tor Robust elastic net estimators for variable selection and identification of proteomic biomarkers By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Gabriela V. Cohen Freue, David Kepplinger, Matías Salibián-Barrera, Ezequiel Smucler. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2065--2090.Abstract: In large-scale quantitative proteomic studies, scientists measure the abundance of thousands of proteins from the human proteome in search of novel biomarkers for a given disease. Penalized regression estimators can be used to identify potential biomarkers among a large set of molecular features measured. Yet, the performance and statistical properties of these estimators depend on the loss and penalty functions used to define them. Motivated by a real plasma proteomic biomarkers study, we propose a new class of penalized robust estimators based on the elastic net penalty, which can be tuned to keep groups of correlated variables together in the selected model and maintain robustness against possible outliers. We also propose an efficient algorithm to compute our robust penalized estimators and derive a data-driven method to select the penalty term. Our robust penalized estimators have very good robustness properties and are also consistent under certain regularity conditions. Numerical results show that our robust estimators compare favorably to other robust penalized estimators. Using our proposed methodology for the analysis of the proteomics data, we identify new potentially relevant biomarkers of cardiac allograft vasculopathy that are not found with nonrobust alternatives. The selected model is validated in a new set of 52 test samples and achieves an area under the receiver operating characteristic (AUC) of 0.85. Full Article
tor Bayesian methods for multiple mediators: Relating principal stratification and causal mediation in the analysis of power plant emission controls By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Chanmin Kim, Michael J. Daniels, Joseph W. Hogan, Christine Choirat, Corwin M. Zigler. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1927--1956.Abstract: Emission control technologies installed on power plants are a key feature of many air pollution regulations in the US. While such regulations are predicated on the presumed relationships between emissions, ambient air pollution and human health, many of these relationships have never been empirically verified. The goal of this paper is to develop new statistical methods to quantify these relationships. We frame this problem as one of mediation analysis to evaluate the extent to which the effect of a particular control technology on ambient pollution is mediated through causal effects on power plant emissions. Since power plants emit various compounds that contribute to ambient pollution, we develop new methods for multiple intermediate variables that are measured contemporaneously, may interact with one another, and may exhibit joint mediating effects. Specifically, we propose new methods leveraging two related frameworks for causal inference in the presence of mediating variables: principal stratification and causal mediation analysis. We define principal effects based on multiple mediators, and also introduce a new decomposition of the total effect of an intervention on ambient pollution into the natural direct effect and natural indirect effects for all combinations of mediators. Both approaches are anchored to the same observed-data models, which we specify with Bayesian nonparametric techniques. We provide assumptions for estimating principal causal effects, then augment these with an additional assumption required for causal mediation analysis. The two analyses, interpreted in tandem, provide the first empirical investigation of the presumed causal pathways that motivate important air quality regulatory policies. Full Article
tor Modeling seasonality and serial dependence of electricity price curves with warping functional autoregressive dynamics By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Ying Chen, J. S. Marron, Jiejie Zhang. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1590--1616.Abstract: Electricity prices are high dimensional, serially dependent and have seasonal variations. We propose a Warping Functional AutoRegressive (WFAR) model that simultaneously accounts for the cross time-dependence and seasonal variations of the large dimensional data. In particular, electricity price curves are obtained by smoothing over the $24$ discrete hourly prices on each day. In the functional domain, seasonal phase variations are separated from level amplitude changes in a warping process with the Fisher–Rao distance metric, and the aligned (season-adjusted) electricity price curves are modeled in the functional autoregression framework. In a real application, the WFAR model provides superior out-of-sample forecast accuracy in both a normal functioning market, Nord Pool, and an extreme situation, the California market. The forecast performance as well as the relative accuracy improvement are stable for different markets and different time periods. Full Article
