cl

Immediate adaptation analysis implicates BCL6 as an EGFR-TKI combination therapy target in NSCLC

Yan Zhou Tran
Mar 31, 2020; 0:RA120.002036v1-mcp.RA120.002036
Research




cl

Improving Identification of In-organello Protein-Protein Interactions Using an Affinity-enrichable, Isotopically Coded, and Mass Spectrometry-cleavable Chemical Crosslinker

Karl A. T. Makepeace
Apr 1, 2020; 19:624-639
Research





cl

Protecting the Cloud: Securing access to public cloud accounts

How Sophos Cloud Optix helps you secure access to your AWS, Azure and Google Cloud Platform accounts.




cl

Protecting the Cloud: Securing user remote access to AWS

How to create secure access to services hosted in AWS with Sophos XG Firewall.




cl

Cyber Insurance for Civil Nuclear Facilities: Risks and Opportunities

8 May 2019

This paper sets out a roadmap for how organizations in the civil nuclear sector can explore their options and review their cyber risk exposure.

Éireann Leverett

Senior Risk Researcher, University of Cambridge

GettyImages-667179424.jpg

The control room inside the Paks nuclear power plant in Hungary, 10 April 2017. Photo: Getty Images
  • Civil nuclear facilities and organizations hold sensitive information on security clearances, national security, health and safety, nuclear regulatory issues and international inspection obligations. The sensitivity and variety of such data mean that products tailored for insuring the civil nuclear industry have evolved independently and are likely to continue to do so.
  • ‘Air-gaps’ – measures designed to isolate computer systems from the internet – need to be continually maintained for industrial systems. Yet years of evidence indicate that proper maintenance of such protections is often lacking (mainly because very real economic drivers exist that push users towards keeping infrastructure connected). Indeed, even when air-gaps are maintained, security breaches can still occur.
  • Even if a particular organization has staff that are highly trained, ready and capable of handling a technological accident, hacking attack or incidence of insider sabotage, it still has to do business and/or communicate with other organizations that may not have the essentials of cybersecurity in place.
  • Regardless of whether the choice is made to buy external insurance or put aside revenues in preparation for costly incidents, the approach to cyber risk calculation should be the same. Prevention is one part of the equation, but an organization will also need to consider the resources and contingency measures available to it should prevention strategies fail. Can it balance the likelihood of a hacker’s success against the maximum cost to the organization, and put aside enough capital and manpower to get it through a crisis?
  • All civil nuclear facilities should consider the establishment of computer security incident response (CSIR) teams as a relevant concern, if such arrangements are not already in place. The existence of a CSIR team will be a prerequisite for any facility seeking to obtain civil nuclear cyber insurance.
  • Preventing attacks such as those involving phishing and ransomware requires good cyber hygiene practices throughout the workforce. Reducing an organization’s ‘time to recovery’ takes training and dedication. Practising the necessary tasks in crisis simulations greatly reduces the likelihood of friction and the potential for error in a crisis.




cl

Cybersecurity by Design in Civil Nuclear Power Plants

24 July 2019

Cyberattacks are increasingly challenging critical national infrastructure. This paper considers the security by design approach for civil nuclear power plants and analyses areas of risk and opportunities for the nuclear industry.

Dr Beyza Unal

Senior Research Fellow, International Security Programme

Roger Brunt

Managing Director, Grosmont Howe Ltd

2019-07-24-NuclearPlant.jpg

An employee climbs into the cooling tower of the third and fourth unit at Mochovce nuclear power plant in Slovakia on 2 July 2019. Photo: Getty Images

Summary

  • The application of ‘security by design’ in nuclear new builds could provide operators with the opportunity to establish a robust and resilient security architecture at the beginning of a nuclear power plant’s life cycle. This will enhance the protection of the plant and reduce the need for costly security improvements during its operating life.
  • Security by design cannot fully protect a nuclear power plant from rapidly evolving cyberattacks, which expose previously unsuspected or unknown vulnerabilities.
  • Careful design of security systems and architecture can – and should – achieve levels of protection that exceed current norms and expectations. However, the sourcing of components from a global supply chain means that the integrity of even the most skilfully designed security regime cannot be guaranteed without exhaustive checks of its components.
  • Security by design may well include a requirement for a technical support organization to conduct quality assurance of cyber defences and practices, and this regime should be endorsed by a facility’s executive board and continued at regular intervals after the new build facility has been commissioned.
  • Given the years it takes to design, plan and build a new nuclear power plant, it is important to recognize that from the point of ‘design freeze’ onwards, the operator will be building in vulnerabilities, as technology continues to evolve rapidly while construction fails to keep pace with it. Security by design cannot be a panacea, but it is an important factor in the establishment of a robust nuclear security – and cybersecurity – culture.




cl

Building LGBTIQ+ Inclusivity in the Armed Forces, 20 Years After the Ban Was Lifted

16 January 2020

Will Davies

Army Chief of General Staff Research Fellow, International Security Programme
Change was slow to come but progress has since been swift. Not only can a continuing focus on inclusivity benefit service people and the organization, it is also an essential element of a values-based foreign policy.

2020-01-16-Westminster.jpg

Crew members from HMS Westminster march through Admiralty Arch as they exercise their freedom of the city in August 2019 in London. Photo: Getty Images.

The new UK government will conduct a review of foreign, security and defence policy in 2020. If the UK decides to use values as a framework for foreign policy this needs to be reflected in its armed forces. One area where this is essential is continuing to deepen inclusivity for LGBTIQ+ personnel, building on the progress made since the ban on their service was lifted in 2000.

I witnessed the ban first-hand as a young officer in the British Army in 1998. As the duty officer I visited soldiers being held in the regimental detention cells to check all was well. One day a corporal, who I knew, was there awaiting discharge from the army having been convicted of being gay. On the one hand, here was service law in action, which was officially protecting the army’s operational effectiveness and an authority not to be questioned at my level. On the other, here was an excellent soldier in a state of turmoil and public humiliation. How extreme this seems now.

On 12 January 2000 Tony Blair’s Labour government announced an immediate lifting of the ban for lesbian, gay and bisexual personnel (LGB) and introduced a new code of conduct for personal relationships. (LGB is the term used by the armed forces to describe those personnel who had been banned prior to 2000.) This followed a landmark ruling in a case taken to the European Court of Human Rights in 1999 by four LGB ex-service personnel – supported by Stonewall – who had been dismissed from service for their sexuality.

Up to that point the Ministry of Defence's long-held position had been that LGB personnel had a negative impact on the morale and cohesion of a unit and damaged operational effectiveness. Service personnel were automatically dismissed if it was discovered they were LGB, even though homosexuality had been decriminalized in the UK by 1967.

Proof that the armed forces had been lagging behind the rest of society was confirmed by the positive response to the change among service personnel, despite a handful of vocal political and military leaders who foresaw negative impacts. The noteworthy service of LGBTIQ+ people in Iraq and Afghanistan only served to debunk any residual myths.

Twenty years on, considerable progress has been made and my memories from 1998 now seem alien. This is a story to celebrate – however in the quest for greater inclusivity there is always room for improvement.

Defence Minister Johnny Mercer last week apologized following recent calls from campaign group Liberty for a fuller apology. In December 2019, the Ministry of Defence announced it was putting in place a scheme to return medals stripped from veterans upon their discharge.

The armed forces today have a range of inclusivity measures to improve workplace culture including assessments of workplace climate and diversity networks supported by champions drawn from senior leadership.

But assessing the actual lived experience for LGBTIQ+ people is challenging due to its subjectivity. This has not been helped by low participation in the 2015 initiative to encourage people to declare confidentially their sexual orientation, designed to facilitate more focused and relevant policies. As of 1 October 2019, only 20.3 per cent of regular service people had declared a sexual orientation.

A measure of positive progress is the annual Stonewall Workplace Equality Index, the definitive benchmarking tool for employers to measure their progress on LGBTIQ+ inclusion in the workplace; 2015 marked the first year in which all three services were placed in the top 100 employers in the UK and in 2019 the Royal Navy, British Army and Royal Air Force were placed 15th=, 51st= and 68th respectively.

Nevertheless, LGBTIQ+ service people and those in other protected groups still face challenges. The 2019 Ministry of Defence review of inappropriate behaviour in the armed forces, the Wigston Report, concluded there is an unacceptable level of sexual harassment, bullying and discrimination. It found that 26-36% of LGBTIQ+ service people have experienced negative comments or conduct at work because of their sexual orientation.

The Secretary of State for Defence accepted the report’s 36 recommendations on culture, incident reporting, training and a more effective complaints system. Pivotal to successful implementation will be a coherent strategy driven by fully engaged leaders.

Society is also expecting ever higher standards, particularly in public bodies. The armed forces emphasise their values and standards, including ‘respect for others’, as defining organisational characteristics; individuals are expected to live by them. Only in a genuinely inclusive environment can an individual thrive and operate confidently within a team.

The armed forces also recognize as a priority the need to connect to and reflect society more closely in order to attract and retain talent from across all of society. The armed forces’ active participation in UK Pride is helping to break down barriers in this area.

In a post-Brexit world, the UK’s values, support for human rights and reputation for fairness are distinctive strengths that can have an impact on the world stage and offer a framework for future policy. The armed forces must continue to push and promote greater inclusivity in support. When operating overseas with less liberal regimes, this will be sensitive and require careful handling; however it will be an overt manifestation of a broader policy and a way to communicate strong and consistent values over time.

The armed forces were damagingly behind the times 20 years ago. But good progress has been made since. Inclusion initiatives must continue to be pushed to bring benefits to the individual and the organization as well as demonstrate a values-based foreign policy.




cl

The Commonwealth Cyber Declaration: Achievements and Way Forward

Invitation Only Research Event

4 February 2020 - 9:15am to 5:30pm

Chatham House, London

In April 2018, the Commonwealth Heads of Government Meeting (CHOGM), held in London, saw the creation and the adoption of the Commonwealth Cyber Declaration. The declaration outlines the framework for a concerted effort to advance cybersecurity practices to promote a safe and prosperous cyberspace for Commonwealth citizens, businesses and societies. 

The conference will aim to provide an overview on the progress made on cybersecurity in the Commonwealth since the declaration was announced in 2018. In addition, it will examine future challenges and potential solutions going forward.

This conference is part of the International Security Programme's project on Implementing the Commonwealth Cybersecurity Agenda and will convene a range of senior Commonwealth representatives as well as a selection of civil society and industry stakeholders. This project aims to develop a pan-Commonwealth platform to take the Commonwealth Cyber Declaration forward by means of a holistic, inclusive and representative approach.

Please see below meeting summaries from previous events on Cybersecurity in the Commonwealth:  

Attendance at this event is by invitation only. 

Esther Naylor

Research Assistant, International Security Programme
+44 (0)20 7314 3628




cl

Cyber Security and Nuclear Weapons

This project aims to improve resilience in NATO’s nuclear weapons systems against cyber threats.

Cyber security is a vital part of the national and international strategic infrastructure and weapons systems. The increasing cyber capabilities of countries such as China, Russia and North Korea put the North Atlantic Treaty Organization’s (NATO’s) nuclear systems - capabilities that include nuclear command, control and communication, weapons systems and early warning systems - in danger.

There is an urgent need to study and address cyber challenges to nuclear assets within NATO and in key NATO countries. Greater awareness of the potential threats and vulnerabilities is key to improving preparedness and mitigating the risks of a cyber-attack on NATO nuclear weapons systems.

Chatham House produces research responding to the need for information on enhancing cybersecurity for command, control and communications. This project constitutes the beginning of the second phase of the Cyber Security of Nuclear Weapons Systems: Threats, Vulnerabilities and Consequences, a report published in January 2018 in partnership with the Stanley Foundation.

