respective pluralities of mutually parallel grooves formed in its axial end faces, spaced apart by an intermediate portion whose dimension c is a half wavelength. The axial lengths a, b of the grooves are such that when a wave passes through the body, a quarter wavelength phase difference is produced between a component of a wave having its E-vector parallel to the grooves and a component of the wave having its E-vector orthogonal to the grooves. Alternatively the plate may consist of two or more discrete bodies whose grooves are dimensioned to produce a total differential phase shift of one quarter wavelength.




l

Power supply apparatus and method to control the same

A power supply apparatus includes a converter to convert AC power into DC power, an SMPS to convert the DC power into DC powers desired by loads, a capacitor to interconnect the converter and the SMPS, a PTC element connected to the converter, a first switch connected in parallel with the PTC element, and a second switch connected in series with the first switch. The method includes turning on the second switch to start charging of the capacitor, turning on the first switch to charge the capacitor to a target voltage level, and turning off both the first switch and second switch if a voltage across the capacitor rises over the target voltage level, to discharge the voltage across the capacitor so as to lower the voltage across the capacitor to the target voltage level or lower.




l

Virtual RF sensor

A radio frequency (RF) generation system includes an impedance determination module that receives an RF voltage and an RF current. The impedance determination module further determines an RF generator impedance based on the RF voltage and the RF current. The RF generation system also includes a control module that determines a plurality of electrical values based on the RF generator impedance. The matching module further matches an impedance of a load based on the RF generator impedance and the plurality of electrical components. The matching module also determines a 2 port transfer function based on the plurality of electrical values. The RF generation system also includes a virtual sensor module that estimates a load voltage, a load current, and a load impedance based on the RF voltage, the RF generator, the RF generator impedance, and the 2 port transfer function.




l

Artificial microstructure and artificial electromagnetic material using the same

The present invention provides an artificial microstructure employed in an artificial electromagnetic material. The artificial microstructure includes a first segment, a second segment, and a third segment. The first segment is parallel to the second segment, and the third segment is connected between the first segment and the second segment. The artificial electromagnetic material has a special electromagnetic effect. The artificial electromagnetic material can be applied to various electromagnetic application systems instead of the typical electromagnetic material.




l

Attenuation reduction control structure for high-frequency signal transmission lines of flexible circuit board

An attenuation reduction control structure for high-frequency signal transmission lines of a flexible circuit board includes an impedance control layer formed on a surface of a substrate. The impedance control layer includes an attenuation reduction pattern that is arranged in an extension direction of the high-frequency signal transmission lines of the substrate and corresponds to bottom angle structures of the high-frequency signal transmission lines in order to improve attenuation of a high-frequency signal transmitted through the high-frequency signal transmission lines. An opposite surface of the substrate includes a conductive shielding layer formed thereon. The conductive shielding layer is formed with an attenuation reduction pattern corresponding to top angle structures of the high-frequency signal transmission lines.




l

Method, system, and apparatus for resonator circuits and modulating resonators

Embodiments of resonator circuits and modulating resonators and are described generally herein. One or more acoustic wave resonators may be coupled in series or parallel to generate tunable filters. One or more acoustic wave resonances may be modulated by one or more capacitors or tunable capacitors. One or more acoustic wave modules may also be switchable in a filter. Other embodiments may be described and claimed.




l

High frequency electronic component

An electronic component includes: a first circuit connected to a first common terminal for inputting/outputting a first signal set, a second common terminal for inputting/outputting a second signal set having a frequency higher than the first signal set, and a third common terminal for being connected to an antenna; and a second circuit connected in parallel to the first circuit between the first and second common terminals, wherein the first circuit includes a first filter transmitting the first signal set and reflecting the second signal set, and a second filter transmitting the second signal set and reflecting the first signal set, the third common terminal is located between the first and second filters, and the second circuit reflects a first transmission signal and a second transmission signal, transmits parts of the first and second transmission signals, and inverts phases of the parts of the first and second transmission signals.




