c

Railway coupler core structure for increased strength and fatigue life of resulting knuckle

A finger core for forming the front part of a knuckle for a railcar, said finger core comprising a single opening to form a single rib at the horizontal center line of the resulting knuckle.




c

Elastomeric draft gear for a railcar

A draft gear assembly includes housing and an elastomeric spring stack disposed therewithin and including a plurality of compressible elastomeric springs disposed in series with each other. Each compressible elastomeric spring includes a compressible elastomeric pad, a rigid member positioned in direct contact with one end surface of the compressible elastomeric pad, a central aperture through a thickness of the rigid member, an abutment upstanding axially on the end surface of the compressible elastomeric pad, the abutment having a peripheral surface thereof sized to be received within the central aperture formed through the thickness of the rigid member, and an annular lip disposed on a distal end of the axial abutment in a plane being substantially transverse to the central axis, whereby an annular thickness portion of the rigid member is caged between the end surface of the compressible elastomeric pad and an inner surface of the annular lip.




c

Casting process for railcar coupler throwers

A method for casting a thrower for a railcar coupler includes creating a mold box that is vertically parted in halves, each half defining a side of a thrower cavity and that includes at least a portion of a sprue at a location above the thrower cavity, the thrower cavity also being oriented vertically; pouring molten metal into the mold box through the sprue and into the thrower cavity while the mold is oriented vertically; and shaking out the mold box to release the thrower after the thrower has cooled. Creating the mold box may be executed through a cold shell process. The halves of the mold box may include reflective images of the sides of two thrower cavities and an ingate connected between the sprue and one of the two thrower cavities.




c

Coupler yoke and coupler draft gear

A coupler yoke and a coupler draft gear are used in the field of carriages of a railway and aim at solving the problems of lower strength, low safety and reliability and the like in the prior art. The coupler yoke comprises a hollow yoke body with the cross section being in a long concentric-square shape, the inner side surface of the one end of the hollow yoke body is a bearing surface, and at least part of the heavy loading area of the bearing surface protrudes outwards relatively to the end surface of the light loading area. The coupler yoke is used for connecting couplers between the carriages of a train, so that the carriages are connected to form the train for transmitting the tractive force in the transportation; the distribution pattern of the existing bearing surface is changed due to the arrangement of a middle groove.




c

Railcar coupler knuckle cores and knuckles produced by said cores

A core assembly for forming the interior spaces of a railcar coupler knuckle has a first transition section between the C-10 portion of the core and the finger portion of the core. The first transition section has a first side, a second side, a third side and a fourth side and the first and second sides form the vertical axis of the first transition section and the third and fourth sides form the horizontal axis of said first transition section. The vertical axis of the first transition section has a height along a horizontal plane of the vertical axis of at least 2.5″ and the horizontal axis of said first transition section has a width along a vertical plane of the horizontal axis of at least 0.925″.




c

Method of making compressible elastomeric spring

A method of making a compressible elastomeric spring including at least one compressible elastomeric pad enclosed by a pair of metal plates includes the steps of forming plates with a center aperture and a plurality of prongs positioned about a peripheral edge thereof, forming each end of the pad with an axial projection and abutting groove, aligning the plurality of prongs with each respective projection and respective groove and applying axial force to one end of the spring to frictionally interlock the plurality of prongs with such projection and groove. The method also provides for making a multi-tiered stack of pads separated by plates in the above described manner and pre-shortening the spring prior to installation into the conventional yoke. The above described method additionally improves axial straightness and lateral stability of the multi-tiered spring assembly.




c

Moving body separating device

The moving body separating device includes a separating device main body, which separates an upstream-side moving body disposed on a base plate to be movable in a straight-line direction and a downstream-side moving body connected to the upstream-side moving body on the base plate at a prescribed separating point when moving to a downstream side. The separating device main body includes a rotary body for pushing out the downstream-side moving body towards the downstream side through a rotary action, a supporting shaft held by the upstream-side moving body for supporting the rotary body to be freely rotatable, and an original-position returning spring held by the supporting shaft for returning the rotary body to an original position. A protrusion member which applies a rotary pressure force to the rotary body is fixed at a prescribed separating point on the base plate by corresponding to one end part of the rotary body.




