l

Locomotive rail conditioning system alignment verification

An apparatus (40,60) for aligning a rail conditioning system, such as a sanding system or a compressed air snow removal system of a locomotive. A source of light (50,70) is removeably and unmovingly attached to a conduit (44,62) of the rail conditioning system to direct a beam of light (53) toward a rail (46) to verify a location of impingement (56) of a spray of rail conditioning material (45,66). The source of light may be a battery operated laser pointer, and it may be attached to a fixture (48,72) that is removeably secured to the conduit. The fixture may be attached over an outlet nozzle (42,62) of the conduit, or it may be threaded onto the conduit in place of the nozzle when the nozzle is removed for cleaning and inspection.




l

Wheel/rail adhesion enhancement

If the wheel/rail adhesion for a railway vehicle is insufficient then the wheels may slip when braking. If slipping is detected, a control system may reduce the brake pressure to permit a controlled level of slip and so to optimize the braking force for the available adhesion. By determining the pressure supplied to the brake cylinder, a signal may be obtained which indicates the value of the adhesion. Alternatively the adhesion may be monitored by detecting any discrepancy between the braking deceleration demanded by the driver and the observed deceleration. The adhesion signal may activate a warning. It may also be used to adjust the rate at which sand is supplied by a sander to the wheel/rail interface. The rate at which sand is supplied may also be adjusted in accordance with other parameters such as the train speed.




l

Spreading device for confined application of grain type materials

A spreading device for confined application of grain type materials along a well-defined path on a road from a conveyor of a storing tank mounted on a moving vehicle includes a chute member mounted thereon that receives the materials from the conveyor and substantially drops them generally vertically under gravity on the road along the path in proximity and in front of a roller. The latter stops the materials relative to the road and confines, or packs, them on the road. The spreading device is adapted to be mounted on either side of the vehicle, in line with its wheels.




l

Slip prevention particle injection device

Problems are posed by slip prevention particle injection devices by wheels of railway rolling stock. Namely, if the injected quantity of slippage-preventing particles is adjusted so as not to be excessive and to be a suitable quantity, it is not possible to obtain a predetermined injection pressure and it is not possible to inject the particles at the target location. The injector device of the present invention is constituted by providing an air through-flow duct 5 inside a particle retainer tank 1, and connecting an air supply duct 17 to this air through-flow duct 5. In the above mentioned tank 1, in addition to an air inflow duct 6 being provided in the vicinity of the inlet side of the air through-flow duct 5, an air discharge duct 18 is provided in the vicinity of the outlet side of the air through-flow duct 5. This air inflow duct 6 and air discharge duct 18 are connected to the air through-flow duct 5 and one end of these ducts 6 and 18 is open into the tank 1. Further, in addition to a mixing chamber 15 and a smaller-diameter air passage section 9 being provided in the air through-flow duct 5, a particle introduction hole 16 is provided in the mixing chamber 15, and an injector duct 21 that injects a fluid mixture of slippage-preventing particles and compressed air is provided at the outlet side of the air through-flow duct 5.




l

Land vehicle traction control device

A land vehicle traction control device consisting of a box containing sand, or other suitable anti-skid material, mounted near the wheels of a vehicle, a mechanism which controls the flow of sand to the wheels, and a nozzle that distributes material or sand to the wheels, said nozzle containing an ice pick and a heater element for discharging ice buildup. The control mechanism is activated by a selenoid which gets its power form the tail or stop lights and is controlled by switches located in the passenger compartment of the vehicle.




l

Railway train friction management and control system and method

A system and method for friction management for managing and controlling an application of a friction modifying agent to an area of contact between a railway wheel and a railway rail over which the wheel is traversing to selectively modify the coefficient of friction at the contact area. The system comprises a sensor for detecting a parameter relating to the operation of the railway train. A controller is responsive to the sensor and controls the application of a friction modifying agent to the rail as a function of the parameter. An applicator is responsive to the controller and applies the friction modifying agent to the area of contact between the railway wheel and rail. The invention also includes a method for railway train friction management for managing and controlling the application of friction modifying agent to an area of contact between railway wheel and railway rail over which the wheel is traversing to selectively modify the coefficient of friction at the contact area. The method comprises sensing a parameter related to the operation of the railway train and applying the friction modifying agent to the area of contact between the railway wheel and rail as a function of the sensed parameter.