tor Kernel and wavelet density estimators on manifolds and more general metric spaces By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Galatia Cleanthous, Athanasios G. Georgiadis, Gerard Kerkyacharian, Pencho Petrushev, Dominique Picard. Source: Bernoulli, Volume 26, Number 3, 1832--1862.Abstract: We consider the problem of estimating the density of observations taking values in classical or nonclassical spaces such as manifolds and more general metric spaces. Our setting is quite general but also sufficiently rich in allowing the development of smooth functional calculus with well localized spectral kernels, Besov regularity spaces, and wavelet type systems. Kernel and both linear and nonlinear wavelet density estimators are introduced and studied. Convergence rates for these estimators are established and discussed. Full Article
tor On the probability distribution of the local times of diagonally operator-self-similar Gaussian fields with stationary increments By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Kamran Kalbasi, Thomas Mountford. Source: Bernoulli, Volume 26, Number 2, 1504--1534.Abstract: In this paper, we study the local times of vector-valued Gaussian fields that are ‘diagonally operator-self-similar’ and whose increments are stationary. Denoting the local time of such a Gaussian field around the spatial origin and over the temporal unit hypercube by $Z$, we show that there exists $lambdain(0,1)$ such that under some quite weak conditions, $lim_{n ightarrow+infty}frac{sqrt[n]{mathbb{E}(Z^{n})}}{n^{lambda}}$ and $lim_{x ightarrow+infty}frac{-logmathbb{P}(Z>x)}{x^{frac{1}{lambda}}}$ both exist and are strictly positive (possibly $+infty$). Moreover, we show that if the underlying Gaussian field is ‘strongly locally nondeterministic’, the above limits will be finite as well. These results are then applied to establish similar statements for the intersection local times of diagonally operator-self-similar Gaussian fields with stationary increments. Full Article
tor Consistent semiparametric estimators for recurrent event times models with application to virtual age models By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Eric Beutner, Laurent Bordes, Laurent Doyen. Source: Bernoulli, Volume 26, Number 1, 557--586.Abstract: Virtual age models are very useful to analyse recurrent events. Among the strengths of these models is their ability to account for treatment (or intervention) effects after an event occurrence. Despite their flexibility for modeling recurrent events, the number of applications is limited. This seems to be a result of the fact that in the semiparametric setting all the existing results assume the virtual age function that describes the treatment (or intervention) effects to be known. This shortcoming can be overcome by considering semiparametric virtual age models with parametrically specified virtual age functions. Yet, fitting such a model is a difficult task. Indeed, it has recently been shown that for these models the standard profile likelihood method fails to lead to consistent estimators. Here we show that consistent estimators can be constructed by smoothing the profile log-likelihood function appropriately. We show that our general result can be applied to most of the relevant virtual age models of the literature. Our approach shows that empirical process techniques may be a worthwhile alternative to martingale methods for studying asymptotic properties of these inference methods. A simulation study is provided to illustrate our consistency results together with an application to real data. Full Article