c

Energy absorbing coupler

An energy absorbing coupler for railway vehicles includes a coupler anchor, a coupler mechanism supported to the coupler anchor by a deformation tube and draft gear element, and a plurality of energy absorbing devices associated with the coupler anchor. The energy absorbing devices each include two mating components in frictional engagement with one another. Sliding movement between contacting surfaces of the two components occurs when energy is applied to the coupler mechanism, thereby creating friction and dissipating the applied energy at least in part in the form of heat. The two mating components may include a male part, such as a mounting bolt, in mating engagement within a female part, such as a collar. An inside diameter of the collar may be slightly smaller than an outside diameter of the mounting bolt to create a press-fit engagement.




c

Coupler knuckle system and method

A method for manufacturing a railcar coupler knuckle includes providing a first mold section having internal walls defining at least in part perimeter boundaries of a first coupler knuckle mold cavity. The method includes providing a second mold section having internal walls defining at least in part perimeter boundaries of a second coupler knuckle mold cavity. The second coupler mold cavity of the second mold section is offset from the first coupler mold cavity of the first mold section. The method includes closing the first and second mold sections and at least partially filling the first and second coupler knuckle mold cavities with a molten alloy, the molten alloy solidifying after filling to form the coupler knuckle.




c

Magnetically actuated model railroad coupler

A model railroad car coupler assembly comprises a coupler with an upper shank having a coupler knuckle at a distal portion and a flat proximal portion, a lower shank having a coupler thumb at a distal portion and a flat proximal portion, and a coil spring terminating in first and second end portions, with a first turn of the coupler spring interlocked with the upper shank and a second turn interlocked with the lower shank. A mounting box has a circular mounting post that accepts circular openings in the shanks permitting them to rotate relative to each other between a closed coupled position and an open uncoupling position. The spring end portions engage the mounting box to bias the shanks into their coupled position. The knuckle carries a ferrous actuating pin that cooperates with a magnetic pad along a track to rotate the upper shank into its open position.




c

Railcar coupler core with vertical parting line and method of manufacture

A method of casting a core includes the steps of preparing a first half of a corebox, preparing a second half of a corebox such that the parting line of a core formed from the first and second coreboxes runs along the vertical axis of the core.




c

Railway coupler body improvements to improve knuckle rotation

An improved coupler body having an area of increased material in the upper lock chamber.




c

Railcar coupler knuckle cores with rear core support

A core assembly for creating interior spaces in a railcar coupler knuckle is designed to be set in a cavity with cope and drag sections. The cavity is shaped to form a railcar coupler knuckle and includes a first wall that forms the substantially vertical outside wall of the tail of the knuckle. The core includes a kidney section with a rear core support section that extends at least 0.5″ outside the first wall of the cavity when the core is set in the drag.




c

Coupling and conduit for consist communication system

A coupling for a communication conduit is disclosed for use with a train consist. The coupling may include a nipple configured for insertion within a fluid conduit, a flange configured to engage an end of the fluid conduit, a retention member configured to engage an outer surface of the fluid conduit, a first fitting extending from the flange away from the nipple, and, a retaining tab configured to retain a second fitting of another coupling in engagement with the first fitting. The coupling may further include a closure mechanism configured to close off an end of the first fitting and movable during engagement with the second fitting to open the end of the first fitting.




c

Car equipment protection structure for railcar

A car includes a car equipment protection structure, The car equipment protection structure includes an underframe, couplers and guide members. Each of the guide members is provided on a railcar inner side of an attached flange portion of the underframe to which the couplers are attached. Moreover, the guide members respectively include inclined surfaces, each of which is opposed to at least a part of the coupler. Each of the inclined surfaces is inclined toward the railcar inner side as it extends downward.