l

Metering device for sand spreading devices, especially for rail vehicles

Metering or dosing device for sand spreading apparatuses with a metering piston for sealing off and releasing the throughflow opening for the material to be spread, in which the metering piston and the opposite housing wall of the passage hole have profiles overlapping each other so that a labyrinth-like outflow of the spread material results.




l

Vehicle movement stabilizing device

A vehicle movement stabilizing device is provided which in effectively functioning braking, acceleration and turning movement during travel of the vehicle by activating the frictional force adding device, reliably controls the start and end of the operation of the frictional force adding device and prevents repetition of unnecessary operations. The vehicle movement stabilizing device is provided with frictional force adding device for increasing the frictional force of the wheels to the road surface by scattering particles and a controller. The controller is structured to start the operation of the frictional force adding device when it detects the operation start conditions based on signals from wheel speed sensors, a hydraulic pressure sensor and a step-in force sensor during braking, and to stop its operation if signals indicating disappearance of the state are detected, thereby preventing repetition of unnecessary operations.




l

Apparatus for use in applying granular material to a rail

An apparatus for applying granular material to a rail adjacent to a wheel of a train includes a granular supply material container to which a granular material injection assembly is connected. The granular material injection assembly includes a housing having a mixing chamber. An insert is connected with the housing. A first end portion of the insert has an air inlet through which air flows into the mixing chamber. A second end portion of the insert has an air outlet through which air and granular material flow from the mixing chamber. A valve may be mounted in the air inlet portion of the insert. A venturi may be mounted in the air outlet portion of the insert. A deflector portion of the insert deflects granular material away from a path of flow of air between the air inlet and the air and granular material outlet.




l

Main line wayside rail lubricating system with feedback

To lubricate a length of track, a plurality of lubricating nozzles are provided. Each nozzle is fed by the output of a single positive displacement pump, and all the pumps are controlled by a computer. Vibration sensors, sound sensors, or L/V ratio sensors detect physical qualities which occur as a train passes a given point, and another detector measures the time between successive wheels on the truck of a car as it passes a given point to measure train speed. The computer compares the output readings measured by the detector to a table of outputs in its memory that are indicative of a lubricated track to determine if lubrication is needed.




l

Enhanced locomotive adhesion control

A method of dynamically controlling traction of a locomotive (V) having a plurality of axles (A1–A6) on each of which are mounted wheels (W) for moving the locomotive over a set of rails (R). A creep control signal (creep_n) is provided to a controller (TMTC) for each axle to move the locomotive over the rails, the creep control signal being a function of adhesion operation characteristics (tractive effort, torque, creep) for that axle. An advisory signal (ccc_n) combining values representative of the adhesion quality of the two axles is provided to the controller to maximize the tractive effort of the axle if the adhesion quality of the other axle is a maximum for the current rail conditions. This reduces the amount of time for the axle to attain its maximum tractive effort when rail conditions change.




l

System and method for improved detection of locomotive friction modifying system component health and functionality

A system and method for assessing a health and functionality of a locomotive friction modifying system wherein the locomotive has a friction modifying applicator associated with a wheel of the locomotive for applying a friction modifying agent to a rail on which the wheel is traversing. The system and method comprise a sensor detecting a predetermined operational condition of the locomotive. The system and method also comprise a controller associated with the sensor and responsive to input from the sensor determining a per unit creep of an axle of the locomotive. The controller also determines a tractive effort of the axle of the locomotive and determines a friction modifying applicator state for the applicator associated with the axle. The controller further compares the determined per unit creep of the axle, the tractive effort of the axle and the state of the friction modifying applicator associated with the axle to a predetermined value indicative of the health and functionality of the locomotive friction modifying system. The controller provides an indication of the health and functionality of the locomotive friction modifying system.




l

Method and system of limiting the application of sand to a railroad rail

A method and computer program product of limiting sand use in a railroad locomotive sanding system applying sand to railroad rails to enhance adhesion of wheels of a railroad locomotive on a track having a pair of railroad rails, the sanding system including a plurality of sand applicators for each rail for directing sand flow toward the rail and with the locomotive having two trucks carrying the wheels for supporting and propelling the locomotive along the track. The method and computer program product may include steps of automatically controlling a flow of sand applied to the rail by the locomotive sanding system to limit the application of sand to situations in which applying sand to the rail would be effective to increase the adhesion of at least one of the railroad locomotive wheels on the rail by a predetermined incremental amount. The operation of each of the plurality of sand applicators may be independently controlled for selectively operating those sand applicators whose operation will result in at least the predetermined incremental increase in adhesion of the locomotive wheels on the rail, while not operating the other sand applicators so as to limit the amount of sand applied to the track.