tor Operator-scaling Gaussian random fields via aggregation By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Yi Shen, Yizao Wang. Source: Bernoulli, Volume 26, Number 1, 500--530.Abstract: We propose an aggregated random-field model, and investigate the scaling limits of the aggregated partial-sum random fields. In this model, each copy in the aggregation is a $pm 1$-valued random field built from two correlated one-dimensional random walks, the law of each determined by a random persistence parameter. A flexible joint distribution of the two parameters is introduced, and given the parameters the two correlated random walks are conditionally independent. For the aggregated random field, when the persistence parameters are independent, the scaling limit is a fractional Brownian sheet. When the persistence parameters are tail-dependent, characterized in the framework of multivariate regular variation, the scaling limit is more delicate, and in particular depends on the growth rates of the underlying rectangular region along two directions: at different rates different operator-scaling Gaussian random fields appear as the region area tends to infinity. In particular, at the so-called critical speed, a large family of Gaussian random fields with long-range dependence arise in the limit. We also identify four different regimes at non-critical speed where fractional Brownian sheets arise in the limit. Full Article
tor Multivariate count autoregression By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Konstantinos Fokianos, Bård Støve, Dag Tjøstheim, Paul Doukhan. Source: Bernoulli, Volume 26, Number 1, 471--499.Abstract: We are studying linear and log-linear models for multivariate count time series data with Poisson marginals. For studying the properties of such processes we develop a novel conceptual framework which is based on copulas. Earlier contributions impose the copula on the joint distribution of the vector of counts by employing a continuous extension methodology. Instead we introduce a copula function on a vector of associated continuous random variables. This construction avoids conceptual difficulties related to the joint distribution of counts yet it keeps the properties of the Poisson process marginally. Furthermore, this construction can be employed for modeling multivariate count time series with other marginal count distributions. We employ Markov chain theory and the notion of weak dependence to study ergodicity and stationarity of the models we consider. Suitable estimating equations are suggested for estimating unknown model parameters. The large sample properties of the resulting estimators are studied in detail. The work concludes with some simulations and a real data example. Full Article
tor Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm. By www.catalog.slsa.sa.gov.au Published On :: Fuhlbohm (Family) Full Article
tor The Mercer story and Amy's story / by Amy Moore ; with Ray Moore. By www.catalog.slsa.sa.gov.au Published On :: Moore, Amy, 1908-2005. Full Article
tor The Barnes story / by Amy Moore ; with Ray Moore. By www.catalog.slsa.sa.gov.au Published On :: Moore, Amy, 1908-2005 -- Family. Full Article
tor Newsletter (South East Family History Group (S.A.)). By www.catalog.slsa.sa.gov.au Published On :: South East Family History Group (S.A.) -- Periodicals. Full Article
tor From Westphalia to South Australia : the story of Franz Heinrich Ernst Siekmann / by Peter Brinkworth. By www.catalog.slsa.sa.gov.au Published On :: Siekmann, Francis Heinrich Ernst, 1830-1917. Full Article
tor From the coalfields of Somerset to the Adelaide Hills and beyond : the story of the Hewish Family : three centuries of one family's journey through time / Maureen Brown. By www.catalog.slsa.sa.gov.au Published On :: Hewish Henry -- Family. Full Article
tor List of family history books owned by Roy Klemm. By www.catalog.slsa.sa.gov.au Published On :: Family histories -- South Australia -- Bibliography. Full Article
tor The story of Thomas & Ann Stone family : including Helping Hobart's Orphans, the King's Orphan School for Boys 1831-1836 / Alexander E.H. Stone. By www.catalog.slsa.sa.gov.au Published On :: King's Orphan Schools (New Town, Tas.) Full Article
tor The Kuerschner story : 1848 - 1999 / compiled by Gerald Kuerschner. By www.catalog.slsa.sa.gov.au Published On :: Kuerschner (Family) Full Article
tor Our Lady of Grace family page of history : a bookweek bicentennial project / edited by Janeen Brian. By www.catalog.slsa.sa.gov.au Published On :: Our Lady of Grace School (Glengowrie, S.A.) Full Article
tor A family history Siglin to Siegele 1530 to 2019 : from Ditzingen, Germany over land and sea / Ian G. Siegele. By www.catalog.slsa.sa.gov.au Published On :: Germans -- South Australia. Full Article
tor No turning back : stories of our ancestors / by David Gambling. By www.catalog.slsa.sa.gov.au Published On :: Gambling (Family) Full Article