c

Coupling arrangement for the front of a tracked vehicle

A coupling arrangement for the front of a tracked vehicle is disclosed, comprising a central buffer coupling having a gladhand, a coupling shaft supporting the gladhand and a bearing, via which the coupling shaft can be joined with the undercarriage of the vehicle pivotable in a horizontal and/or vertical direction. An energy consuming device allocated to the central buffer coupling having at least one energy consuming element with a destructive design is provided. To ensure maximum energy consumption in a crash with a course of events definable in advance, the coupling arrangement additionally comprises a supporting structure with two longitudinal beams arranged on the sides of the central buffer coupling and a crossbeam joined with the two longitudinal beams, said crossbeam beam being arranged above the central buffer coupling such that a vertical deflection of the coupling shaft relative to the undercarriage of the vehicle is limited by the crossbeam.




c

Toy car connection apparatus and method

A toy train car including a coupler or hitch. The coupler includes a first connector (e.g., socket) configured to be connected to the train car and a second connector (e.g., ball) configured to be connected to the train car. The first connector can be positioned in the front or rear of the train car. The second connector also can be positioned in the front or rear of the train car. Each train car can include a first connector and a second connector. The first and second connectors are configured to couple together to link a plurality of train cars together.




c

Use of no-bake mold process to manufacture railroad couplers

A railroad coupler assembly having at least a body and a knuckle both formed in a no-bake manufacturing process, the body and the knuckle having dimensional tolerances of distances between features that wear during operation that are about half those obtained from a body and a knuckle manufactured by a green sand process, resulting in increased fatigue life compared to the body and the knuckle manufactured by a green sand process. The body and the knuckle resulting from the no-bake manufacturing process have no observable laps, scabs, chaplets or welding in critical areas of the body and knuckle, which are reflected in surface conditions matching SCRATA (Steel Castings Research and Trade Association) values of: D1 (laps); E1 (scabs); F1 (chaplets); and J1 (welds).




c

Articulated coupling between a first car and a second car of a vehicle, especially a railway vehicle

The invention relates to an articulated coupling between a first car (3) and a second car of a vehicle, especially a railway vehicle, having at least two cars, said articulated coupling including a first element (33) capable of being connected to said first car (3) and a second element (35) capable of being connected to said second car, a device for moving said second element (35) in translation relative to said first element (33) in the event of an impact, and an energy absorber capable of being arranged between said first (3) and second (19) cars. The energy absorber is arranged between said first (33) and second (35) elements, and in the first element (33) is designed to allow persons to pass between said first car (3) and said second car.




c

Mechanical coupling in a draftgear

A mechanical coupling, particularly in a draftgear in rail vehicles, includes a central plate (5) turnably mounted in a coupler head and having a link (7) pivoted in the same, and including a hooking mechanism for detachable hooking up of the central plate and the link in the non coupled position of the coupling, and a releasing device (10) for the automatic detachment of the hooking mechanism upon coupling. The hooking mechanism includes a hooking rod (12) pivotally connected with the central plate, which rod, by a lug (16), clutches a collar (11) arranged in the coupler head and, upon activation of the releasing device, detaches from the collar. A leaf spring (13) is arranged in the coupler head in order to, in abutment against the hooking rod, force the same, under the bias from the spring, to be pressed against the collar in the hooked up and disengaged positions.




c

Shock energy absorber

A shock energy absorber includes, in one example, a cylinder having a closed end and an open end, a sleeve fixed about the open end of the cylinder, and a damping material in the form of an ultra high molecular weight polyethylene material in the cylinder. A plunger is positioned to be driven into the damping material via the sleeve. When the plunger is impacted and driven into the damping material, the damping material changes from a solid to a viscous fluid state thereby enabling absorption of a significant amount of energy.




c

Lightweight compound cab structure for a rail vehicle

An integrated self-supporting and deformation-resistant modular driver's cabin structure for mounting to the front end of a rail vehicle body and for providing a driver space and a windshield opening, is composed of a composite sandwich structure with a single, common, continuous outer skin layer, a single, common, continuous inner skin layer and an internal structure wholly covered with and bonded to the inner and outer skin layers, the internal structure comprising a plurality of core elements. The driver's cabin structure comprises at least: side pillars each having a lower end and an upper end, and an undercarriage structure at the lower end of each of the side pillars. The fiber-reinforced sandwich located in the side pillars is provided with several layers of fibers oriented to provide a high bending stiffness. The fiber-reinforced sandwich of the undercarriage structure is such to transfer static and crash loads without flexural buckling.