l

Ladder type surface acoustic wave filter and duplexer using same

An object of the present invention is to improve the passing characteristic at high temperature in a ladder-type elastic wave filter and a duplexer including the filter. The ladder-type elastic wave filter of the present invention includes a piezoelectric substrate, a first series elastic-wave resonator formed on the piezoelectric substrate and connected in series between the input and output terminals of the filter, a parallel elastic-wave resonator formed on the piezoelectric substrate and connected in parallel between the series elastic-wave resonator and the ground terminal, and a dielectric film formed on the piezoelectric substrate so as to cover the first series elastic-wave resonator. The piezoelectric substrate is formed of a material with a negative temperature coefficient. The dielectric film is formed of a material with a positive temperature coefficient and its film thickness is formed thicker than that with which the frequency-temperature coefficient of the first series elastic-wave resonator becomes 0.




l

Surface acoustic wave filter and duplexer using same

An SAW filter and a duplexer excellent in electrical characteristics will be provided. An SAW filter has a piezoelectric substrate 40, a surface acoustic wave element 10 having a first IDT electrode 1 on the piezoelectric substrate 40, a first signal line 31 electrically connected to the first IDT electrode 1, and a ring-shaped reference potential line 9 which has a first intersecting portion intersecting with the first signal line 31 through an insulation member 41 and surrounds the surface acoustic wave element 10.




l

Adjustable waveguide busbar

A waveguide busbar for conducting microwaves includes a group input for coupling in a group microwave signal, a plurality of filter inputs for coupling in a plurality of microwave signals, a dual waveguide that comprises a first single waveguide and a second single waveguide. The plurality of filter inputs are disposed along the dual waveguide, as well as at least one adjustable coupling member that provides a connection between the first single waveguide and the second single waveguide and that is configured such that it adjusts a phase length of the connection.




l

Signal transmission cable and flexible printed board

A signal transmission cable includes a multi-layer parallel transmission path, a single-layer parallel transmission path, and a single-layer/multi-layer conversion section. The multi-layer parallel transmission path includes two or more dielectric waveguides stacked in upper and lower directions. Each dielectric waveguide includes a dielectric layer formed of a dielectric substance, two conductive layers formed to sandwich the dielectric layer, and two quasi-conductive walls. The two quasi-conductive walls include a plurality of via-holes electrically connected to the two conductive layers. The dielectric waveguides are arranged sharing the conductive layers in contact in the upper and lower directions. The single-layer parallel transmission path includes the two or more dielectric waveguides arranged in left- and right-hand directions on the same dielectric layer and conductive layer. The single-layer/multi-layer conversion section transmits a signal transmitted by each dielectric waveguide in the single-layer parallel transmission path to each dielectric waveguide in the multi-layer parallel transmission path.




l

De-noise circuit and de-noise method for differential signals and chip for receiving differential signals

A de-noise circuit and a de-noise method for differential signals and a chip for receiving differential signals are provided. The de-noise circuit includes a filter and a register. Both the filter and the register are disposed in the chip. The chip receives a differential signal through a first input terminal and a second input terminal. The filter is coupled between the first input terminal and the second input terminal of the chip. The filter filters out noises in the differential signal. The filter includes at least one filter unit. Each filter unit has at least one resistance value or at least one capacitance value. The register is coupled to the filter. The register receives and stores a control value. The register controls the resistance value or the capacitance value of at least one of the filter units based on the control value.




l

Unreleased mems resonator and method of forming same

A microelectromechanical (MEM) resonator includes a resonant cavity disposed in a first layer of a first solid material disposed on a substrate and a first plurality of reflectors disposed in the first layer in a first direction with respect to the resonant cavity and to each other. Each of the first plurality of reflectors comprises an outer layer of a second solid material and an inner layer of a third solid material. The inner layer of each of the first plurality of reflectors is adjacent in the first direction to the outer layer of each reflector and to either the outer layer of an adjacent reflector or the resonant cavity.




l

Coupling structure for multi-layered chip filter, and multi-layered chip filter with the structure

A coupling structure for a multi-layered chip filter includes a resonator layer including a resonator pattern with spaced areas and a coupling layer including at least two separated overlap portion patterns overlapped with the spaced areas of the resonator pattern respectively and a connecting portion pattern having multiple linear portions connecting the separated overlap portion patterns in an area not-overlapped with the resonator pattern.




l

Cavity filter with connecting structure connected between slider and driving device

A cavity filter includes a slider, a driving device, and an adapter. The slider is used to slide relative to and couple with a plurality of resonators located in the cavity filter to adjust a resonating frequency of the cavity filter. The driving device is used to drive the slider slide relative to the plurality of resonators and includes a shaft having a free end. The adapter is installed between the slider and the driving device and rotateably connected to the free end of the shaft with a gap configured between the free end and the adapter.