l

Antislip material ejector

An antislip material ejector comprises an antislip material container 12 which stores antislip material, an air inlet pipe 13 which is arranged in the antislip material container, a compressed air supply pipe 14 which supplies compressed air to the air inlet pipe, a nozzle portion 16 which is arranged in the air inlet pipe, a mixing pipe 17, which is connected with the air inlet pipe, in which the antislip materials are mixed with air and in which a suction hole 18 is formed through which the antislip material passes, a connecting pipe, one end of which communicates with the mixing pipe and the other end of which communicates with a cavity in the antislip material container, and an ejection pipe 20 which is connected with the mixing pipe and which ejects the antislip material together with the compressed air.




l

Method and apparatus for applying liquid compositions in rail systems

A method for applying a liquid composition to a rail surface is provided. This method involves supplying a liquid composition in one or more reservoirs on a rail car (revenue generating car), and applying the liquid composition from the one or more reservoirs to the rail surface.




l

Metering device for sand spreading devices, especially for rail vehicles

Metering or dosing device for sand spreading apparatuses with a metering piston for sealing off and releasing the throughflow opening for the material to be spread, in which the metering piston and the opposite housing wall of the passage hole have profiles overlapping each other so that a labyrinth-like outflow of the spread material results.




l

Vehicle salt dispensing system

A vehicle salt dispensing system. An illustrative embodiment of the vehicle salt dispensing system includes a pump and supply module adapted to contain a supply of salt, at least one dispensing tube communicating with the pump and supply module and at least one generally curved discharge tube communicating with the at least one dispensing tube.




l

Apparatus and method for controlled application of railway friction modifying agent

A system and method for controlling an application of a friction modifying agent to an area of contact between a railway wheel and a railway rail over which the wheel is traversing to selectively modify the coefficient of friction at the contact area. A sensor is used for detecting a parameter relating to the operation of the railway train. A controller is responsive to the sensor for selecting one or more of a plurality of friction modifying agents and controls the application of the agent to the rail as a function of the parameter. An applicator is responsive to the controller and applies the friction modifying agent to the area of contact between the railway wheel and rail. A second application of the agent may be predicated upon the effectiveness of a first application of the agent. The selection of the appropriate agent may include a consideration of a current location of the railway vehicle.




l

Friction modifier applicator system for traveling cranes

A friction management system for a traveling crane applies a liquid or solid friction modifier (FM) in precisely controlled quantities to the crane wheels or rail to improve performance and safety during movement of the crane. The friction modifier is applied by a nozzle mounted on a crane truck, which nozzle is opened and closed by a valve. The duration of the valve opening per second, which controls the friction modifier application rate, is approximately proportional to the average current draw, which is detected by current sensors connected to the truck motors.




l

Gage side or field side top-of-rail plus gage corner lubrication system

A rail lubricator for a railroad rail has a nozzle adjacent to the rail and attached thereto. The nozzle has a discharge orifice disposed beneath the top surface of the rail. The orifice is aimed generally longitudinally of the rail with the aiming including an upward component and a lateral component toward the centerline of the rail. Jets of lubricant project upwardly from the nozzle, arch above the top surface of the rail, and then fall onto the top surface and gage corner of the rail. This lubricates the top of a rail using an optimum amount of lubricant on the optimum area of the railhead. The lubricant is applied when the nozzles are spanned by a car.




l

Apparatus and method for lubricating railroad tracks

A system for increasing the efficiency of the movement of a railroad car over a length of rail, including a fluid reservoir for containing a quantity of efficiency enhancing fluid, a fluid dispensing member, a fluid pump connected in fluidic communication between the reservoir and the fluid dispensing member for dispensing a predetermined quantity of fluid through the fluid dispensing member, a microprocessor operationally connected to the fluid pump, and a first sensor for generating a first sensor signal in response to a railroad car crossing a predetermined section of track and operationally connected to the microprocessor. The fluid dispensing member is positioned along a railroad portion substantially equal in length to the circumference of a railroad car wheel to provide a substantially continuous flow of efficiency enhancing fluid substantially equal in length to the circumference of a railroad car wheel onto the rail portion when the predetermined quantity of fluid is dispensed.