The project responds to the need both for more public information on cyber risks in NATO’s nuclear mission, and to provide policy-driven research to shape and inform nuclear policy within NATO member states and the Nuclear Planning Group.

This project is supported by the Ploughshares Fund and the Stanley Foundation.




cl

Nuclear Weapons: Innovative Approaches for the Complex International Security Environment

This programme of work addresses the conundrum of nuclear weapons as a wicked problem in a complex adaptive system.

Understanding the complexity and the wickedness of the situation allows analysts and strategic planners to approach these complex and intractable issues in new and transformative ways – with a better chance of coping or succeeding and reducing the divisions between experts.

Using complexity theory, a complex adaptive system representing the international system and its interaction with the environment can be represented through an interactive visualization tool that will aid thought processes and policy decision-making. 

Until recently, analysts did not have the tools to be able to create models that could represent the complexity of the international system and the role that nuclear weapons play. Now that these tools are available, analysts should use them to enable decision-makers to gain insights into the range of possible outcomes from a set of possible actions.

This programme builds on work by Chatham House on cyber security and artificial intelligence (AI) in the nuclear/strategic realms.

In order to approach nuclear weapons as wicked problems in a complex adaptive system from different and sometimes competing perspectives, the programme of work involves the wider community of specialists who do not agree on what constitutes the problems of nuclear weapons nor on what are the desired solutions.

Different theories of deterrence, restraint and disarmament are tested. The initiative is international and inclusive, paying attention to gender, age and other aspects of diversity, and the network of MacArthur Grantees are given the opportunity to participate in the research, including in the writing of research papers, so that the complexity modelling can be tested against a wide range of approaches and hypotheses.

In addition, a Senior Reference Group will work alongside the programme, challenging its outcome and findings, and evaluating and guiding the direction of the research.

This project is supported by the MacArthur Foundation.




cl

Perspectives on Nuclear Deterrence in the 21st Century

20 April 2020

Nuclear deterrence theory, with its roots in the Cold War era, may not account for all eventualities in the 21st century. Researchers at Chatham House have worked with eight experts to produce this collection of essays examining four contested themes in contemporary policymaking on deterrence.

Dr Beyza Unal

Senior Research Fellow, International Security Programme

Yasmin Afina

Research Assistant, International Security Programme

Dr Patricia Lewis

Research Director, Conflict, Science & Transformation; Director, International Security Programme

Dr John Borrie

Associate Fellow, International Security Programme

Dr Jamie Shea

Associate Fellow, International Security Programme

Peter Watkins

Associate Fellow, International Security Programme

Dr Maria Rost Rublee

Associate Professor of International Relations, Monash University

Cristina Varriale

Research Fellow in Proliferation and Nuclear Policy, RUSI

Dr Tanya Ogilvie-White

Adjunct Senior Fellow, Griffith Asia Institute, Griffith University

Dr Andrew Futter

Associate Professor of International Politics, University of Leicester

Christine Parthemore

Chief Executive Officer, Council on Strategic Risks (CSR)

2020-04-20-NuclearDeterrence.jpeg

Royal Navy Vanguard Class submarine HMS Vigilant returning to HMNB Clyde after extended deployment. The four Vanguard-class submarines form the UK's strategic nuclear deterrent force. Photo: Ministry of Defence.

Summary

  • This collection of essays explores, from the perspectives of eight experts, four areas of deterrence theory and policymaking: the underlying assumptions that shape deterrence practice; the enduring value of extended deterrence; the impact of emerging technologies; and the ‘blurring’ of the lines between conventional and nuclear weapons.
  • Nuclear deterrence theory, with its roots in the Cold War era, may not account for all eventualities in security and defence in the 21st century, given the larger number of nuclear actors in a less binary geopolitical context. It is clear that a number of present factors challenge the overall credibility of ‘classical’ nuclear deterrence, meaning that in-depth analysis is now needed.
  • Uncertainty as to the appetite to maintain the current nuclear weapons policy architecture looms large in discussions and concerns on global and regional security. The demise of the Intermediate-Range Nuclear Forces Treaty, doubts over the potential extension of the New Strategic Arms Reduction Treaty, heightened regional tensions in Northeast and South Asia, together with the current and likely future risks and challenges arising from global technological competition, making it all the more urgent to examine long-held assumptions in the real-world context.
  • Extended deterrence practices differ from region to region, depending on the domestic and regional landscape. Increased focus on diplomatic capabilities to reduce risks and improve the long-term outlook at regional level, including by spearheading new regional arms-control initiatives, may be a viable way forward. Addressing the bigger picture – notably including, on the Korean peninsula, Pyongyang’s own threat perception – and the links between conventional and nuclear missile issues will need to remain prominent if long-term and concrete changes are to take hold.
  • Most states have long held nuclear weapons to be ‘exceptional’: their use would represent a dramatic escalation of a conflict that must never be attained. Latterly, however, some officials and scholars have made the case that the impact of the use of a low-yield nuclear weapon would not be entirely distinct from that of a large-scale conventional attack. This blurring of lines between conventional and nuclear deterrence strips nuclear weapons of their exceptional nature, in a context in which states are faced with diverse, complex and concurrent threats from multiple potential adversaries that are able to synchronize non-military and military options, up to and including nuclear forces. The use of nuclear weapons risks becoming a ‘new normal’, potentially reducing the threshold for use – to cyberattacks, for example. This has direct implications for discussions around strategic stability. 
  • While emerging technologies may offer tremendous opportunities in the modernization of nuclear weapons, they also present major risks and destabilizing challenges. Artificial intelligence, automation, and other developments in the cyber sphere affect dynamics on both the demand and supply sides of the nuclear deterrence equation. States and alliance such as NATO must adapt their deterrence thinking in light of these technological developments, and define their primary purpose and priorities in this shifting security context. Resilience planning, adaptation to the evolving security environment, threat anticipation, and consistent crisis management and incident response – as well as thinking about the mitigation measures necessary to prevent conflict escalation should deterrence fail – will all be critical in upholding nuclear deterrence as both policy and practice.




cl

Nuclear Tensions Must Not Be Sidelined During Coronavirus

1 May 2020

Ana Alecsandru

Research Assistant, International Security Programme
Although the pandemic means the Nuclear Non-Proliferation Treaty (NPT) Review Conference (RevCon) is postponed, the delay could be an opportunity to better the health of the NPT regime.

2020-05-01-Iran-Peace-Nuclear

Painted stairs in Tehran, Iran symbolizing hope. Photo by Fatemeh Bahrami/Anadolu Agency/Getty Images.

Despite face-to-face diplomatic meetings being increasingly rare during the current disruption, COVID-19 will ultimately force a redefinition of national security and defence spending priorities, and this could provide the possibility of an improved political climate at RevCon when it happens in 2021.

With US presidential elections due in November and a gradual engagement growing between the EU and Iran, there could be a new context for more cooperation between states by 2021. Two key areas of focus over the coming months will be the arms control talks between the United States and Russia, and Iran’s compliance with the 2015 Joint Comprehensive Plan of Action (JCPOA), also known as the Iran Nuclear Deal.

It is too early to discern the medium- and longer-term consequences of COVID-19 for defence ministries, but a greater focus on societal resilience and reinvigorating economic productivity will likely undercut the rationale for expensive nuclear modernization.

Therefore, extending the current New START (Strategic Arms Reduction Treaty) would be the best, most practical option to give both Russia and the United States time to explore more ambitious multilateral arms control measures, while allowing their current focus to remain on the pandemic and economic relief.

Continuing distrust

But with the current treaty — which limits nuclear warheads, missiles, bombers, and launchers — due to expire in February 2021, the continuing distrust between the United States and Russia makes this extension hard to achieve, and a follow-on treaty even less likely.

Prospects for future bilateral negotiations are hindered by President Donald Trump’s vision for a trilateral arms control initiative involving both China and Russia. But China opposes this on the grounds that its nuclear arsenal is far smaller than that of the two others.

While there appears to be agreement that the nuclear arsenals of China, France, and the UK (the NPT nuclear-weapons states) and those of the states outside the treaty (India, Pakistan, North Korea, and Israel) will all have to be taken into account going forward, a practical mechanism for doing so proves elusive.

If Joe Biden wins the US presidency he seems likely to pursue an extension of the New START treaty and could also prevent a withdrawal from the Open Skies treaty, the latest arms control agreement targeted by the Trump administration.

Under a Biden administration, the United States would also probably re-join the JCPOA, provided Tehran returned to strict compliance with the deal. Biden could even use the team that negotiated the Iran deal to advance the goal of denuclearization of the Korean peninsula.

For an NPT regime already confronted by a series of longstanding divergences, it is essential that Iran remains a signatory especially as tensions between Iran and the United States have escalated recently — due to the Qassim Suleimani assassination and the recent claim by Iran’s Revolutionary Guard Corps to have successfully placed the country’s first military satellite into orbit.

This announcement raised red flags among experts about whether Iran is developing intercontinental ballistic missiles due to the dual-use nature of space technology. The satellite launch — deeply troubling for Iran’s neighbours and the EU countries — may strengthen the US argument that it is a cover for the development of ballistic missiles capable of delivering nuclear weapons.

However, as with many other countries, Iran is struggling with a severe coronavirus crisis and will be pouring its scientific expertise and funds into that rather than other efforts — including the nuclear programme.

Those European countries supporting the trading mechanism INSTEX (Instrument in Support of Trade Exchanges) for sending humanitarian goods into Iran could use this crisis to encourage Iran to remain in compliance with the JCPOA and its NPT obligations.

France, Germany and the UK (the E3) have already successfully concluded the first transaction, which was to facilitate the export of medical goods from Europe to Iran. But the recent Iranian escalatory steps will most certainly place a strain on the preservation of this arrangement.

COVID-19 might have delayed Iran’s next breach of the 2015 nuclear agreement but Tehran will inevitably seek to strengthen its hand before any potential negotiations with the United States after the presidential elections.

As frosty US-Iranian relations — exacerbated by the coronavirus pandemic — prevent diplomatic negotiations, this constructive engagement between the E3 and Iran might prove instrumental in reviving the JCPOA and ensuring Iran stays committed to both nuclear non-proliferation and disarmament.

While countries focus their efforts on tackling the coronavirus pandemic, it is understandable resources may be limited for other global challenges, such as the increasing risk of nuclear weapons use across several regions.

But the potential ramifications of the COVID-19 crisis for the NPT regime are profound. Ongoing tensions between the nuclear-armed states must not be ignored while the world’s focus is elsewhere, and the nuclear community should continue to work together to progress nuclear non-proliferation and disarmament, building bridges of cooperation and trust that can long outlast the pandemic.




cl

Breaking the Cycle of Violence: Transitional Justice for the Victims of ISIS in Syria

28 April 2020

This paper aims to assist the region’s local authorities, and their key foreign backers, in understanding how transitional justice can provide alternative avenues for holding local ISIS members to account while contributing to the healing of communities.

Haid Haid

Senior Consulting Fellow, Middle East and North Africa Programme

2020-04-28-Syria-prison.jpg

A fighter with the Syrian Democratic Forces monitors prisoners accused of being affiliated with ISIS, at a prison in the northeastern Syrian city of Hassakeh on 25 October 2019. Photo: Getty Images.