tor Daws : the ancestors of Revell Daws. By www.catalog.slsa.sa.gov.au Published On :: Daws, Revell. Full Article
tor South Australian history sources / by Andrew Guy Peake. By www.catalog.slsa.sa.gov.au Published On :: South Australia -- History -- Sources. Full Article
tor Traegers in Australia. 3, Ernst's story : the story of Ernst Wilhelm Traeger and Johanne Dorothea nee Lissmann, and their descendants, 1856-2018. By www.catalog.slsa.sa.gov.au Published On :: Traeger, Ernst Wilhelm, 1805-1874. Full Article
tor Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm. By www.catalog.slsa.sa.gov.au Published On :: Fuhlbohm (Family) Full Article
tor Hubbe family history items By www.catalog.slsa.sa.gov.au Published On :: Hubbe (Family) Full Article
tor Living through English history : stories of the Urlwin, Brittridge, Vasper, Partridge and Ellerby families / Janet McLeod. By www.catalog.slsa.sa.gov.au Published On :: Urlwin (Family). Full Article
tor Cook family history papers By www.catalog.slsa.sa.gov.au Published On :: Cook, William, 1815-1897 Full Article
tor From Wends we came : the story of Johann and Maria Huppatz & their descendants / compiled by Frank Huppatz and Rone McDonnell. By www.catalog.slsa.sa.gov.au Published On :: Huppatz (Family). Full Article
tor From alms house to first nation : a story of my ancestors in South Australia : a Sherwell family story / by Pamela Coad (nee Sherwell). By www.catalog.slsa.sa.gov.au Published On :: Sherwell (Family) Full Article
tor Geoff Nixon, man of the land : a history of Gunniguldrie and the Nixon family / Robert Nixon. By www.catalog.slsa.sa.gov.au Published On :: Nixon, Geoffrey Owen, 1921-2011. Full Article
tor Calif. Ed-Tech Consortium Seeks Media Repository Solutions; Saint Paul District Needs Background Check Services By marketbrief.edweek.org Published On :: Fri, 08 May 2020 13:52:21 +0000 Saint Paul schools are in the market for a vendor to provide background checks, while the Education Technology Joint Powers Authority is seeking media repositories. A Texas district wants quotes on technology for new campuses. The post Calif. Ed-Tech Consortium Seeks Media Repository Solutions; Saint Paul District Needs Background Check Services appeared first on Market Brief. Full Article Purchasing Alert Background Checks Media Repository Procurement / Purchasing / RFPs Software / Hardware
tor Federal watchdog finds 'reasonable grounds to believe' vaccine doctor's ouster was retaliation, lawyers say By news.yahoo.com Published On :: Fri, 08 May 2020 16:37:13 -0400 The Office of Special Counsel is recommending that ousted vaccine official Dr. Rick Bright be reinstated while it investigates his case, his lawyers announced Friday.Bright while leading coronavirus vaccine development was recently removed from his position as the director of the Department of Health and Human Services' Biomedical Advanced Research and Development Authority, and he alleges it was because he insisted congressional funding not go toward "drugs, vaccines, and other technologies that lack scientific merit" and limited the "broad use" of hydroxychloroquine after it was touted by President Trump. In a whistleblower complaint, he alleged "cronyism" at HHS. He has also alleged he was "pressured to ignore or dismiss expert scientific recommendations and instead to award lucrative contracts based on political connections."On Friday, Bright's lawyers said that the Office of Special Counsel has determined there are "reasonable grounds to believe" his firing was retaliation, The New York Times reports. The federal watchdog also recommended he be reinstated for 45 days to give the office "sufficient time to complete its investigation of Bright's allegations," CNN reports. The decision on whether to do so falls on Secretary of Health and Human Services Alex Azar, and Office of Special Counsel recommendations are "not binding," the Times notes. More stories from theweek.com Outed CIA agent Valerie Plame is running for Congress, and her launch video looks like a spy movie trailer 7 scathing cartoons about America's rush to reopen Trump says he couldn't have exposed WWII vets to COVID-19 because the wind was blowing the wrong way Full Article