l

Traction material dispensing apparatus

The traction material dispensing apparatus mounts within the wheel well of a fender of a vehicle and is therefore visually and physically unobtrusive. The apparatus selectively dispenses traction material both in front of and behind a vehicle tire. A driver-accessed switch controls the apparatus dispensing of material. Of importance is that the manifolds, funnels, and nozzles are gravity fed by the vessel so that agitators and pressurized material flow assistance is not needed. Flappers within each manifold are controlled by the driver-actuated switch and control delivery of the traction material to the nozzles. As with the flappers, flow from the nozzles is controlled by a miniature DC (direct current) motor powered by the vehicle's electrical system. Screens ensure breakup of any clumps and therefore proper dispersion of traction material to the roadway.




l

Method and apparatus for monitoring sand supply to a scattering device for a rail vehicle

A method, and an apparatus, for monitoring the sand supply in a sand tank (2) of a sand-scattering device in vehicles, in particular in express trains. To prevent an insufficient sand supply, the sand-supply level is monitored by a inspection point.




l

Method and apparatus for applying liquid compositions in rail systems

A method for applying a liquid composition to a rail surface is provided. This method involves supplying a liquid composition in one or more reservoirs on a rail car (revenue generating car), and applying the liquid composition from the one or more reservoirs to the rail surface.




l

Sand discharge device for a rail vehicle

A suction nozzle insert is provided for arranging in a storage container of a sand discharge device of a rail vehicle, through which compressed air can flow in succession through a nozzle, an injection chamber, a venturi pipe and then a sand feed pipe, wherein the injection chamber and the venturi pipe are located in a first hollow chamber, and furthermore at least one suction channel which connects the storage container with the injection chamber is provided in the housing of the suction nozzle insert, wherein the housing has a second hollow chamber which is arranged between the compressed air pipe and the nozzle, and at least one at least partially closable air channel is provided between this second hollow chamber and the first hollow chamber, wherein the air channel inlet lies in the second hollow chamber and the air channel outlet lies in the first hollow chamber.




l

Revolution daddy rock super track

The Revolution Daddy Rock Super Track is a salt sifting tank that dispenses rock salt directly to the front of the vehicle wheels followed by the rear wheels which would prevent the automobile from sliding side to side and also aiding the vehicle to go up and down hills in the winter time with super traction.




l

Sand dosing and blocking device

A sand dosing and blocking device for sand spreading systems for vehicles, particularly rail vehicles with drive, has a sand supply container with an outlet opening which can be closed by a closing element for the dosed release of sand to a conveyor unit which is preferably pneumatically activated. The closing element is formed by a lifting rod of an electrically activated lifting magnet. The lifting magnet is arranged inside the sand supply container in the area of the outlet opening. Frequency control of the lifting magnet varies the dosed flow of sand, which may be varied in response to vehicle wheel speed.




l

Conditioning device and method for drying and controlling the temperature of a ballast bed

Conditioning device (24) and method for drying and/or controlling the temperature of a ballast bed (12) of a railway track system (10), wherein the railway track system (10) has sleepers (14) resting on the ballast bed (12) and rails (16) resting on the sleepers, wherein the conditioning device has a bogie (30) for moving the conditioning device (24). An outlet nozzle (36) for blowing temperature-controlled air into the ballast bed (12) via at least one blowing-in region (26) positioned between two adjacent sleepers (14) is connected to the bogie (30), as is at least one cover plate (42) for essentially air-tight coverage of an upper side, pointing essentially in the direction counter to the direction of gravity, of a side strip (20), provided next to the sleepers (14) in the direction of travel, of the ballast bed (12). In a method for drying and controlling the temperature of a ballast bed (12) of a railway track system (10), an upper side of the ballast bed (12) and/or at least one sleeper (14) and at least one rail (16) are sealed in an essentially air-tight fashion outside a blowing-in region (26) before temperature-controlled air is blown into the ballast bed (12) via the blowing-in region (26).




l

Ultra violet irradiating device for alignment of liquid crystal, and water-cooling coaxial tube

The present invention provides an ultra violet irradiating device for aligning liquid crystal and also an water-cooling coaxial tube. The ultraviolet irradiating device includes a water-cooling coaxial tube configured with an inter tube and an external pipe enveloping the internal pipe. A light tube is disposed within the internal pipe, and an infrared filter layer is disposed between the internal and external pipes; and an ultra violet filter layer is coated over an external surface of the external pipe so as to filter out an ultra violet light beam having wavelength lower than 320 nm. The breakage of the unit filters resulted from inter pushing with each other or leakage resulted from overlapping of the unit filters can be readily resolved.