Summary

  • Following the territorial defeat of Islamic State of Iraq and Syria (ISIS) in northeastern Syria, the Kurdish-led autonomous administration in the region is now grappling with the task of quickly dealing with thousands of the group’s detained members while bringing justice to their victims. To that end, local authorities are focusing on the use of counterterrorism laws and courts to charge captured ISIS members and determine their guilt accordingly.
  • The piecemeal approach to justice is deeply flawed, and raises particular concerns about due process. No precise instruments exist to determine the personal responsibility of ISIS individuals for specific crimes, or for their role in war crimes committed by the group. In any event, the scale of the crimes and the number of victims – as well as severe shortages of resources and workers – make dispensation of justice extremely difficult through the traditional legal system.
  • Not all detained ISIS members receive prison sentences. Individuals who did not hold senior roles in the group’s apparatus and are not accused of ‘major’ crimes (in practice, largely defined as fighting for ISIS and murder) are being released under limited reconciliation deals with tribal leaders. But the involvement of local community leaders in those efforts is not enough to ensure positive results. Many victims are upset at seeing ISIS members walk free without even admitting their guilt publicly or apologizing for the pain they caused.
  • To overcome the limitations of the current, counterterrorism-focused framework, a ‘transitional justice’ approach could provide judicial and non-judicial instruments to establish accountability for ISIS crimes and reduce community resistance to the reintegration of group members. A combination of non-judicial mechanisms such as truth commissions, missing persons’ committees, and reparations and victim-healing programmes could play a vital role in providing ISIS victims with a sense of justice while contributing to peacebuilding and stability.
  • Ignoring the urgency of developing a long-term plan to serve justice and contribute to community healing will almost certainly allow ISIS to continue to prevent the recovery and development of northeastern Syria. This, in turn, risks undermining the stability of the country and the region at large.




cl

Nuclear Tensions Must Not Be Sidelined During Coronavirus

1 May 2020

Ana Alecsandru

Research Assistant, International Security Programme
Although the pandemic means the Nuclear Non-Proliferation Treaty (NPT) Review Conference (RevCon) is postponed, the delay could be an opportunity to better the health of the NPT regime.

2020-05-01-Iran-Peace-Nuclear

Painted stairs in Tehran, Iran symbolizing hope. Photo by Fatemeh Bahrami/Anadolu Agency/Getty Images.

Despite face-to-face diplomatic meetings being increasingly rare during the current disruption, COVID-19 will ultimately force a redefinition of national security and defence spending priorities, and this could provide the possibility of an improved political climate at RevCon when it happens in 2021.

With US presidential elections due in November and a gradual engagement growing between the EU and Iran, there could be a new context for more cooperation between states by 2021. Two key areas of focus over the coming months will be the arms control talks between the United States and Russia, and Iran’s compliance with the 2015 Joint Comprehensive Plan of Action (JCPOA), also known as the Iran Nuclear Deal.

It is too early to discern the medium- and longer-term consequences of COVID-19 for defence ministries, but a greater focus on societal resilience and reinvigorating economic productivity will likely undercut the rationale for expensive nuclear modernization.

Therefore, extending the current New START (Strategic Arms Reduction Treaty) would be the best, most practical option to give both Russia and the United States time to explore more ambitious multilateral arms control measures, while allowing their current focus to remain on the pandemic and economic relief.

Continuing distrust

But with the current treaty — which limits nuclear warheads, missiles, bombers, and launchers — due to expire in February 2021, the continuing distrust between the United States and Russia makes this extension hard to achieve, and a follow-on treaty even less likely.

Prospects for future bilateral negotiations are hindered by President Donald Trump’s vision for a trilateral arms control initiative involving both China and Russia. But China opposes this on the grounds that its nuclear arsenal is far smaller than that of the two others.

While there appears to be agreement that the nuclear arsenals of China, France, and the UK (the NPT nuclear-weapons states) and those of the states outside the treaty (India, Pakistan, North Korea, and Israel) will all have to be taken into account going forward, a practical mechanism for doing so proves elusive.

If Joe Biden wins the US presidency he seems likely to pursue an extension of the New START treaty and could also prevent a withdrawal from the Open Skies treaty, the latest arms control agreement targeted by the Trump administration.

Under a Biden administration, the United States would also probably re-join the JCPOA, provided Tehran returned to strict compliance with the deal. Biden could even use the team that negotiated the Iran deal to advance the goal of denuclearization of the Korean peninsula.

For an NPT regime already confronted by a series of longstanding divergences, it is essential that Iran remains a signatory especially as tensions between Iran and the United States have escalated recently — due to the Qassim Suleimani assassination and the recent claim by Iran’s Revolutionary Guard Corps to have successfully placed the country’s first military satellite into orbit.

This announcement raised red flags among experts about whether Iran is developing intercontinental ballistic missiles due to the dual-use nature of space technology. The satellite launch — deeply troubling for Iran’s neighbours and the EU countries — may strengthen the US argument that it is a cover for the development of ballistic missiles capable of delivering nuclear weapons.

However, as with many other countries, Iran is struggling with a severe coronavirus crisis and will be pouring its scientific expertise and funds into that rather than other efforts — including the nuclear programme.

Those European countries supporting the trading mechanism INSTEX (Instrument in Support of Trade Exchanges) for sending humanitarian goods into Iran could use this crisis to encourage Iran to remain in compliance with the JCPOA and its NPT obligations.

France, Germany and the UK (the E3) have already successfully concluded the first transaction, which was to facilitate the export of medical goods from Europe to Iran. But the recent Iranian escalatory steps will most certainly place a strain on the preservation of this arrangement.

COVID-19 might have delayed Iran’s next breach of the 2015 nuclear agreement but Tehran will inevitably seek to strengthen its hand before any potential negotiations with the United States after the presidential elections.

As frosty US-Iranian relations — exacerbated by the coronavirus pandemic — prevent diplomatic negotiations, this constructive engagement between the E3 and Iran might prove instrumental in reviving the JCPOA and ensuring Iran stays committed to both nuclear non-proliferation and disarmament.

While countries focus their efforts on tackling the coronavirus pandemic, it is understandable resources may be limited for other global challenges, such as the increasing risk of nuclear weapons use across several regions.

But the potential ramifications of the COVID-19 crisis for the NPT regime are profound. Ongoing tensions between the nuclear-armed states must not be ignored while the world’s focus is elsewhere, and the nuclear community should continue to work together to progress nuclear non-proliferation and disarmament, building bridges of cooperation and trust that can long outlast the pandemic.




cl

Webinar: Breaking the Cycle of Violence: Transitional Justice for the Victims of ISIS in Syria

Research Event

12 May 2020 - 2:00pm to 3:00pm
Add to Calendar

Haid Haid, Senior Consulting Fellow, Middle East and North Africa Programme, Chatham House
Sara Kayyali, Syria Researcher, Middle East and North Africa Division, Human Rights Watch
Moderator: Lina Khatib, Director, Middle East and North Africa Programme, Chatham House

You can register your interest here. Alternatively, you can watch the webinar live on the MENA Programme Facebook page.

Following the territorial defeat of Islamic State of Iraq and Syria (ISIS) in northeastern Syria, the Kurdish-led autonomous administration in the region is now grappling with the task of quickly dealing with thousands of the group’s detained members while bringing justice to their victims. To that end, local authorities are focusing on the use of counterterrorism laws and courts to charge captured ISIS members and determine their guilt accordingly.

In a recent research paper, author Haid Haid argues that this approach to justice is deeply flawed as it raises concerns about due process and lacks the precise instruments to determine the personal responsibility of ISIS individuals for specific crimes, or for their role in war crimes committed by the group. The paper proposes that a ‘transitional justice’ approach could provide judicial and non-judicial instruments to establish accountability for ISIS crimes and reduce community resistance to the reintegration of group members.

In this webinar, part of the MENA Programme’s Online Event Series, speakers will examine the benefits of such an approach to justice for overcoming the limitations of the current, counterterrorism-focused framework. Panelists will discuss the alternative mechanisms local authorities and their key foreign backers can use to hold local ISIS members to account while contributing to the healing of communities.
 
The event will be held on the record.

Reni Zhelyazkova

Programme Coordinator, Middle East and North Africa Programme
+44 (0)20 7314 3624




cl

SUV25 and {micro}PERCIST: Precision Imaging of Response to Therapy in Co-Clinical FDG-PET Imaging of Triple Negative Breast Cancer (TNBC) Patient-Derived Tumor Xenografts (PDX)

Numerous recent works highlight the limited utility of established tumor cell lines in recapitulating the heterogeneity of tumors in patients. More realistic preclinical cancer models are thought to be provided by transplantable, patient-derived tumor xenografts (PDX). Inter- and intra-tumor heterogeneity of PDX, however, present several challenges in developing optimal quantitative pipelines to assess response to therapy. The objective of this work was to develop and optimize image metrics of FDG-PET to assess response to combination docetaxel/carboplatin therapy in a co-clinical trial involving triple negative breast cancer (TNBC) PDX. We characterize the reproducibility of SUV metrics to assess response to therapy and optimize a preclinical PERCIST (µPERCIST) paradigm to complement clinical standards. Considerations in this effort included variability in tumor growth rate and tumor size; solid tumor vs. tumor heterogeneity and necrotic phenotype; and optimal selection of tumor slice versus whole tumor. A test-retest protocol was implemented to optimize the reproducibility of FDG-PET SUV thresholds, SUVpeak metrics, and µPERCIST parameters. In assessing response to therapy, FDG-PET imaging was performed at baseline and +4 days following therapy. The reproducibility, accuracy, variability, and performance of imaging metrics to assess response to therapy were determined. We defined an index—"Quantitative Response Assessment Score (QRAS)"—to integrate parameters of prediction and precision, and thus aid in selecting optimal image metrics of response to therapy. Our data suggests that a threshold value of 25% (SUV25) of SUVmax was highly reproducible (<9% variability). Concordance and reproducibility of µPERCIST were maximized at α=0.7 and β=2.8 and exhibited high correlation to SUV25 measures of tumor uptake. QRAS scores favor SUV25 followed by SUVP14 as optimal metrics of response to therapy. Additional studies are warranted to fully characterize the utility of SUV25 and µPERCIST SUVP14 as image metrics of response to therapy across a wide range of therapeutic regiments and PDX models.




cl

Comparison between 18F-FDG-PET- and CT-based criteria in non-small cell lung cancer (NSCLC) patients treated with Nivolumab

Due to their peculiar mechanism of action, the evaluation of radiological response to immune checkpoint inhibitors (ICI) presents many challenges in solid tumors. We aimed to compare the evaluation of first response to Nivolumab by means of CT-based criteria with respect to fluorodeoxyglucose positron emission tomography (FDG-PET) response criteria in non-small-cell lung cancer (NSCLC) patients. Methods: 72 patients with advanced NSCLC were recruited in a mono-institutional ancillary trial within the expanded access program (EAP; NCT02475382) for Nivolumab. Patients underwent CT scan and FDG-PET at baseline and after 4 cycles (first evaluation). In case of progressive disease (PD), an additional evaluation was performed after two further cycles in order to confirm progression. We evaluated the response to treatment with CT scan by means of response evaluation criteria in solid tumors (RECIST) 1.1 and Immuno-related Response Criteria (IrRC) and with FDG-PET by means of PERCIST and immunotherapy-modified-PERCIST (imPERCIST) criteria. The concordance between CT- and PET-based criteria and the capability of each method to predict overall survival (OS) were evaluated. Results: 48/72 patients were evaluable for first response assessment with both PET- and CT-based criteria. We observed low concordance between CT- and PET-based criteria (Kappa value of 0.346 and 0.355 and Kappa value of 0.128 and 0.198 between PERCIST and imPERCIST versus RECIST and irRC respectively). Looking at OS, IrRC were more reliable to distinguish responders from non-responders. However thanks to the prognostic value of partial metabolic response assessed by both PERCIST and Immuno-PERCIST, PET-based response maintained prognostic significant in patients classified as progressive disease on the basis of irRC. Conclusion: Even though the present study did not support the routine use of FDG-PET in the general population of NSCLC patients treated with ICI, it suggests the added prognostic value of the metabolic response assessment, potentially improving the therapeutic decision-making.