tor CNN legal analysts say Barr dropping the Flynn case shows 'the fix was in.' Barr says winners write history. By news.yahoo.com Published On :: Fri, 08 May 2020 08:23:00 -0400 The Justice Department announced Thursday that it is dropping its criminal case against President Trump's first national security adviser Michael Flynn. Flynn twice admitted in court he lied to the FBI about his conversations with Russia's U.S. ambassador, and then cooperated in Special Counsel Robert Mueller's investigation. It was an unusual move by the Justice Department, and CNN's legal and political analysts smelled a rat."Attorney General [William] Barr is already being accused of creating a special justice system just for President Trump's friends," and this will only feed that perception, CNN's Jake Tapper suggested. Political correspondent Sara Murray agreed, noting that the prosecutor in the case, Brandon Van Grack, withdrew right before the Justice Department submitted its filing, just like when Barr intervened to request a reduced sentence for Roger Stone.National security correspondent Jim Sciutto laid out several reason why the substance of Flynn's admitted lie was a big deal, and chief legal analyst Jeffrey Toobin was appalled. "It is one of the most incredible legal documents I have read, and certainly something that I never expected to see from the United States Department of Justice," Toobin said. "The idea that the Justice Department would invent an argument -- an argument that the judge in this case has already rejected -- and say that's a basis for dropping a case where a defendant admitted his guilt shows that this is a case where the fix was in."Barr told CBS News' Cathrine Herridge on Thursday that dropping Flynn's case actually "sends the message that there is one standard of justice in this country." Herridge told Barr he would take flak for this, asking: "When history looks back on this decision, how do you think it will be written?" Barr laughed: "Well, history's written by the winners. So it largely depends on who's writing the history." Watch below. More stories from theweek.com Outed CIA agent Valerie Plame is running for Congress, and her launch video looks like a spy movie trailer 7 scathing cartoons about America's rush to reopen Trump says he couldn't have exposed WWII vets to COVID-19 because the wind was blowing the wrong way Full Article
tor Bayesian Functional Forecasting with Locally-Autoregressive Dependent Processes By projecteuclid.org Published On :: Thu, 19 Dec 2019 22:10 EST Guillaume Kon Kam King, Antonio Canale, Matteo Ruggiero. Source: Bayesian Analysis, Volume 14, Number 4, 1121--1141.Abstract: Motivated by the problem of forecasting demand and offer curves, we introduce a class of nonparametric dynamic models with locally-autoregressive behaviour, and provide a full inferential strategy for forecasting time series of piecewise-constant non-decreasing functions over arbitrary time horizons. The model is induced by a non Markovian system of interacting particles whose evolution is governed by a resampling step and a drift mechanism. The former is based on a global interaction and accounts for the volatility of the functional time series, while the latter is determined by a neighbourhood-based interaction with the past curves and accounts for local trend behaviours, separating these from pure noise. We discuss the implementation of the model for functional forecasting by combining a population Monte Carlo and a semi-automatic learning approach to approximate Bayesian computation which require limited tuning. We validate the inference method with a simulation study, and carry out predictive inference on a real dataset on the Italian natural gas market. Full Article
tor Bayes Factors for Partially Observed Stochastic Epidemic Models By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Muteb Alharthi, Theodore Kypraios, Philip D. O’Neill. Source: Bayesian Analysis, Volume 14, Number 3, 927--956.Abstract: We consider the problem of model choice for stochastic epidemic models given partial observation of a disease outbreak through time. Our main focus is on the use of Bayes factors. Although Bayes factors have appeared in the epidemic modelling literature before, they can be hard to compute and little attention has been given to fundamental questions concerning their utility. In this paper we derive analytic expressions for Bayes factors given complete observation through time, which suggest practical guidelines for model choice problems. We adapt the power posterior method for computing Bayes factors so as to account for missing data and apply this approach to partially observed epidemics. For comparison, we also explore the use of a deviance information criterion for missing data scenarios. The methods are illustrated via examples involving both simulated and real data. Full Article