l

Spark plug and production method therefor

A technique of reducing occurrence of multiple discharge in a spark plug. The spark plug has a main ground electrode and three auxiliary ground electrodes. The position at which first auxiliary ground electrode is joined to a metallic shell is located opposite the position at which main ground electrode is joined to the metallic shell, with respect to a center electrode. The positions at which second and third auxiliary ground electrodes are joined to the metallic shell are located opposite to each other with respect to the center electrode. When the width of first auxiliary ground electrode is represented by W, the shortest distance between second auxiliary ground electrode and third auxiliary ground electrode is represented by T, and a distance which is a component of the shortest distance T in a direction orthogonal to first auxiliary ground electrode is represented by Tp, a relation W≧Tp is satisfied.




l

Curved-surface display panel fabrication method, curved-surface display panel using same, and multi-image display device using same

A curved-surface display panel fabrication method for fabricating a curved-surface display panel using a flat display panel having a first substrate and a second substrate includes: paring partially outer surfaces of the first substrate and the second substrate so as to reduce thicknesses thereof to a predetermined thickness; bending the pared flat display panel to a desired curved shape; attaching a first guide member which has a shape corresponding to the desired curved shape to the first substrate with a predetermined gap from the pared outer surface thereof and attaching a second guide member with has a shape corresponding to the desired curved shape to the second substrate with a predetermined gap from the pared outer surface thereof; and forming light transmitting reinforcing layers respectively in a space between the first guide member and the first substrate and a space between the second guide member and the second substrate.




l

Display device with flexible substrate and manufacturing method thereof

A display device and a manufacturing method thereof are provided. The display of the present invention includes a flexible substrate, a display layer, a protecting layer, an electronic unit, and a filling glue. The flexible substrate has a carrying surface. The display layer is disposed on the carrying surface and has a side edge. The protecting layer is disposed on the opposite side of the display layer corresponding to the carrying surface. The electronic unit is disposed on the carrying surface with a space formed between the electronic unit and the side edge of the display layer. The filling glue is filled in the space and connected with the side edge of the display layer, the electronic unit, and the carrying surface.




l

Balancing of the rotary anode of an X-ray tube

An X-ray tube with a rotatable anode for generating X-rays and an X-ray apparatus and a method for balancing the rotary anode of an X-ray tube include balancing of the rotary anode applicable to an anode mounted inside an X-ray tube. The rotatable anode includes an anode disc fixedly mounted to a rotatably driven support body, which is rotatably supported by a bearing arrangement. The anode includes at least one balancing cavity to adjust the center of gravity of the anode. The balancing cavity is partly filled with a balancing material being solid at operating temperature of the X-ray tube and liquid at a higher temperature. The balancing method includes determining an imbalance of the anode; heating liquefy balancing material; dislocating the balancing material inside the balancing cavity to compensate the imbalance; and cooling to solidify the balancing material.




l

Light guide plate having uniform light emission and manufacturing method thereof

A light guide plate includes a main body and a number of micro protrusions. The main body includes a light emitting surface, a bottom surface, and a light incident surface. The bottom surface is opposite to the light emitting surface. The light incident surface connects the light emitting surface and the bottom surface. The protrusions are randomly positioned on the light emitting surface, and are used for reflecting light rays towards random directions.




l

Method for repairing white defect of liquid crystal display panel

A method for repairing white defect of liquid crystal display panel includes: (1) providing a laser repairing platform and a liquid crystal display panel that contains a white defect to be repaired, wherein the white defect contained liquid crystal display panel comprises a substrate, a first insulation layer formed on the common wiring layer, a metal layer formed on the first insulation layer, a second insulation layer formed on the metal layer, and a transparent conductive layer formed on the second insulation layer; and (2) applying the laser repairing platform to carry out multi-spot welding on the common wiring layer, the metal layer, and the transparent conductive layer at a location corresponding to a white defect of the liquid crystal display panel so as to have the common wiring layer, the metal layer, and the transparent conductive layer electrically connected at sites corresponding to the multiple welding spots.




l

Method of aligning liquid crystals in a process of manufacturing liquid crystal display