cl

Imaging P-glycoprotein Induction at the Blood-Brain Barrier of a Beta-Amyloidosis Mouse Model with 11C-Metoclopramide PET

P-glycoprotein (ABCB1) plays an important role at the blood-brain barrier (BBB) in promoting the clearance of neurotoxic beta-amyloid (Aß) peptides from the brain into the blood. ABCB1 expression and activity were found to be decreased in the brains of Alzheimer disease (AD) patients. Treatment with drugs which induce cerebral ABCB1 activity may be a promising approach to delay the build-up of Aß deposits in the brain by enhancing the clearance of Aß peptides from the brain. The aim of this study was to investigate whether PET with the weak ABCB1 substrate radiotracer 11C-metoclopramide can measure ABCB1 induction at the BBB in a beta-amyloidosis mouse model (APP/PS1-21 mice) and in wild-type mice. Methods: Groups of wild-type and APP/PS1-21 mice aged 50 or 170 days underwent 11C-metoclopramide baseline PET scans or scans after intraperitoneal treatment with the rodent pregnane X receptor (PXR) activator 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN, 25 mg/kg) or its vehicle over 7 days. At the end of the PET scans, brains were harvested for immunohistochemical analysis of ABCB1 and Aß levels. In separate groups of mice, radiolabeled metabolites of 11C-metoclopramide were determined in plasma and brain at 15 min after radiotracer injection. As an outcome parameter of cerebral ABCB1 activity, the elimination slope of radioactivity washout from the brain (kE,brain) was calculated. Results: PCN treatment resulted in an increased clearance of radioactivity from the brain as reflected by significant increases in kE,brain (from +26% to +54% relative to baseline). Immunohistochemical analysis confirmed ABCB1 induction in the brains of PCN-treated APP/PS1-21 mice with a concomitant decrease in Aß levels. There was a significant positive correlation between kE,brain values and ABCB1 levels in the brain. In wild-type mice, a significant age-related decrease in kE,brain values was found. Metabolite analysis showed that the majority of radioactivity in the brain was composed of unmetabolized 11C-metoclopramide in all animal groups. Conclusion: 11C-metoclopramide can measure ABCB1 induction in the mouse brain without the need to consider an arterial input function and may find potential application in AD patients to non-invasively evaluate strategies to enhance the clearance properties of the BBB.




cl

177Lu-NM600 targeted radionuclide therapy extends survival in syngeneic murine models of triple-negative breast cancer

Triple negative breast cancer (TNBC) remains the most aggressive subtype of breast cancer leading to the worst prognosis. Because current therapeutic approaches lack efficacy, there is a clinically unmet need for effective treatment alternatives. Herein, we demonstrate a promising strategy utilizing a tumor-targeting alkylphosphocholine (NM600) radiolabeled with 177Lu for targeted radionuclide therapy (TRT) of TNBC. In two murine syngeneic models of TNBC, we confirmed excellent tumor targeting and rapid normal tissue clearance of the PET imaging analog 86Y-NM600. Based on longitudinal PET/CT data acquired with 86Y-NM600, we estimated the dosimetry of therapeutic 177Lu-NM600, which showed larger absorbed doses in the tumor compared to normal tissues. Administration of 177Lu-NM600 resulted in significant tumor growth inhibition and prolonged overall survival in mice bearing syngeneic 4T07 and 4T1 tumors. Complete response was attained in 60% of 4T07 bearing mice, but animals carrying aggressive 4T1 tumor grafts succumbed to metastatic progression. The injected activities used for treatment (9.25 and 18.5 MBq) were well tolerated, and only mild transient cytopenia was noted. Overall, our results suggest that 177Lu-NM600 TRT has potential for treatment of TNBC and merits further exploration in a clinical setting.




cl

212Pb Alpha-Radioimmunotherapy targeting CD38 in Multiple Myeloma: a preclinical study.

Multiple myeloma (MM) is a plasma cell cancer and represents the second most frequent hematological malignancy. Despite new treatments and protocols including high doses chemotherapy associated with autologous stem cell transplantation, the prognosis of MM patients is still poor. Alpha-radioimmunotherapy (alpha-RIT) represents an attractive treatment strategy due to the high linear energy transfer and short path length of alpha-radiation in tissues, resulting in high tumor cell killing and low toxicity to surrounding tissues. In this study, we investigated the potential of alpha-RIT with 212Pb-Daratumumab (anti-CD38), in both in vitro and in vivo models, as well as an anti-mouse CD38 antibody using in vivo models. Methods: Inhibition of cell proliferation after incubation of RPMI8226 cell line with increasing activities (0.185-3.7 kBq/ml) of 212Pb-isotypic control or 212Pb-Daratumumab was evaluated. Biodistribution was performed in vivo by SPECT-CT imaging and post-mortem. Dose range finding (DRF) and acute toxicity studies were conducted. As Daratumumab does not bind the murine CD38, biodistribution and DRF were also determined using an anti-murine CD38 antibody. To evaluate in vivo efficacy of 212Pb-Daratumumab, mice were engrafted subcutaneously with 5.106 RPMI8226 cells. Mice were treated 13 days post-engraftment with an intravenous injection of 212Pb-Daratumumab or control solutions. Therapeutic efficacy was monitored by tumor volume measurements and overall survival. Results: Significant inhibition of proliferation of the human myeloma RPMI8226 cell line was observed after three days of incubation with 212Pb-Daratumumab compared to 212Pb-Isotypic Control or cold antibodies. Biodistribution studies showed a specific tumoral accumulation of Daratumumab. No toxicity was observed with 212Pb-Daratumumab up to 370 kBq due to the lack of cross-reactivity. Nevertheless, acute toxicity experiments with 212Pb-anti-mCD38 established a toxic activity of 277.5 kBq. To remain within realistically safe treatment activities for efficacy studies, mice were treated with 185 kBq or 277.5 kBq of 212Pb-Daratumumab. Marked tumor growth inhibition compared to controls was observed, with a median survival of 55 days for 277.5 kBq of 212Pb-Daratumumab instead of 11 for PBS control groups. Conclusion: These results showed 212Pb-Daratumumab efficacy on xenografted mice with significant tumor regression and increased survival. This study highlights alpha-RIT potency in MM treatment.




cl

Impact of 68Ga-PSMA-11 PET/CT on Staging and Management of Prostate Cancer Patients in Various Clinical Settings: A Prospective Single Center Study

The impact of prostate specific membrane antigen (PSMA) PET/CT on management of prostate cancer (PCa) patients with biochemical recurrence (BCR) is well-established. However, whether and how PSMA PET/CT affects the management of patients undergoing scans for other clinical indications remains unknown. The goal of this study was to determine the impact of 68Ga-PSMA-11 PET/CT on initial and subsequent management decisions in a cohort of PCa patients referred for various indications ("basket trial") excluding the two main classical indications: BCR and presurgical staging. Methods: This was a prospective study of 197 patients that aimed to determine the impact of 68Ga-PSMA-11 PET/CT on PCa stage and management. Indications for PSMA PET/CT were: initial staging of non-surgical candidates (30 patients) and re-staging after definitive treatment (n = 168). The re-staging cohort comprised: patients re-staged with known advanced metastatic disease (n = 103), after androgen deprivation therapy only (n = 16), after surgery with serum PSA levels <0.2 ng/ml (n = 13), after radiation therapy (RT) not meeting the Phoenix criteria (n = 22) and after other primary local treatments [i.e. high-intensity focused ultrasound (HIFU), focal laser ablation, cryoablation, hyperthermia or irreversible electroporation] (n = 13). Patients with BCR and candidates for curative surgery were excluded. Impact on management was assessed using pre- and post-PET questionnaires completed by referring physicians, electronic chart review and/or patient telephone encounters. Results: PSMA PET/CT changed disease stage in 135/197 (69%) patients (38% up-stage, 30% down-stage and no changes in stage in 32%). Management was affected in 104/182 (57%) patients. Specifically, PSMA PET/CT impacted management of patients who were re-staged after RT without meeting the Phoenix criteria for BCR, after other definitive local treatments and with advanced metastatic disease in 13/18 (72%), 8/12 (67%) and 59/96 (61%), respectively. Conclusion: PSMA PET/CT has a profound impact on stage and management of PCa patients outside of the two main classical indications (BCR and presurgical staging) across all examined clinical scenarios.




cl

Individual mapping of innate immune cell activation is a candidate marker of patient-specific trajectories of disability worsening in Multiple Sclerosis

Objective: To develop a novel approach to generate individual maps of white matter (WM) innate immune cell activation using 18F-DPA-714 translocator protein (TSPO) positron emission tomography (PET), and to explore the relationship between these maps and individual trajectories of disability worsening in patients with multiple sclerosis (MS). Methods: Patients with MS (n = 37), whose trajectories of disability worsening over the 2 years preceding study entry were calculated, and healthy controls (n = 19) underwent magnetic resonance magnetic and 18F-DPA-714 PET. A threshold of significant activation of 18F-DPA-714 binding was calculated with a voxel-wise randomized permutation-based comparison between patients and controls, and used to classify each WM voxel in patients as characterized by a significant activation of innate immune cells (DPA+) or not. Individual maps of innate immune cell activation in the WM were employed to calculate the extent of activation in WM regions-of-interests and to classify each WM lesion as "DPA-active", "DPA-inactive" or "unclassified". Results: Compared with the WM of healthy controls, patients with MS had a significantly higher percentage of DPA+ voxels in the normal-appearing WM, (NAWM in patients=24.9±9.7%; WM in controls=14.0±7.8%, p<0.001). In patients with MS, the percentage of DPA+ voxels showed a significant increase from NAWM, to perilesional areas, T2 hyperintense lesions and T1 hypointense lesions (38.1±13.5%, 45.0±17.9%, and 51.9±22.9%, respectively, p<0.001). Among the 1379 T2 lesions identified, 512 were defined as DPA-active and 258 as DPA-inactive. A higher number of lesions classified as DPA-active (OR=1.13, P = 0.009), a higher percentage of DPA+ voxels in the NAWM (OR=1.16, P = 0.009) and in T1-spin-echo lesions (OR=1.06, P = 0.036), were significantly associated with a retrospective more severe clinical trajectory in patients with MS. Conclusion: A more severe trajectory of disability worsening in MS is associated with an innate immune cells activation inside and around WM lesions. 18F-DPA-714 PET may provide a promising biomarker to identify patients at risk of severe clinical trajectory.




cl

Demarcation of Sepsis-Induced Peripheral and Central Acidosis with pH-Low Insertion Cyclic (pHLIC) Peptide