tor Fast Model-Fitting of Bayesian Variable Selection Regression Using the Iterative Complex Factorization Algorithm By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Quan Zhou, Yongtao Guan. Source: Bayesian Analysis, Volume 14, Number 2, 573--594.Abstract: Bayesian variable selection regression (BVSR) is able to jointly analyze genome-wide genetic datasets, but the slow computation via Markov chain Monte Carlo (MCMC) hampered its wide-spread usage. Here we present a novel iterative method to solve a special class of linear systems, which can increase the speed of the BVSR model-fitting tenfold. The iterative method hinges on the complex factorization of the sum of two matrices and the solution path resides in the complex domain (instead of the real domain). Compared to the Gauss-Seidel method, the complex factorization converges almost instantaneously and its error is several magnitude smaller than that of the Gauss-Seidel method. More importantly, the error is always within the pre-specified precision while the Gauss-Seidel method is not. For large problems with thousands of covariates, the complex factorization is 10–100 times faster than either the Gauss-Seidel method or the direct method via the Cholesky decomposition. In BVSR, one needs to repetitively solve large penalized regression systems whose design matrices only change slightly between adjacent MCMC steps. This slight change in design matrix enables the adaptation of the iterative complex factorization method. The computational innovation will facilitate the wide-spread use of BVSR in reanalyzing genome-wide association datasets. Full Article
tor Bayes Factor Testing of Multiple Intraclass Correlations By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Joris Mulder, Jean-Paul Fox. Source: Bayesian Analysis, Volume 14, Number 2, 521--552.Abstract: The intraclass correlation plays a central role in modeling hierarchically structured data, such as educational data, panel data, or group-randomized trial data. It represents relevant information concerning the between-group and within-group variation. Methods for Bayesian hypothesis tests concerning the intraclass correlation are proposed to improve decision making in hierarchical data analysis and to assess the grouping effect across different group categories. Estimation and testing methods for the intraclass correlation coefficient are proposed under a marginal modeling framework where the random effects are integrated out. A class of stretched beta priors is proposed on the intraclass correlations, which is equivalent to shifted $F$ priors for the between groups variances. Through a parameter expansion it is shown that this prior is conditionally conjugate under the marginal model yielding efficient posterior computation. A special improper case results in accurate coverage rates of the credible intervals even for minimal sample size and when the true intraclass correlation equals zero. Bayes factor tests are proposed for testing multiple precise and order hypotheses on intraclass correlations. These tests can be used when prior information about the intraclass correlations is available or absent. For the noninformative case, a generalized fractional Bayes approach is developed. The method enables testing the presence and strength of grouped data structures without introducing random effects. The methodology is applied to a large-scale survey study on international mathematics achievement at fourth grade to test the heterogeneity in the clustering of students in schools across countries and assessment cycles. Full Article
tor Bayesian Effect Fusion for Categorical Predictors By projecteuclid.org Published On :: Wed, 13 Mar 2019 22:00 EDT Daniela Pauger, Helga Wagner. Source: Bayesian Analysis, Volume 14, Number 2, 341--369.Abstract: We propose a Bayesian approach to obtain a sparse representation of the effect of a categorical predictor in regression type models. As this effect is captured by a group of level effects, sparsity cannot only be achieved by excluding single irrelevant level effects or the whole group of effects associated to this predictor but also by fusing levels which have essentially the same effect on the response. To achieve this goal, we propose a prior which allows for almost perfect as well as almost zero dependence between level effects a priori. This prior can alternatively be obtained by specifying spike and slab prior distributions on all effect differences associated to this categorical predictor. We show how restricted fusion can be implemented and develop an efficient MCMC (Markov chain Monte Carlo) method for posterior computation. The performance of the proposed method is investigated on simulated data and we illustrate its application on real data from EU-SILC (European Union Statistics on Income and Living Conditions). Full Article