l

Adjustable resonator

The adjustable resonator according to the invention has a casing, which is composed of walls, a lid and a bottom, a resonator cavity inside the casing and an internal conductor inside the resonator cavity, which internal conductor is in electric contact with the casing. The resonator further comprises a moveable adjustment piece, which comprises a conductive adjustment member, a conductive upper plate, and a dielectric support member. The adjustment member has a stem, which is vertical, and a cap as an expansion thereof. The adjustment member can be moved downwards so that its stem and the fixed internal conductor connected to the bottom of the resonator go within each other. The movement of the adjustment piece in the coaxial resonator first decreases the resonance frequency and then slowly increases it. Therefore the resonator provides a very wide adjustment area for the resonance frequency.




l

Minimal intrusion very low insertion loss technique to insert a device to a semi-rigid coaxial transmission line

A signal conditioning apparatus can include a coaxial cable having at least one slot formed therein. A conductive film can be applied to the coaxial cable so as to cover each slot. A device mounting surface can be formed within the slot and a protection device can be mounted on the device mounting surface. A housing consisting of one or more interlockable portions can be coupled to the coaxial cable.




l

Mechanically short multi-carriage tuner

Mechanically short multi-carriage impedance tuners use meandering slabline structures. The meandering structure reduces the overall tuner length by a factor of 2.5 at 0.4 GHz. The critical issue of slabline bends is addressed with several low loss, low reflection alternatives. A preferred configuration comprises a vertical-horizontal slabline transition. Cable connections are discarded because of reflections and insertion loss. Measured results show acceptable performance. The tuner is mostly interesting for relatively lower microwave frequencies, such as 1 GHz.




l

Localized wave generation via modal decomposition of a pulse by a wave launcher

Implementations for exciting two or more modes via modal decomposition of a pulse by a wave launcher are generally disclosed.




l

Filter, receiver, transmitter and transceiver

Embodiments of the present invention provide a filter, a receiver, a transmitter, and a transceiver. The filter includes a resonant cavity component, a microstrip filtering component, and two connecting pieces, where the resonant cavity component includes at least two resonant cavities connected in parallel, each resonant cavity is provided with a resonator and a tuning screw, the microstrip filtering component includes a dielectric substrate and a microstrip positioned on the dielectric substrate, one of the connecting pieces matches and connects one end of the microstrip to the resonator on one resonant cavity, the other connecting piece matches and connects the other end of the microstrip to the resonator on another resonant cavity, and impedance of the resonant cavity component is less than impedance of the microstrip filtering component.




l

Variable filter and communication apparatus

A variable filter includes, on a dielectric substrate including ground conductor, first resonator including a transmission line connected to input terminal, second resonator including a transmission line connected to output terminal, and coupling portion including a transmission line having one end connected to the first and second resonators and another end being an open end, or structure having one end connected to the first and second resonators, including a serial connection of a transmission line and a variable capacitor, another end of the variable capacitor connected to the ground conductor, and adjusting means capable of changing electric length, in the first and second resonators and the coupling portion, wherein pass band width can be changed by changing ratio of electric transmission length of the coupling portion to electric transmission lengths of transmission line including the coupling portion, and the first and second resonators.




l

Unbalanced-balanced conversion circuit element

An unbalanced-balanced conversion circuit element includes an inductor connected in series between an unbalanced terminal and a first balanced terminal. The first balanced terminal side of the inductor is grounded via a capacitor. A capacitor is connected in series between the unbalanced terminal and a second balanced terminal. An inductor is connected between the first balanced terminal side of the inductor and the second balanced terminal side of the capacitor. In a laminate defining the unbalanced-balanced conversion circuit element, the capacitor is spaced far from a mounting surface of the laminate in comparison with other circuit elements.




l

Duplexer

A duplexer includes: a reception filter connected between a reception terminal and an antenna terminal; a transmission filter connected between a transmission terminal and the antenna terminal; and a wiring substrate including the reception filter and the transmission filter on an upper surface, the reception terminal, the transmission terminal and the antenna terminal being formed on a lower surface, and a reception electrode electrically connected to the reception terminal, a transmission electrode electrically connected to the transmission terminal, an antenna electrode electrically connected to the antenna terminal, and a circular metal layer surrounding the reception, transmission and antenna electrodes, and electrically connected to a ground being formed on an upper surface, wherein a shortest distance between a side of the circular metal layer closest to the reception and transmission terminals and the reception electrode is larger than a width of the side of the circular metal layer.