Acidosis is a key driver for many diseases, including cancer, sepsis, and stroke. The spatiotemporal dynamics of dysregulated pH across disease remains elusive and current diagnostic strategies do not provide localization of pH alterations. We sought to explore if PET imaging using hydrophobic cyclic peptides that partition into the cellular membrane at low extracellular pH (denoted as "pHLIC") can permit accurate in vivo visualization of acidosis. Methods: Acid-sensitive cyclic peptide c[E4W5C] pHLIC was conjugated to bifunctional maleimide-NO2A and radiolabeled with copper-64 (t1/2 = 12.7 h). C57BL/6J mice were administered LPS (15 mg/kg) or saline (vehicle) and serially imaged with [64Cu]Cu-c[E4W5C] over 24 h. Ex vivo autoradiography was performed on resected brain slices and subsequently stained with cresyl violet to enable high-resolution spatial analysis of tracer accumulation. A non- pH-sensitive cell-penetrating control peptide (c[R4W5C]) was used to confirm specificity of [64Cu]Cu-c[E4W5C]. CD11b (macrophage/microglia) and TMEM119 (microglia) immunostaining was performed to correlate extent of neuroinflammation with [64Cu]Cu-c[E4W5C] PET signal. Results: [64Cu]Cu-c[E4W5C] radiochemical yield and purity was >95% and >99% respectively, with molar activity >0.925 MBq/nmol. Significantly increased [64Cu]Cu-c[E4W5C] uptake was observed in LPS-treated mice (vs. vehicle) within peripheral tissues including blood, lungs, liver, and small intestines (P < 0.001-0.05). Additionally, there was significantly increased [64Cu]Cu-c[E4W5C] uptake in the brains of LPS-treated animals. Autoradiography confirmed increased uptake in the cerebellum, cortex, hippocampus, striatum, and hypothalamus of LPS-treated mice (vs. vehicle). Immunohistochemical (IHC) analysis revealed microglial/macrophage infiltrate, suggesting activation in brain regions containing increased tracer uptake. [64Cu]Cu-c[R4W5C] demonstrated significantly reduced uptake in the brain and periphery of LPS mice compared to the acid-mediated [64Cu]Cu-c[E4W5C] tracer. Conclusion: Here, we demonstrate that a pH-sensitive PET tracer specifically detects acidosis in regions associated with sepsis-driven pro-inflammatory responses. This study suggests that [64Cu]Cu-pHLIC is a valuable tool to noninvasively assess acidosis associated with both central and peripheral innate immune activation.




cl

64Cu-DOTATATE PET/CT for Imaging Patients with Known or Suspected Somatostatin Receptor-Positive Neuroendocrine Tumors: Results of the First US Prospective, Reader-Blinded Clinical Trial

Studies demonstrate that the investigational 64Cu-DOTATATE radiopharmaceutical may provide diagnostic and logistical benefits over available imaging agents for patients with somatostatin receptor (SSTR)-positive neuroendocrine tumors (NETs). Accordingly, we aimed to prospectively determine the lowest dose of 64Cu-DOTATATE that facilitates diagnostic quality scans and evaluated the diagnostic performance and safety in a phase III study of patients with SSTR-expressing NETs. Methods: A dose-ranging study was conducted in 12 patients divided into 3 dose groups (111 MBq [3.0 mCi], 148 MBq [4.0 mCi], and 185 MBq [5.0 mCi] ± 10%) to determine the lowest dose of 64Cu-DOTATATE that produced diagnostic quality PET/CT images. Using the 64Cu-DOTATATE dose identified in the dose-ranging study, 3 independent nuclear medicine physicians who were blinded to all clinical information read PET/CT scans from 21 healthy volunteers and 42 NET-positive patients to determine those with "Disease" and "No Disease," as well as "Localized" versus "Metastatic" status. Blinded-reader evaluations were compared to a patient-specific standard of truth (SOT), which was established by an independent oncologist who used all previously available pathology, clinical, and conventional imaging data. Diagnostic performance calculated for 64Cu-DOTATATE included sensitivity, specificity, negative predictive value, positive predictive value, and accuracy. Inter- and intra-reader reliability, as well as ability to differentiate between localized and metastatic disease, was also determined. Adverse events (AEs) were recorded from 64Cu-DOTATATE injection through 48 hours post-injection. Results: The dose-ranging study identified 148 MBq (4.0 mCi) as the optimal dose to obtain diagnostic quality PET/CT images. Following database lock, diagnostic performance from an initial majority read of the 3 independent readers showed a significant 90.9% sensitivity (P = 0.0042) and 96.6% specificity (P < 0.0001) for detecting NETs, which translated to a 100.0% sensitivity and 96.8% specificity after correcting for an initial SOT misread. Excellent inter- and intra-reader reliability, as well as ability to distinguish between localized and metastatic disease, was also noted. No AEs were related to 64Cu-DOTATATE, and no serious AEs were observed. Conclusion: 64Cu-DOTATATE PET/CT is a safe imaging technique that provides high-quality and accurate images at a dose of 148 MBq (4.0 mCi) for the detection of somatostatin-expressing NETs.




cl

In vivo instability of 177Lu-DOTATATE during peptide receptor radionuclide therapy

Peptide receptor radiotherapy using 177Lu-labeled somatostatin ligand analogs is a well-established treatment for neuroendocrine tumors (NET), with 177Lu-DOTATATE having acquired marketing authorization in Europe and the USA. The investigation of the pharmacokinetics of those radiopharmaceuticals in vivo in humans is crucial for personalized treatment management and understanding of treatment effects. It requires input data on the in vivo stability of the radiopharmaceuticals in blood and plasma. The work presented here is devoted to the investigation of in vivo stability of 177Lu-DOTATATE in humans affected by NET. Unexpectedly, fast metabolism of the radiopharmaceutical was observed, with fraction of intact 177Lu-DOTATATE in plasma decreasing rapidly to 23±5% (mean ± SD) at 24 h and 1.7±0.9% at 96 h after injection.




cl

Efficacy of Peptide Receptor Radionuclide Therapy for Esthesioneuroblastoma

Objectives: Esthesioneuroblastoma (ENB) is rare with limited therapeutic options when unresectable or metastatic; however, expression of somatostatin receptors qualifies it for peptide receptor radionuclide therapy (PRRT). We report outcomes of PRRT in ENB from two referral centers. Methods: Using PRRT databases at two European Neuroendocrine Tumour Society Centers of Excellence, case finding was undertaken between 2004-2018 for patients who had PRRT with recurrent/metastatic ENB deemed unsuitable for further conventional therapies. Evaluations of response using a composite reference standard and for survival were performed. Results: Of seven patients, four had partial response, two had disease stabilization and one had early progression. Possible side effects include worsening CSF-leaks. Median progression-free survival was 17 months (range, 0-30), and median overall survival was 32 months (range, 4–53). Conclusion: PRRT shows promising efficacy and moderate survival duration in unresectable locally advanced or metastatic ENB warranting larger cohort studies incorporating measures of quality of life.




cl

PSMA PET/CT and standard plus PET/CT-Ultrasound fusion targeted prostate biopsy can diagnose clinically significant prostate cancer in men with previous negative biopsies

The purpose of this study was to investigate the feasibility and diagnostic efficacy of 68Ga-PSMA positron emission tomography/computed tomography (PET/CT) combined with PET-ultrasound image-guided biopsy in the diagnosis of prostate cancer. Methods: A total of 31 patients with previously negative prostate biopsy, but persistent elevated serum prostate specific antigen (PSA), were imaged with a 68Ga-labeled prostate-specific membrane antigen (PSMA) PET/CT ligand prior to undergoing repeat prostate biopsy. Based on the proposed PROMISE criteria, PSMA PET/CT results were interpreted as negative (miPSMA-ES 0-1) or positive (miPSMA-ES 2-3). All patients underwent standard template systematic biopsy with up to four additional PSMA PET-ultrasound fusion image-guided biopsy cores. The sensitivity, specificity, positive and negative predictive values, and accuracy of PSMA PET/CT were determined. In addition, the correlation between miPSMA-ES and detection rate of prostate cancer was also analyzed. Univariate logistic regression models were established using PSMA PET/CT semi-quantitative analysis parameters to predict the outcome of repeat prostate biopsy. Results: The median age of patients was 65 years (range 53-81), and the median PSA level was 18.0 ng/ml (range 5.48-49.77 ng/ml). Prostate cancer was detected in 15/31 patients (48.4%) and 12/31 patients (38.7%) had clinically significant disease. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 68Ga-PSMA PET/CT in the diagnosis of clinically significant prostate cancer were 100.0%, 68.4%, 66.7%, 100.0% and 80.6%, respectively. The detection rate of prostate cancer increased with the increase of miPSMA-ES score. The detection rate of clinically significant prostate cancer in miPSMA-ES 0-1, 2 and 3 groups were 0%, 54.5% and 85.7% respectively. Semi-quantitative analysis of 68Ga-PSMA PET/CT images showed that predictive models based on maximum standardized uptake value (SUVmax), tumor-to-background normal prostate SUV (SUVT/BGp) and tumor-to-background normal liver SUV (SUVratio) could effectively predict clinically significant prostate cancer; area under the curves were 0.930, 0.877, and 0.956, respectively. Conclusion: This study preliminarily confirmed that 68Ga-PSMA PET/CT imaging combined with PET-ultrasound fusion image-guided prostate biopsy can effectively detect clinically significant prostate cancer. Prebiopsy 68Ga-PSMA PET/CT has predictive value for clinically significant cancer in the studied patient population.




cl

Clinical evaluation of a data-driven respiratory gating algorithm for whole-body positron emission tomography with continuous bed motion

Respiratory gating is the standard to overcome respiration effects degrading image quality in positron emission tomography (PET). Data-driven gating (DDG) using signals derived from PET raw data are promising alternatives to gating approaches requiring additional hardware. However, continuous bed motion (CBM) scans require dedicated DDG approaches for axially-extended PET, compared to DDG for conventional step-and-shoot scans. In this study, a CBM-capable DDG algorithm was investigated in a clinical cohort, comparing it to hardware-based gating using gated and fully motion-corrected reconstructions. Methods: 56 patients with suspected malignancies in thorax or abdomen underwent whole-body 18F-FDG CBM-PET/CT imaging using DDG and hardware-based respiratory gating (pressure-sensitive belt gating, BG). Correlation analyses were performed on both gating signals. Besides static reconstructions, BG and DDG were used for optimally-gated PET (BG-OG, DDG-OG) and fully motion-corrected PET (elastic motion correction; BG-EMOCO, DDG-EMOCO). Metabolic volumes, SUVmax and SUVmean of lesions were compared amongst the reconstructions. Additionally, the quality of lesion delineation in different PET reconstructions was independently evaluated by three experts. Results: Global correlation coefficients between BG and DDG signals amounted to 0.48±0.11, peaking at 0.89±0.07 when scanning the kidney and liver region. In total, 196 lesions were analyzed. SUV measurements were significantly higher in BG-OG, DDG-OG, BG-EMOCO and DDG-EMOCO compared to static images (P<0.001; median SUVmax: static, 14.3±13.4; BG-EMOCO, 19.8±15.7; DDG-EMOCO, 20.5±15.6; BG-OG, 19.6±17.1; DDG-OG, 18.9±16.6). No significant differences between BG-OG and DDG-OG, and BG-EMOCO and DDG-EMOCO, respectively, were found. Visual lesion delineation was significantly better in BG-EMOCO and DDG-EMOCO than in static reconstructions (P<0.001); no significant difference was found comparing BG and DDG (EMOCO, OG, respectively). Conclusion: DDG-based motion-compensation of CBM-PET acquisitions outperforms static reconstructions, delivering qualities comparable to hardware-based approaches. The new algorithm may be a valuable alternative for CBM-PET systems.




cl

The role of FAPI-PET/CT for patients with malignancies of the lower gastrointestinal tract - first clinical experience