c

Railroad freight car draft gear assembly

A railcar draft gear assembly having an axially elongated spring assembly comprised of an axially stacked array of individual spring units and further including cooperating instrumentalities for maintaining the spring assembly generally axially aligned with a longitudinal axis of the railcar draft gear assembly during operation of the draft gear assembly while maintaining the individual spring units in generally aligned relation relative to each other.




c

Coupler knuckle

An improved coupler-knuckle assembly is comprised of a coupler body, a knuckle, and at least two knuckle retainer plugs. The knuckle has an internal coring geometry that increases the cross-sectional area of the throat portion of the knuckle compared to previous designs. The present invention's knuckle design includes a top and a bottom tapered holes in the knuckle with a locking groove at the bottom of each tapered hole for the knuckle retainer plugs to snap into. The knuckle retainer plugs are inserted through the coupler body and into the tapered holes in the knuckle. The improved coupler-knuckle assembly of the present invention reduces fatigue on the coupler, knuckle, and knuckle pin, prevents misalignment of the coupler-knuckle assembly, and prevents knuckle pin breakage.




c

Shock-absorbing coupler head for a coupling arrangement

A coupler head for a coupling arrangement is shown, which coupler head includes a coupler head housing (6) extending in a longitudinal direction from a first end (6a), attachable to a drawbar, to a second end (6b), which is arranged to carry a coupling interface between coupled rail vehicles, which coupler head housing houses mechanical coupling components (8,9) effective for automatic coupling to the corresponding components of a connecting coupling arrangement. The coupler head is characterized in that the coupler head housing has at least one notch (11, 11') for a predetermined and primarily axial compression thereof with absorption of energy from a deforming compressive force that is applied to the coupler head in the longitudinal direction thereof. The coupler head has preferably at least one notch (11, 11') for a predetermined folding of the coupler head housing.




c

Friction/elastomeric draft gear

A friction/elastomeric draft gear having a housing, a spring assembly arranged within the housing, and a friction clutch assembly having a wedge member and defining first sliding friction surface disposed at an angle θ relative to a longitudinal axis of the draft gear and a second friction surface disposed at an angle β relative to a longitudinal axis of the draft gear. The spring assembly is designed in combination with the angles θ and β of the first and second friction sliding surfaces relative to the longitudinal axis such that the draft gear consistently and repeatedly withstands between about 100 KJ and 130 KJ of energy imparted at less than three meganewtons over a range of travel of the wedge member in an inward axial direction relative to the draft gear housing not exceeding 120 mm.




c

Self-contained model railroad coupler

Embodiments related to a self-contained coupler for model railroad rolling stock are provided. In one example, a self-contained coupler comprises a coupler assembly including a knuckle and an uncoupling assembly configured to operate the coupler assembly. The example uncoupling assembly includes a signal input for receiving a signal and a motivator coupled to the coupler assembly via a movable link, the motivator operative to adjust the knuckle from a first position to a second position responsive to the signal. The example uncoupling assembly also includes a housing including the motivator and a rolling stock mounting location for mounting the uncoupling assembly to an item of the model railroad rolling stock.




c

Consist communication system

A communication system is disclosed for use with a train consist. The consist communication system may have a first fluid conduit, a first coupling connected to the first fluid conduit, a first cover connected to the first coupling and configured to close an end of the first fluid conduit, and at least a first cable disposed within the first fluid conduit. The system may also have a second fluid conduit substantially identical to the first fluid conduit, a second coupling substantially identical to the first coupling, fixedly connected to the second fluid conduit, and connectable to the first coupling, and a second cover connected to the second coupling and configured to close an end of the second fluid conduit. At least a second cable may be disposed within the second fluid conduit in communication with the at least a first cable through the first and second covers. The first and second fluid conduits may be pressurized.