l

Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus

A surface acoustic wave (SAW) resonator and a SAW oscillator and an electronic apparatus including the resonator are to be provided. A SAW resonator includes: an IDT exciting a SAW using a quartz crystal substrate of Euler angles (−1.5°≦φ≦1.5°, 117°≦θ≦142°, 42.79°≦|ψ|≦49.57°); one pair of reflection units arranged so as allow the IDT to be disposed therebetween; and grooves acquired by depressing the quartz crystal substrate located between electrode fingers. When a wavelength of the SAW is λ, and a depth of the grooves is G, “0.01λ≦G” is satisfied.




l

Filter, duplexer, communication module and communication device

A filter includes a plurality of primary resonators connected to a serial arm, a plurality of secondary resonators connected to a parallel arm, a primary inductor connected to at least one of the plurality of primary resonators and a secondary inductor connected to at least one of the plurality of secondary resonators. The primary inductor is arranged so as not to be connected to a path between the secondary resonator to which the secondary inductor is connected in parallel and the primary resonator that is connected to the secondary resonator to which the secondary inductor is connected in parallel.




l

Electronic dobby-and-jacquard-loom weaving machine and weaving method

The present invention discloses an electronic-dobby-and-jacquard-loom weaving machine and a weaving method. The machine comprises a weaving body, a first warp beam, a second warp beam, a jacquard loom, a dobby loom, a harness frame, a plurality of first harness wires, a plurality of second harness wires, a plurality of harness cords, a plurality of return springs and at least one weft accumulator, wherein the weaving body and the jacquard loom are connected with a synchronous transmission mechanism between them; the synchronous transmission mechanism comprises a weaving spindle, a main motor encoder, a jacquard loom transmission shaft, a jacquard loom encoder, a gear box and a servo control system. The present invention improves the clarity of the fell (shed), widens the fell, keeps the fell clear stably, and realizes high-density jacquard weaving.




l

Liquid crystal display

In a liquid crystal display according to an exemplary embodiment of the present invention, a shielding electrode applied with the same voltage as a common voltage and overlapping a data line is not formed. Instead, an opening is formed at a position corresponding to a data line disposed proximate to a sub-pixel charged with a relatively low voltage. In this manner, luminance deterioration of a liquid crystal display may be reduced or prevented, and a short defect between the shielding electrode and the data line may also be prevented.




l

Industrial two-layer fabric

An industrial two-layer fabric includes an upper side fabric and a lower side fabric. The upper side warps of the upper side fabric comprise a first warp set and a second warp set. The first warp set contains two upper side warps and a warp binding yarn that binds the upper side fabric and the lower side fabric. The two upper side warps are woven with the same upper side wefts. The second warp set contains one upper side warp. At a position where the warp binding yarn passes above one of the upper side wefts, the warp binding yarn is placed between the two upper side warps of the first warp set and pass below the same one of the upper side wefts, whereby the two upper side warps and the warp binding yarn of the first warp set form the upper side warp design.




l

High-speed safety heald shaft

Guard elements (31) are provided for the corner connectors (16 through 19) of a heald shaft (10) of a shedding unit, the guard elements covering the open space formed between the two legs (26, 27) and thus providing a grip protection.




l

Flame resistant fabric and garments made therefrom

Protective garments include a flame resistant fabric that is strong and yet has a soft hand. The fabric is made from a combination of filament yarns and spun yarns. The filament yarns and spun yarns are woven together such that the filament yarns are separated by from about 2 to about 5 spun yarns in both the warp direction and the fill direction. The spun yarns may contain polybenzimidazole fibers in combination with other fibers, such as aramid fibers. The filament yarns may comprise para-aramid fibers. In one embodiment, the filament yarns may have a size larger than the spun yarns.




l

Polyester fabrics for airbag and preparation method thereof

Disclosed is a fabric for an airbag including a polyester fiber, and particularly to a polyester fabric for an airbag of which toughness is 3.5 to 6.0 kJ/m3 and tearing strength measured according to the ASTM D 2261 TONGUE method is 18 to 30 kgf, wherein the fabric includes polyester fiber of which toughness is 70 to 95 J/m3, a method of preparing the same, and an airbag for a car including the same.