For oncological management or radiotherapy planning, reliable staging tools are essential. Recent development of quinoline-based ligands targeting cancer-associated fibroblasts demonstrated promising preclinical and clinical results. The current study aimed to evaluate the role of fibroblast activation protein inhibitors (FAPI)-positron-emission tomography (PET)/computed tomography (CT) for primary malignancies located within the lower gastrointestinal tract (LGT) as a very first clinical analysis. Methods: 68Ga-FAPI-PET/CT was performed in a cohort of 22 patients with LGT including 15 patients with metastatic disease, 1 patient with suspected local relapse and 6 treatment-naïve patients. 68Ga-FAPI-04 and 68Ga-FAPI-46 uptake was quantified by standardized uptake values (SUV)max and (SUV)mean. After comparison with standard imaging, changes in tumor stage/ localization and (radio)oncological management were recorded. Results: The highest uptake of FAPI tracer was observed in liver metastases and anal cancer with a SUVmax of 9.1 and 13.9, respectively. Due to a low background activity in normal tissue, there was a high tumor-to-background ratio of more than 3 in most lesions. In treatment-naïve patients, TNM was changed in 50% while for patients with metastases new findings occurred in 47%. In total, FAPI-imaging caused a high, medium and low change of (radio)oncological management in 19%, 33% and 29%, respectively. For almost every patient undergoing irradiation, target volume delineation was improved by 68Ga-FAPI-PET/CT. Conclusion: The present study demonstrated that both primary and metastatic LGT were reliably detected by 68Ga-FAPI-PET/CT leading to relevant changes in TNM status and (radio)oncological management. 68Ga-FAPI-PET/CT seems to be a highly promising imaging agent for the diagnosis and management of LGT, potentially opening new applications for tumor (re-)staging.




cl

Clinical Translation of a 68Ga-labeled Integrin {alpha}v{beta}6-targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer

The overexpression of integrin αvβ6 in pancreatic cancer makes it a promising target for noninvasive positron emission tomography (PET) imaging. However, currently, most integrin αvβ6-targeting radiotracers are based on linear peptides, which are quickly degraded in the serum by proteinases. Herein, we aimed to develop and assess a 68Ga-labeled integrin αvβ6-targeting cyclic peptide (68Ga-cycratide) for PET imaging of pancreatic cancer. Methods: 68Ga-cycratide was prepared, and its PET imaging profile was compared with that of the linear peptide (68Ga-linear-pep) in an integrin αvβ6-positive BxPC-3 human pancreatic cancer mouse model. Five healthy volunteers (two women and three men) underwent whole-body PET/CT imaging after injection of 68Ga-cycratide, and biodistribution and dosimetry calculations were determined. PET/CT imaging of two patients was performed to investigate the potential role of 68Ga-cycratide in pancreatic cancer diagnosis and treatment monitoring. Results: 68Ga-cycratide exhibited significantly higher tumor uptake than did 68Ga-linear-pep in BxPC-3 tumor-bearing mice, owing—at least in part—to markedly improved in vivo stability. 68Ga-cycratide could sensitively detect the pancreatic cancer lesions in an orthotopic mouse model and was well tolerated in all healthy volunteers. Preliminary PET/CT imaging in patients with pancreatic cancer demonstrated that 68Ga-cycratide was comparable to 18F-fludeoxyglucose for diagnostic imaging and post-surgery tumor relapse monitoring. Conclusion: 68Ga-cycratide is an integrin αvβ6-specific PET radiotracer with favorable pharmacokinetics and dosimetry profile. 68Ga-cycratide is expected to provide an effective noninvasive PET strategy for pancreatic cancer lesion detection and therapy response monitoring.




cl

Early prostate-specific antigen changes and clinical outcome following 177Lu-PSMA radionuclide treatment in patients with metastatic castration-resistant prostate cancer

Background: Prostate-specific antigen (PSA) is widely used to monitor treatment response in patients with metastatic castration-resistant prostate cancer (mCRPC). However, PSA measurements are considered only after 12 wk of treatment. We aimed to evaluate the prognostic value of early PSA changes following 177Lu-labelled prostate specific membrane antigen (LuPSMA) radionuclide treatment in mCRPC patients. Methods: Men who were treated under a compassionate access program with LuPSMA at our institution and had available PSA values at baseline, at 6 wk after treatment initiation were included in this retrospective analysis. Patients were assigned to three groups based on PSA changes: 1) response: ≥30% decline, 2) progression: ≥25% increase and 3) stable: <30% decline and <25% increase. The co-primary endpoints were overall survival and imaging-based progression-free survival. The secondary end points were PSA changes at 12 wk and PSA flare-up. Results: We identified 124 eligible patients with PSA values at 6 wk. A ≥30% decline in PSA at 6 wk was associated with longer overall survival (median 16.7 mo; 95%CI 14.4–19.0) compared with patients with stable PSA (median: 11.8 mo; 95%CI 8.6–15.1; P = 0.007) and progression (median: 6.5 mo; 95%CI 5.2–7.8; p<0.001). Patients with ≥30% decline in PSA at 6 wk also had a reduced risk of imaging-based progression compared with patients with stable PSA (HR: 0.60; 95%CI 0.38–0.94; P = 0.02), while patients with PSA progression had a higher risk of imaging-based progression compared with those showing stable PSA (HR: 3.18; 95%CI 1.95–5.21; p<0.001). The percentage changes of PSA at 6 wk and 12 wk were highly associated (r=0.90; p<0.001). 29 of 31 (94%) patients who experienced early PSA progression at 6 wk achieved biochemical progression at 12 wk. Overall, only 1 of 36 (3%) patients with PSA progression at 6 wk achieved any PSA decline at 12 wk (1% of the entire cohort). Limitations of the study included its retrospective nature and the single center experience. Conclusion: PSA changes at 6 wk after LuPSMA initiation are an early indicator of long-term clinical outcome. Patients progressing by PSA after 6 wk of treatment could benefit from a very early treatment switch decision. PSA flare-up during LuPSMA treatment is very uncommon. Prospective studies are now warranted to validate our findings and potentially inform clinicians earlier on the effectiveness of LuPSMA.




cl

Biokinetics of Radiolabeled Monoclonal Antibody BC8: Differences in Biodistribution and Dosimetry among Hematologic Malignancies.

We reviewed 111In-DOTA-anti-CD45 antibody (BC8) imaging and bone marrow biopsy measurements to ascertain biodistribution and biokinetics of the radiolabeled antibody and to investigate differences based on type of hematologic malignancy. Methods: Serial whole-body scintigraphic images (4 time-points) were obtained after infusion of the 111In-DOTA-BC8 (176-406 MBq) in 52 adult patients with hematologic malignancies (lymphoma, multiple myeloma, acute myeloid leukemia and myelodysplastic syndrome). Counts were obtained for the regions of interest for spleen, liver, kidneys, testicles (in males), and two marrow sites (acetabulum and sacrum) and correction for attenuation and background was made. Bone marrow biopsies were obtained 14-24 hours post-infusion and percent of administered activity was determined. Radiation absorbed doses were calculated. Results: Initial uptake in liver averaged 32% ± 8.4% (S.D.) of administered activity (52 patients), which cleared monoexponentially with biological half-time of 293 ± 157 hours (33 patients) or did not clear (19 patients). Initial uptake in spleen averaged 22% ± 12% and cleared with a biological half-time 271 ± 185 hours (36 patients) or longer (6 patients). Initial uptake in kidney averaged 2.4% ± 2.0% and cleared with a biological half-time of 243 ± 144 hours (27 patients) or longer (9 patients). Initial uptake in red marrow averaged 23% ± 11% and cleared with half-times of 215 ± 107 hours (43 patients) or longer (5 patients). Whole-body retention half-times averaged 198 ± 75 hours. Splenic uptake was higher in the AML/MDS group when compared to the lymphoma group (p ≤ 0.05) and to the multiple myeloma group (p ≤ 0.10). Liver represented the dose-limiting organ. For liver uptake, no significant differences were observed between the three malignancy groups. Average calculated radiation absorbed doses per unit administered activity for a therapy infusions of 90Y-DOTA-BC8 were for red marrow: 470 ± 260 cGy/MBq, liver 1100 ± 330 cGy/MBq, spleen 4120 ± 1950 cGy/MBq, total body 7520 ± 20 cGy/MBq, osteogenic cells 290 ± 200 cGy/MBq, and kidneys 240 ± 200 cGy/MBqR. Conclusion: 111In-DOTA-BC8 had long retention time in liver, spleen, kidneys, and red marrow, and the highest absorbed doses were calculated for spleen and liver. Few differences were observed by malignancy type. The exception was greater splenic uptake among leukemia/MDS group when compared to lymphoma and multiple myeloma groups.




cl

Initial Clinical Results of a Novel Immuno-PET Theranostic Probe in HER2-negative Breast Cancer

Purpose: This prospective study evaluated the imaging performance of a novel immunological pretargeting positron-emission tomorgraphy (immuno-PET) method in patients with HER2-negative, carcinoembryonic antigen (CEA)-positive, metastatic breast cancer (BC), compared to computed tomography (CT), bone magnetic resonance imaging (MRI), and 18Fluorodeoxyglucose PET (FDG-PET). Patients and Methods: Twenty-three patients underwent whole-body immuno-PET after injection of 150 MBq 68Ga-IMP288, a histamine-succinyl-glycine peptide given following initial targeting of a trivalent anti-CEA, bispecific, anti-peptide antibody. The gold standards were histology and imaging follow-up. Tumor standard uptake values (SUVmax and SUVmean) were measured, and tumor burden analyzed using Total Tumor Volume (TTV) and Total Lesion Activity (TLA). Results: Total lesion sensitivity of immuno-PET and FDG-PET was 94.7% (1116/1178) and 89.6% (1056/1178), respectively. Immuno-PET had a somewhat higher sensitivity than CT and FDG-PET in lymph nodes (92.4% vs 69.7% and 89.4%, respectively) and liver metastases (97.3% vs 92.1% and 94.8%, respectively), whereas sensitivity was lower for lung metastases (48.3% vs 100% and 75.9%, respectively). Immuno-PET showed higher sensitivity than MRI and FDG-PET for bone lesions (95.8% vs 90.7% and 89.3%, respectively). In contrast to FDG-PET, immuno-PET disclosed brain metastases. Despite equivalent tumor SUVmax, SUVmean, and TTV, TLA was significantly higher with immuno-PET compared to FDG PET (P = 0.009). Conclusion: Immuno-PET using anti-CEA/anti-IMP288 bispecific antibody, followed by 68Ga-IMP288, is a potentially sensitive theranostic imaging method for HER2-negative, CEA-positive, metastatic BC patients, and warrants further research.




cl

OpenDose: open access resources for nuclear medicine dosimetry

Background: Radiopharmaceutical dosimetry depends on the localization in space and time of radioactive sources and requires the estimation of the amount of energy emitted by the sources deposited within targets. In particular, when computing resources are not accessible, this task can be carried out using precomputed tables of Specific Absorbed Fractions (SAFs) or S values based on dosimetric models. The OpenDose collaboration aims to generate and make freely available a range of dosimetric data and tools. Methods: OpenDose brings together resources and expertise from 18 international teams to produce and compare traceable dosimetric data using 6 of the most popular Monte Carlo codes in radiation transport (EGSnrc/EGS++, FLUKA, GATE, Geant4, MCNP/MCNPX and PENELOPE). SAFs are uploaded, together with their associated statistical uncertainties, in a relational database. S values are then calculated from mono-energetic SAFs, based on the radioisotope decay data presented in the International Commission on Radiological Protection (ICRP) publication 107. Results: The OpenDose collaboration produced SAFs for all source regions and targets combinations of the two ICRP 110 adult reference models. SAFs computed from the different Monte Carlo codes were in good agreement at all energies, with standard deviations below individual statistical uncertainties. Calculated S values were in good agreement with OLINDA 2 (commercial) and IDAC 2.1 (free) software. A dedicated website (www.opendose.org) has been developed to provide easy and open access to all data. Conclusion: The OpenDose website allows the display and download of SAFs and the corresponding S values for 1252 radionuclides. The OpenDose collaboration, open to new research teams, will extend data production to other dosimetric models and implement new free features, such as online dosimetric tools and patient-specific absorbed dose calculation software, together with educational resources.