c

Coupler support mechanism

A coupler for transit cars includes a coupler anchor, a coupler mechanism supported to the coupler anchor by a deformation tube and draft gear element, and a coupler support mechanism. The coupler support mechanism includes two support arms pivotally mounted to a lower part of a coupling connector. A tension rod is provided for each support arm to control the pivotal displacement of each support arm. Each support arm further includes a torsion spring which is loaded as the support arm is pivotally displaced in an upward direction and unloaded as the support arm is pivotally displaced in a downward direction. The position of each support arm may be adjusted independently, thereby allowing adjustment of the coupler along longitudinal and lateral planes of the transit car.




c

Device for coupling high-speed railroad cars and method for removing device

A device for coupling tilting railroad cars onto a high-speed railroad train comprises a coupler and a shock absorber held in a shock absorber frame, each joined by a coupling pin via a coupling joint. The frame includes a front inner surface with a front end wall opening and a cylindrical surface extending to a semi-circular concave inner surface. The joint includes a rounded convex surface engaged with a semi-circular concave surface, a circumferential surface of a short cylinder receiving the rear portion of the coupler, and an insertion hole which is provided in a direction perpendicular to the axis of the short cylinder. The frame has a removal hole and an air removal pin of the coupling pin facing each other at a position to rotate at a predetermined angle in a circumferential direction in the assembled state, and at a position coaxial with the coupling pin in the assembled state.




c

Device for electrical characterization of molecules using CNT-nanoparticle-molecule-nanoparticle-CNT structure

A method of forming an electrode is disclosed. A carbon nanotube is deposited on a substrate. A section of the carbon nanotube is removed to form at least one exposed end defining a first gap. A metal is deposited at the at least one exposed end to form the electrode that defines a second gap.




c

Railcar draft gear assembly and related method for assembling a railcar draft gear

A railcar draft gear assembly including a housing, a spring sea, a spring and a friction clutch assembly in operable combination relative to each other within the housing. The spring includes a series of axially stacked elastomeric pads arranged between a closed end of the housing and the spring seat. An axially elongated guide rod is endwise passed through the spring seat and elastomeric pads for aligning the pads relative to a longitudinal axis of the draft gear assembly. The guide rod is operably inhibited from axial shifting movements during operation of the draft gear assembly. A related method for assembling the draft gear is also disclosed.




c

Electric coupling for railways

An electric coupling for railways contains a first and a second coupling part each comprising a support in which a plurality of linking parts are arranged for establishing an electric, pneumatic and/or hydraulic link from one coupling part to another coupling part. In addition, at least one high-frequency link is provided which is formed by an enclosed antenna in one coupling part and by an enclosed antenna in the other coupling part.




c

Under-way transfer vehicles and system

This is a vehicle transfer system to connect a roadway vehicle such as a bus to and from a train either when stopped or moving. It mounts the bus end or ends each on the swivel end of a railway car. The bus end which couples a railway car has wheels that retract to clear from the track. All wheels of the bus are lifted if the bus is supported on a railway car at each end. Automatic couplers are provided to couple to a moving train. If the bus is only supported at the front on a swivel coupling car it can have hi-rail retractable swivel truck wheels lowered to the rails to guide the rear of the bus around sharp tram curves.




c

Railway vehicle having front coupling cover

A railway vehicle has a cover for a front coupling of the railway vehicle. The cover is formed of at least one displaceable front hatch that can be displaced by a drive between an opened and a closed end position. A displacement of the at least one front hatch is guided such that the displacement takes place along a circular segment path about a rotary axis.




c

Lightweight coupler

The coupler system of a railway car truck is constructed such that basic overall appearance may be maintained, but the actual material of which it is constructed is changed. According to one embodiment, the coupler is constructed from cast austempered ductile iron; whereas cast iron has a density, 0.26 lbs/in^3, which is approximately 8% less than steel, 0.283 lbs/in^3, thereby allowing for a reduction in weight over steel. A suitable austempering process is used to produce the austempered metal coupler and components thereof. A second benefit of embodiments of the present invention provides for a more efficient use of materials, meaning less metal is used to make the same final shape, as a way of reducing the coupler weight. Both factures combined allow for a lighter weight coupler, while utilizing the standard designs. Alternate coupler configurations are disclosed for further reducing coupler weight.