tor Statistical Inference for the Evolutionary History of Cancer Genomes By projecteuclid.org Published On :: Tue, 03 Mar 2020 04:00 EST Khanh N. Dinh, Roman Jaksik, Marek Kimmel, Amaury Lambert, Simon Tavaré. Source: Statistical Science, Volume 35, Number 1, 129--144.Abstract: Recent years have seen considerable work on inference about cancer evolution from mutations identified in cancer samples. Much of the modeling work has been based on classical models of population genetics, generalized to accommodate time-varying cell population size. Reverse-time, genealogical views of such models, commonly known as coalescents, have been used to infer aspects of the past of growing populations. Another approach is to use branching processes, the simplest scenario being the classical linear birth-death process. Inference from evolutionary models of DNA often exploits summary statistics of the sequence data, a common one being the so-called Site Frequency Spectrum (SFS). In a bulk tumor sequencing experiment, we can estimate for each site at which a novel somatic point mutation has arisen, the proportion of cells that carry that mutation. These numbers are then grouped into collections of sites which have similar mutant fractions. We examine how the SFS based on birth-death processes differs from those based on the coalescent model. This may stem from the different sampling mechanisms in the two approaches. However, we also show that despite this, they are quantitatively comparable for the range of parameters typical for tumor cell populations. We also present a model of tumor evolution with selective sweeps, and demonstrate how it may help in understanding the history of a tumor as well as the influence of data pre-processing. We illustrate the theory with applications to several examples from The Cancer Genome Atlas tumors. Full Article
tor Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning By www.jneurosci.org Published On :: 2016-09-21T09:33:18-07:00 The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence–divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. SIGNIFICANCE STATEMENT The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations. Full Article
tor Danny Smith from No Human Being Is Illegal (in all our glory). Collaged photograph by Deborah Kelly and collaborators, 2014-2018. By search.wellcomelibrary.org Published On :: [London], 2019. Full Article
tor The 2019 Victoria’s Secret Fashion Show Is Canceled After Facing Backlash for Lack of Body Diversity By www.health.com Published On :: Fri, 22 Nov 2019 13:30:29 -0500 The reaction on social media has been fierce. Full Article
tor Editor’s Pick: Gifts for Your Tech-Obsessed Friend By www.health.com Published On :: Tue, 26 Nov 2019 12:49:30 -0500 A guide to the tech gadgets even your hard-to-shop-for friends and family members will love. Full Article
tor Dopamine D1 and D2 Receptor Family Contributions to Modafinil-Induced Wakefulness By www.jneurosci.org Published On :: 2009-03-04 Jared W. YoungMar 4, 2009; 29:2663-2665Journal Club Full Article
tor Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging By www.jneurosci.org Published On :: 2012-10-03 Jasper AkerboomOct 3, 2012; 32:13819-13840Cellular Full Article
tor Brain-Derived Neurotrophic Factor Protection of Cortical Neurons from Serum Withdrawal-Induced Apoptosis Is Inhibited by cAMP By www.jneurosci.org Published On :: 2003-06-01 Steven PoserJun 1, 2003; 23:4420-4427Cellular Full Article
tor Physical Exercise Prevents Stress-Induced Activation of Granule Neurons and Enhances Local Inhibitory Mechanisms in the Dentate Gyrus By www.jneurosci.org Published On :: 2013-05-01 Timothy J. SchoenfeldMay 1, 2013; 33:7770-7777BehavioralSystemsCognitive Full Article
tor {Delta}9-Tetrahydrocannabinol and Cannabinol Activate Capsaicin-Sensitive Sensory Nerves via a CB1 and CB2 Cannabinoid Receptor-Independent Mechanism By www.jneurosci.org Published On :: 2002-06-01 Peter M. ZygmuntJun 1, 2002; 22:4720-4727Behavioral Full Article
tor The Encoding of Sound Source Elevation in the Human Auditory Cortex By www.jneurosci.org Published On :: 2018-03-28 Régis TrapeauMar 28, 2018; 38:3252-3264BehavioralSystemsCognitive Full Article
tor Correction: Sequerra, Goyal et al., "NMDA Receptor Signaling Is Important for Neural Tube Formation and for Preventing Antiepileptic Drug-Induced Neural Tube Defects" By www.jneurosci.org Published On :: 2018-11-28T09:30:21-08:00 Full Article