cl

Prognostic Value of 18F-FDG PET/CT in a Large Cohort of 495 Patients with Advanced Metastatic Neuroendocrine Neoplasms (NEN) Treated with Peptide Receptor Radionuclide Therapy (PRRT)

The objective of this retrospective study was to determine the role of 18F-FDG PET/CT in a large cohort of 495 patients with metastatic neuroendocrine neoplasms (NENs) who were treated with peptide receptor radionuclide therapy (PRRT) with a long-term follow-up. Methods: The 495 patients were treated with 177Lu- and/or 90Y- DOTATOC/DOTATATE PRRT between 2/2002 and 7/2018. All subjects received both 68Ga-DOTATOC/TATE/NOC and 18F-FDG PET/CT prior to treatment and were followed 3-189 months. Kaplan-Meier analysis, log-rank test (Mantel-Cox), and Cox regression analysis were performed for overall survival (OS) and progression-free survival (PFS). Results: 199 patients (40.2%) presented with pancreatic NEN, 49 with CUP (cancer of unknown primary), 139 with midgut NEN, whereas the primary tumor was present in the rectum in 20, in the lung in 38, in the stomach in 8 and other locations in 42 patients. FDG-PET/CT was positive in 382 (77.2%) patients and 113 (22.8%) were FDG-negative before PRRT, while 100% were 68Ga-DOTATOC/TATE/NOC positive. For all patients, the median PFS and OS, defined from start of PRRT, were 19.6 mo and 58.7 mo, respectively. Positive FDG predicted shorter PFS (18.5 mo vs 24.1 mo; P = 0.0015) and OS (53.2 mo vs 83.1 mo; P < 0.001) than negative FDG. Amongst the pancreatic NEN, the median OS was 52.8 mo in FDG positive and 114.3 mo in FDG negative subjects (P = 0.0006). For all patients with positive 18F-FDG uptake, and a ratio of the highest SUVmax on 68Ga-SSTR PET to the most 18F-FDG-avid tumor lesions >2, the median OS was 53.0 mo, compared to 43.4 mo in those patients with a ratio <2 (P = 0.030). For patients with no 18F-FDG uptake (complete "mismatch" imaging pattern), the median OS was 108.3 mo vs 76.9 mo for SUVmax >15.0 and ≤15.0 on 68Ga-SSTR PET/CT, respectively. Conclusion: The presence of positive lesions on 18F-FDG PET is an independent prognostic factor in patients with NEN treated with PRRT. Metabolic imaging with 18F-FDG PET/CT compliments the molecular imaging aspect of 68Ga-SSTR PET/CT for the prognosis of survival after PRRT. High SSTR expression combined with negative 18F-FDG PET/CT imaging is associated with the most favorable long-term prognosis.




cl

11C-PABA as a Novel PET Radiotracer for Functional Renal Imaging: Preclinical and First-in-Human Studies

para-Aminobenzoic acid (PABA) has been previously used as an exogenous marker to verify completion of 24-hour urine sampling. Therefore, we hypothesized that radiolabeled PABA with 11C could allow high-quality dynamic PET of the kidneys while reducing the radiation exposure due to its short biological and physical half-lives. We evaluated if 11C-PABA could visualize renal anatomy and quantify function in healthy rats, rabbits, and first-in-human studies in healthy volunteers. Methods: Healthy rats and rabbits were injected with 11C-PABA intravenously. Subsequently, a dynamic PET was performed, followed by post-mortem tissue biodistribution studies. 11C-PABA PET was directly compared with the current standard, 99mTc-MAG3 in rats. Three healthy human subjects also underwent dynamic PET after intravenous injection of 11C-PABA. Results: In healthy rats and rabbits, dynamic PET demonstrated a rapid accumulation of 11C-PABA in the renal cortex, followed by rapid excretion through the pelvicalyceal system. In humans, 11C-PABA PET was safe and well tolerated. There were no adverse or clinically detectable pharmacologic effects in any subject. The cortex was delineated on PET, and the activity gradually transited to the medulla and then renal pelvis with high spatiotemporal resolution. Conclusion: 11C-PABA demonstrated fast renal excretion with very low background signal in animals and humans. These results suggest that 11C-PABA could be used as a novel radiotracer for functional renal imaging, providing high-quality spatiotemporal images with low radiation exposure.




cl

18F-DCFPyL PET/CT in Patients with Subclinical Recurrence of Prostate Cancer: Effect of Lesion Size, Smooth Filter and Partial Volume Correction on Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE) criteria

Purpose: To determine the effect of smooth filter and partial volume correction (PVC) method on measured prostate-specific membrane antigen (PSMA) activity in small metastatic lesions and to determine the impact of these changes on the molecular imaging (mi) PSMA scoring. Materials & Methods: Men with biochemical recurrence of prostate cancer with negative CT and bone scintigraphy were referred for 18F-DCFPyL PET/CT. Examinations were performed on one of 2 PET/CT scanners (GE Discovery 610 or Siemens mCT40). All suspected tumor sites were manually contoured on co-registered CT and PET images, and each was assigned a miPSMA score as per the PROMISE criteria. The PVC factors were calculated for every lesion using the anatomical CT and then applied to the unsmoothed PET images. The miPSMA scores, with and without the corrections, were compared, and a simplified "rule of thumb" (RoT) correction factor (CF) was derived for lesions at various sizes (<4mm, 4-7mm, 7-9mm, 9-12mm). This was then applied to the original dataset and miPSMA scores obtained using the RoT CF were compared to those found using the actual corrections. Results: There were 75 men (median age, 69 years; median serum PSA of 3.69 ug/L) with 232 metastatic nodes < 12 mm in diameter (mean lesion volume of 313.5 ± 309.6 mm3). Mean SUVmax before and after correction was 11.0 ± 9.3 and 28.5 ± 22.8, respectively (p<0.00001). The mean CF for lesions <4mm (n = 22), 4-7mm (n = 140), 7-9mm (n = 50), 9-12 mm (n = 20) was 4 (range: 2.5-6.4), 2.8 (range: 1.6-4.9), 2.3 (range: 1.6-3.3) and 1.8 (range 1.4-2.4), respectively. Overall miPSMA scores were concordant between the corrected dataset and RoT in 205/232 lesions (88.4%). Conclusion: There is a significant effect of smooth filter and partial volume correction on measured PSMA activity in small nodal metastases, impacting the miPSMA score.




cl

Data Driven Respiratory Gating Outperforms Device-Based Gating for Clinical FDG PET/CT

A data-driven method for respiratory gating in PET has recently been commercially developed. We sought to compare the performance of the algorithm to an external, device-based system for oncological [18F]-FDG PET/CT imaging. Methods: 144 whole-body [18F]-FDG PET/CT examinations were acquired using a Discovery D690 or D710 PET/CT scanner (GE Healthcare), with a respiratory gating waveform recorded by an external, device based respiratory gating system. In each examination, two of the bed positions covering the liver and lung bases were acquired with duration of 6 minutes. Quiescent period gating retaining ~50% of coincidences was then able to produce images with an effective duration of 3 minutes for these two bed positions, matching the other bed positions. For each exam, 4 reconstructions were performed and compared: data driven gating (DDG-retro), external device-based gating (RPM Gated), no gating but using only the first 3 minutes of data (Ungated Matched), and no gating retaining all coincidences (Ungated Full). Lesions in the images were quantified and image quality was scored by a radiologist, blinded to the method of data processing. Results: The use of DDG-retro was found to increase SUVmax and to decrease the threshold-defined lesion volume in comparison to each of the other reconstruction options. Compared to RPM-gated, DDG-retro gave an average increase in SUVmax of 0.66 ± 0.1 g/mL (n=87, p<0.0005). Although results from the blinded image evaluation were most commonly equivalent, DDG-retro was preferred over RPM gated in 13% of exams while the opposite occurred in just 2% of exams. This was a significant preference for DDG-retro (p=0.008, n=121). Liver lesions were identified in 23 exams. Considering this subset of data, DDG-retro was ranked superior to Ungated Full in 6/23 (26%) of cases. Gated reconstruction using the external device failed in 16% of exams, while DDG-retro always provided a clinically acceptable image. Conclusion: In this clinical evaluation, the data driven respiratory gating technique provided superior performance as compared to the external device-based system. For the majority of exams the performance was equivalent, but data driven respiratory gating had superior performance in 13% of exams, leading to a significant preference overall.




cl

The Changing Face of Nuclear Cardiology: Guiding Cardiovascular Care towards Molecular Medicine

Radionuclide imaging of myocardial perfusion, function, and viability has been established for decades and remains a robust, evidence-based and broadly available means for clinical workup and therapeutic guidance in ischemic heart disease. Yet, powerful alternative modalities have emerged for this purpose, and their growth has resulted in increasing competition. But the potential of the tracer principle goes beyond the assessment of physiology and function, towards the interrogation of biology and molecular pathways. This is a unique selling point of radionuclide imaging, which has been under-recognized in cardiovascular medicine until recently. Now, molecular imaging methods for the detection of myocardial infiltration, device infection and cardiovascular inflammation are successfully gaining clinical acceptance. This is further strengthened by the symbiotic quest of cardiac imaging and therapy for an increasing implementation of molecular-targeted procedures, where specific therapeutic interventions require specific diagnostic guidance towards the most suitable candidates. This review will summarize the current advent of clinical cardiovascular molecular imaging and highlight its transformative contribution to the evolution of cardiovascular therapy beyond mechanical interventions and broad "blockbuster" medication, towards a future of novel, individualized molecular targeted and molecular imaging-guided therapies.




cl

The role of Nuclear Medicine for COVID-19 - Time to act now.




cl

Targeting Fibroblast Activation Protein:Radiosynthesis and Preclinical Evaluation of an 18F-labeled FAP Inhibitor

Fibroblast activation protein (FAP) has emerged as an interesting molecular target used in the imaging and therapy of various types of cancers. Gallium-68–labeled chelator-linked FAP inhibitors (FAPIs) have been successfully applied to positron emission tomography (PET) imaging of various tumor types. To broaden the spectrum of applicable PET tracers for extended imaging studies of FAP-dependent diseases, we herein report the radiosynthesis and preclinical evaluation of an 18F–labeled glycosylated FAP inhibitor ([18F]FGlc-FAPI). Methods: An alkyne-bearing precursor was synthesized and subjected to click chemistry–based radiosynthesis of [18F]FGlc-FAPI by two-step 18F-fluoroglycosylation. FAP-expressing HT1080hFAP cells were used to study competitive binding to FAP, cellular uptake, internalization, and efflux of [18F]FGlc-FAPI in vitro. Biodistribution studies and in vivo small animal PET studies of [18F]FGlc-FAPI compared to [68Ga]Ga-FAPI-04 were conducted in nude mice bearing HT1080hFAP tumors or U87MG xenografts. Results: [18F]FGlc-FAPI was synthesized with a 15% radioactivity yield and a high radiochemical purity of >99%. In HT1080hFAP cells, [18F]FGlc-FAPI showed specific uptake, a high internalized fraction, and low cellular efflux. Compared to FAPI-04 (IC50 = 32 nM), the glycoconjugate, FGlc-FAPI (IC50 = 167 nM), showed slightly lower affinity for FAP in vitro, while plasma protein binding was higher for [18F]FGlc-FAPI. Biodistribution studies revealed significant hepatobiliary excretion of [18F]FGlc-FAPI; however, small animal PET studies in HT1080hFAP xenografts showed higher specific tumor uptake of [18F]FGlc-FAPI (4.5 % injected dose per gram of tissue [ID/g]) compared to [68Ga]Ga-FAPI-04 (2 %ID/g). In U87MG tumor–bearing mice, both tracers showed similar tumor uptake, but [18F]FGlc-FAPI showed a higher tumor retention. Interestingly, [18F]FGlc-FAPI demonstrated high specific uptake in bone structures and joints. Conclusion: [18F]FGlc-FAPI is an interesting candidate for translation to the clinic, taking advantage of the longer half-life and physical imaging properties of F-18. The availability of [18F]FGlc-FAPI may allow extended PET studies of FAP-related diseases, such as cancer, but also arthritis, heart diseases, or pulmonary fibrosis.