A method of manufacturing a liquid crystal display includes: preparing a lower mother substrate, where lower cells, each including a thin film transistor, are provided on the lower mother substrate, and a lower alignment layer is disposed on the lower cells; preparing an upper mother substrate, where upper cells corresponding to the lower cells are provided on the upper mother substrate, and an upper alignment layer is disposed on the upper cells; providing a mother substrate assembly by providing a liquid crystal mixture layer between the lower and upper mother substrates and combining the lower and upper mother substrates; providing a pretilt of the liquid crystals by applying a voltage to a voltage application unit of the lower mother substrate; and curing an alignment supporting agents in the liquid crystal mixture layer or the lower and upper alignment layers by irradiating light to a side of the mother substrate assembly.




l

Organic electroluminescent device

The invention provides an OLED device with improved light out-coupling, which can be manufactured easy and reliable at low costs, which comprises an electroluminescent layer stack (2, 3, 4) on top of a substrate (1), where the electroluminescent layer stack (2, 3, 4) comprises an organic light-emitting layer stack (3) with one or more organic layers sandwiched between a first electrode (2) facing towards the substrate (1) and a 10 second electrode (4), where the second electrode (4) comprises a layer stack of at least a transparent conductive protection layer (41) on top of the organic light-emitting layer stack (3), a transparent organic conductive buckling layer (42) on top of the protection layer (41) having a glass transition temperature lower than the lowest glass transition temperature of the organic layers within the organic light-emitting layer stack (3) and a stress inducing layer 15 (43) on top of the buckling layer (42) to introduce stress to the buckling layer (42). The invention further relates to a method to manufacture such OLED devices with heating the electroluminescent layer (2, 3, 4) stack to a temperature, which is above the glass transition temperature of the buckling layer (42) and below the lowest glass transition temperature of the organic layers within the organic light-emitting layer stack (3) for a time period sufficient 20 to obtain buckles (B) within the buckling layer (42).




l

Substrate attachment device of display device and method for manufacturing display device using the same

A substrate attachment device of a display device and a method for manufacturing the display device using the same are disclosed. The substrate attachment device of the display device includes a guide unit which is curvedly disposed, a first support unit which moves forward and backwards along the guide unit and transfers a cover substrate having a curved surface, a second support unit which is disposed on the guide unit, moves forward and backwards, and transfers a display panel, and a roller unit which rotates so that the cover substrate having the curved surface is attached to the display panel.




l

Spark plug for internal combustion engine and method for manufacturing same

The spark plug has a configuration satisfying the relationships of B≧0.7A and 0.3 mm≦A≦0.6 mm, where B is an axial thickness along the central axis line Q of the weld portion formed between the base material electrode and the noble-metal chip, and A is an axial distance along the central axis line Q between the intersection points P3 and X. The intersection point P3 is a point at which a phantom axis line radially distant from the central axis line Q by D/2 (D being a diameter of the noble-metal chip) intersects with the boundary line between the weld portion and the noble-metal chip. The intersection point X is a point at which an extension of the contour line of the base material electrode in the vicinity of the weld portion intersects with a boundary line between the weld portion and the base material electrode.




l

Organic light emitting display device and method of manufacturing the same

An organic light emitting display device and a method of manufacturing the same are provided. The organic light emitting display device includes: a substrate including a display portion displaying an image as a plurality of sub-pixels that are arranged, and a non-display portion extending at an edge of the display portion; and a sealant formed along a periphery of the display portion, wherein an organic film having an emissive layer is formed on the plurality of sub-pixels, and an emissive layer storage unit storing an emissive layer coated on the non-display portion is formed between the display portion and the sealant. By forming the emissive layer storage unit by removing at least a part of a pixel defining layer on an edge of the substrate, a raw material of the emissive layer coated on the non-display portion on the substrate is easily processed via the emissive layer storage unit.




l

Plasma-shell

A gas discharge device constructed out of one or more plasma-shells with an organic luminescent substance located on an external portion of each plasma-shell, the organic substance being excited by photons from a gas discharge within the plasma-shell. In one embodiment, the plasma-shell is made of an inorganic luminescent substance. The external organic luminescent substance may contain or be combined with an inorganic substance that may also be a luminescent substance. The plasma-shell may contain both inorganic and organic substances.




l

Apparatus for aligning dispenser using alignment plate and dispenser alignment system

An apparatus for aligning a dispenser includes a table having a first alignment mark, an alignment plate provided along at least one side of the table, at least one syringe supplying a dispensing material to the alignment plate through a nozzle provided at one end portion thereof to form a second alignment mark, a first image camera provided along a side of the syringe and detecting an image of the second alignment mark, a second image camera detecting an image of the first alignment mark, and an alignment control unit aligning the image of the second alignment mark and a first reference position, and aligning an image of the first alignment mark and a second reference position.




l

Spark plug electrode and spark plug manufacturing method

A method of making a spark plug electrode includes several steps. One step includes providing an inner core of a ruthenium (Ru) based alloy or an iridium (Ir) based alloy. Another step includes providing an outer skin over a portion or more of the inner core in order to produce a core and skin assembly. The outer skin can be made of platinum (Pt), gold (Au), silver (Ag), nickel (Ni), or an alloy of one of these. Yet another step includes increasing the temperature of the core and skin assembly. And another step includes hot forming the core and skin assembly at the increased temperature.




l

Method of manufacturing display device

To provide a method of manufacturing a display device having an excellent impact resistance property with high yield, in particular, a method of manufacturing a display device having an optical film that is formed using a plastic substrate. The method of manufacturing a display device includes the steps of: laminating a metal film, an oxide film, and an optical filter on a first substrate; separating the optical filter from the first substrate; attaching the optical filter to a second substrate; forming a layer including a pixel on a third substrate; and attaching the layer including the pixel to the optical filter.




l

Organic luminescence display device having getter pattern and method of manufacturing the same

Provided is a method of manufacturing an organic luminescence display device, the method including: bringing a getter powder into direct contact with a first surface of an encapsulation substrate; irradiating a laser to a second surface of the encapsulation substrate correspondingly to a getter pattern area to melt the second surface of the encapsulation substrate; and bonding the getter powder to the molten second surface of the encapsulation substrate to form a getter pattern corresponding to the getter pattern area. Since the getter powder is directly bonded to the encapsulation substrate by laser irradiation, a fine getter pattern may be formed.




l

Organic light-emitting display device with frit seal and reinforcing structure

Disclosed is an organic light-emitting display device in which the substrate and the encapsulation substrate are attached to each other by using a frit. The organic light-emitting display device includes a first substrate including a pixel region in which an organic light-emitting diode is formed, and a non-pixel region. The organic light-emitting diode includes an organic light-emitting layer between a first electrode and a second electrode. A second substrate attached to the first substrate. A frit is provided between the non-pixel region of the first substrate and the second substrate to attach the first substrate and the second substrate. A reinforcement material of resin is formed outside the frit.




l

Light emitting display device and method of fabricating the same

A light emitting display device and a method of fabricating the same are disclosed. The light emitting display device comprises: a substrate comprising an active region in which a plurality of active pixels for displaying images are formed and a first dummy region disposed outside the active region and in which a plurality of first dummy pixels is formed; a first electrode formed on the substrate in each pixel; a pixel defining layer having an opening that exposes the first electrode; a surface treatment layer formed on the first electrode and having a plurality of grooves in each of the first dummy pixels; a light emitting layer formed on the surface treatment layer; and a second electrode formed on the light emitting layer in each of the active pixels.




l

Organic light emitting display

An OLED device is disclosed that enhances display quality by minimizing capacitance deviation between data lines of the OLED device. The capacitance deviation may be minimized by utilizing an expansion portion of a power line of the OLED device. The capacitance deviation may also by minimized by utilizing an overlap pattern that overlaps a plurality of the data lines.




l

Liquid crystal display and method for manufacturing the same

A liquid crystal display is provided that includes: a first display panel including a thin film transistor and a plurality of pixel electrodes; a second display panel facing the first display panel with a cell gap therebetween; a lower resistive layer disposed on the first display panel; an upper resistive layer disposed on the second display panel; and a sensing spacer connecting the lower resistive layer and the upper resistive layer.




l

Flat panel type image display device and method for manufacturing the same

Disclosed are a flat panel type image display device of a clear borderless design without a case defining an external appearance of an image display device, and a method for manufacturing the same. The flat panel type image display device includes an image display panel to display an image, a panel guide including a panel fixing portion, to which the image display panel is attached, and a guide frame formed in a dual coupling structure, the panel fixing portion being configured to move together with the guide frame in at least one direction of x, y, and z-axis directions, and a bottom case formed to cover an opened back surface of the panel guide comprising a back surface of the image display panel, the bottom case being fixed to an inner side surface of the panel guide.