cl

The Impact of Radiobiologically-Informed Dose Prescription on the Clinical Benefit of Yttrium-90 SIRT in Colorectal Cancer Patients

The purpose of this study was to establish the dose-response relationship of selective internal radiation therapy (SIRT) in patients with metastatic colorectal cancer (mCRC), when informed by radiobiological sensitivity parameters derived from mCRC cell lines exposed to yttrium-90 (90Y). Methods: 23 mCRC patients with liver metastases refractory to chemotherapy were included. 90Y bremsstrahlung SPECT images were transformed into dose maps assuming the local dose deposition method. Baseline and follow-up CT scans were segmented to derive liver and tumor volumes. Mean, median, and D70 (minimum dose to 70% of tumor volume) values determined from dose maps were correlated with change in tumor volume and vRECIST response using linear and logistic regression, respectively. Radiosensitivity parameters determined by clonogenic assays of mCRC cell lines HT-29 and DLD-1 after exposure to 90Y or external beam radiotherapy (EBRT; 6MV photons) were used in biological effective dose (BED) calculations. Results: Mean administered radioactivity was 1469±428 MBq (847-2185 MBq), achieving a mean radiation absorbed tumor dose of 35.5±9.4 Gy and mean normal liver dose of 26.4±6.8 Gy. A 1.0 Gy increase in mean, median, and D70 absorbed dose was associated with reduction in tumor volume of 1.8%, 1.8%, and 1.5%, respectively, and increased probability of vRECIST response (odds ratio: 1.09, 1.09, and 1.10 respectively). Threshold mean, median and D70 doses for response were 48.3, 48.8, and 41.8 Gy respectively. EBRT-equivalent BEDs for 90Y are up to 50% smaller than those calculated by applying protraction-corrected radiobiological parameters derived from EBRT alone. Conclusion: Dosimetric studies have assumed equivalence between 90Y SIRT and EBRT, leading to inflation of BED for SIRT and possible under-treatment. Radiobiological parameters for 90Y were applied to a BED model, providing a calculation method that has the potential to improve assessment of tumor control.




cl

Impact of 68Ga-PSMA-11 PET on the Management of recurrent Prostate Cancer in a Prospective Single-Arm Clinical Trial

Introduction: Prostate-specific membrane antigen ligand positron emission tomography (PSMA PET) induces management changes in patients with prostate cancer. We aim to better characterize the impact of PSMA PET on management of recurrent prostate cancer in a large prospective cohort. Methods: We report management changes following PSMA PET, a secondary endpoint of a prospective multicenter trial in men with prostate cancer biochemical recurrence. Pre-PET (Q1), Post-PET (Q2) and Post-Treatment (Q3) questionnaires were sent to referring physicians recording site of recurrence, intended (Q1 to Q2 change) and implemented (Q3) therapeutic and diagnostic management. Results: Q1/Q2 response was collected for 382/635 (60%, intended cohort), Q1/Q2/Q3 for 206 patients (32%, implemented cohort). Intended management change (Q1/2) occurred in 260/382 (68%) patients. Intended change (Q1/2) was considered major in 176/382 (46%) patients. Major changes occurred most often for patients with PSA of 0.5 to <2.0 ng/mL (81/147, 55%). By analysis of stage-groups, management change was consistent with PET disease location, i.e. majority of major changes towards active surveillance (47%) for unknown disease site (103/382, 27%), towards local/focal therapy (56%) for locoregional disease (126/382, 33%), and towards systemic therapy (69% M1a; 43% M1b/c) for metastatic disease (153/382, 40%). According to Q3 responses, intended management was implemented in 160/206 (78%) patients. A total of 150 intended diagnostic tests, mostly CT (n = 43, 29%) and bone Scans/NaF-PET (n = 52, 35%), were prevented by PSMA PET; 73 tests, mostly biopsies (n = 44, 60%) as requested by the study protocol, were triggered (Q1/2). Conclusion: According to referring physicians, sites of recurrence were clarified by PSMA PET and disease localization translated into management changes in more than half of patients with biochemical recurrence of prostate cancer.




cl

Time for a Next-Generation Nuclear Medicine Gamma Camera? [NEWSLINE]




cl

Inclusive Growth and Job Creation in Africa: The Outlook for 2019 and Beyond

Invitation Only Research Event

30 September 2019 - 1:30pm to 2:30pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Abebe Aemro Selassie, Director, African Department, International Monetary Fund
Chair: Elizabeth Donnelly, Deputy Head and Research Fellow, Africa Programme, Chatham House

The IMF projects real GDP growth of 3.3 per cent in 2019 for sub-Saharan Africa but there is a mixed picture across the continent with growth in Mauritania, Senegal, Ethiopia and Rwanda outstripping projected growth rates for South Africa and Nigeria, for example, while a handful of economies seek to emerge from crisis. Yet, as is increasingly well documented, even strong growth has not delivered lasting socio-economic transformation in many contexts. And that most pressing of needs – job creation including to accommodate, in the next 15 years, an increase in the working age population greater than that in the rest of the world combined – remains a pressing concern for governments and societies. With populations continuing to grow at faster rates than economic growth, and a significant proportion of jobs outside agriculture being in the informal sector, investment in formal labour markets is crucial to creating inclusive economic growth.
 
At this event, the International Monetary Fund’s Africa Director, Abebe Aemro Selassie will discuss the outlook for sub-Saharan African economies in 2019 and progress towards achieving inclusive economic growth to accommodate future demographic change.
 
Attendance at this event is by invitation only. 

Yusuf Hassan

Parliamentary and Media Outreach Assistant, Africa Programme
+44 (0) 20 7314 3645




cl

Sudan Stakeholder Dialogues: Options for Economic Stabilization, Recovery and Inclusive Growth

3 October 2019

The Chatham House Africa Programme designed the Sudan Stakeholder Dialogues series to help identify the factors that have led to the current economic crisis, the immediate steps that need to be taken to avert collapse and stabilize the economy, and the longer-term structural reforms required to set Sudan on the path to recovery. The project is funded by Humanity United.

Ahmed Soliman

Research Fellow, Horn of Africa, Africa Programme

2019-10-03-Sudan.jpg

An employee removes bread from the oven at a bakery in the Sudanese capital, Khartoum, on 24 May 2019. Photo: Getty Images.

Three private roundtable meetings were convened in the first quarter of 2019, with the aim of generating informed and constructive new thinking on policy options and reforms that could help Sudan build a more economically prosperous, stable and inclusive nation. The roundtables were held under the Chatham House Rule.

The project sought to offer a neutral space for discussion to policymakers and influencers from a broad range of backgrounds: Sudanese government officials, opposition figures, economists, experts on Sudan’s political economy and governance, civil society figures, representatives of international financial institutions, and other international policymakers.

This paper draws together the key themes and findings from each of the three roundtables, ranging from broad structural economic issues to sector-specific priority interventions. It presents options and recommendations for Sudanese leaders, including the transitional government, in support of building a more economically prosperous, peaceful and inclusive nation.




cl

Forging Inclusive Economic Growth in Zimbabwe: Insights from the Zimbabwe Futures 2030 Roundtable Series

10 October 2019

This briefing note is the result of a collaborative research process with the Zimbabwean private sector, government representatives, industry organizations and experts, drawing on best practice and senior-level insights to identify policy options for long-term economic revival and expansion in Zimbabwe, and pathways for inclusive development.

Dr Knox Chitiyo

Associate Fellow, Africa Programme

Christopher Vandome

Research Fellow, Africa Programme

Caleb Dengu

Development Banking and Finance Specialist

David Mbae

Konrad-Adenauer-Stiftung Resident Representative for Zimbabwe

Central to the research process was the Zimbabwe Futures 2030 roundtable series, complemented by additional interviews and research. Participants at the three roundtables, held in Harare and Bulawayo in the first half of 2019, discussed the necessary policies and business strategies to enable and support the effective implementation of the Mnangagwa administration’s Transitional Stabilisation Programme, Vision 2030, and other longer-term national development plans.

This process was conducted by the Chatham House Africa Programme, the Zimbabwe Business Club and the Konrad-Adenauer-Stiftung (KAS); and in partnership with the Confederation of Zimbabwe Industries for a roundtable in Bulawayo. The project was supported by KAS and the Dulverton Trust.




cl

POSTPONED: Connecting Infrastructure Development and Inclusive Economic Growth in Côte d'Ivoire

Research Event

13 March 2020 - 4:00pm to 5:00pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Hon Bruno Nabagné Kone, Minister of Construction, Housing and Urban Planning, Republic of Côte d'Ivoire

Strong economic growth in Côte d'Ivoire – with annual GDP growth averaging eight per cent since 2012 – is interlinked with an increase in spending on national infrastructure. In 2018, the government announced a $7 billion injection for the sector over five years, for projects including a new 7.5km bridge spanning two districts of Abidjan and a highway extending to Burkina Faso. A public-private partnership to build a new $1.5 billion metropolitan railway system in the capital received formal approval in October 2019.

But the government of Côte d'Ivoire has struggled to make the country’s impressive growth inclusive: Côte d’Ivoire ranked 165th out of 189 on the 2019 United Nations Human Development Index, and the poverty rate is around 46%. Translating significant infrastructural investment into benefit for ordinary and vulnerable Ivorian citizens, including through how project development is managed with communities, will be a critical issue in the lead up to elections scheduled for October 2020 and beyond.

PLEASE NOTE THIS EVENT IS POSTPONED UNTIL FURTHER NOTICE.

 

Sahar Eljack

Programme Administrator, Africa Programme
+ 44 (0) 20 7314 3660




cl

Côte d'Ivoire’s 2020 Elections and Beyond: Ensuring Stability and Inclusion

Research Event

21 January 2020 - 11:30am to 12:30pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

HE Alassane Ouattara, President, Republic of Côte d'Ivoire
Chair: Bob Dewar CMG, Associate Fellow, Africa Programme, Chatham House

Please note, the second video on this page is from an interview with the president outside the event.

HE Alassane Ouattara, president of Côte d'Ivoire, discusses governance and domestic priorities ahead of and beyond elections, as well as efforts to sustain stability and support an inclusive electoral process.

Presidential elections in Côte d'Ivoire, the world’s top cocoa producer and the largest economy in the West African Economic and Monetary Union (WAEMU), will be held ‪on 31st October 2020 against a backdrop of marked political dynamism in the country and wider region.

Possible constitutional amendments and a newly announced major reform of the currency regime are among significant issues drawing focus.

A credible and inclusive electoral process is critical for the improvement of socio-development outcomes and for the maintenance of a positive investment environment.

But instability remains a serious risk and the stakes are high for Côte d'Ivoire and the wider region.