c

Nut chopper

A nut chopper includes an upper hopper, a lower container, and a grate positioned between the hopper and container. A series of parallel blades supported on an axle and coupled to a crank is positioned so that the blades may be rotated through the grate. As the blades pass through the grate, they chop the nuts that are in the path of the blades. Once individual nuts are chopped into sizes that are smaller than the width of the openings formed in the grate, the chopped portions will fall through the grate and into the container.




c

Food chopper

A food chopper having an integrated cutting surface for a food chopper is provided. The integrated cutting surface can be incorporated into food chopping compartment of the chopper and may include a window for allowing visual inspection of the chopped food while still within the compartment. The food chopper includes blade mechanism having at least one V-shaped blade and a blade cover/cleaner configured to maintain the at least one V-shaped blade covered from user exposure even when the food chopping compartment is removed from the chopper.




c

Production of organic compound nanoparticles with high repetition rate ultrafast pulsed laser ablation in liquids

Disclosed is a method of producing a chemically pure and stably dispersed organic nanoparticle colloidal suspension using an ultrafast pulsed laser ablation process. The method comprises irradiating a target of an organic compound material in contact with a poor solvent with ultrashort laser pulses at a high repetition rate and collecting the nanoparticles of the organic compound produced. The method may be implemented with a high repetition rate ultrafast pulsed laser source, an optical system for focusing and moving the pulsed laser beam, an organic compound target in contact with a poor solvent, and a solvent circulating system to cool the laser focal volume and collect the produced nanoparticle products. By controlling various laser parameters, and with optional poor solvent flow movement, the method provides stable colloids of dispersed organic nanoparticles in the poor solvent in the absence of any stabilizing agents.




c

Medical devices formed from recycled medical waste and methods of manufacture

Methods of reclaiming plastic from plastic medical waste containers containing medical waste and manufacturing recycled medical devices are described. Recycled medical devices made from plastic medical waste containers containing medical waste are also described.




c

Truck mounted debris grinder

A debris grinder interfaces directly with a typical roll-off container and a typical roll-off truck. By interfacing to the roll-off container, there is no need to feed waste by hand—an operation that is often dangerous to those operating the equipment. By interfacing with a typical roll-off truck, the debris grinder becomes mobile for spreading of the ground debris into the soil around the construction site. The debris grinder includes a skid portion for supporting and holding the roll-off container, a grinder portion for grinding debris from the roll-off container and depositing the ground-up debris onto the soil at the job site.




c

Paper shredder with allowable thickness warning function

A paper shredder with an allowable thickness warning function is provided. The paper shredder includes a casing and an upper cover. An input tray is disposed on the casing for placing plural papers thereon. A pressing member and a thickness detecting device are installed on the upper cover. When the pressing member is contacted with the plural papers on the input tray and pushed by the plural papers, the pressing member is moved. The thickness detecting device is located near the pressing member. Moreover, in response to the movement of the pressing member, the thickness detecting device may be triggered. If an overall thickness of the plural papers exceeds an allowable thickness, the pressing member is pushed by the plural papers. Consequently, the thickness detecting device is triggered by the pressing member to generate a warning signal.




c

Curved hammer

The various embodiments disclosed and pictured illustrate a curved hammer for comminuting various materials. The illustrative embodiments pictured and described herein are primarily for use with a rotatable hammermill assembly. The curved hammer includes a connection portion having a rod hole therein, a contact portion for delivery of energy to the material to be comminuted, and a curved neck portion affixing the connection portion to the contact portion. In other embodiments, a shoulder is positioned around the periphery of the rod hole for added strength. In still other embodiments, a neck reinforcement is positioned along a portion of the neck for increased strength. A weld or plurality of welds may be affixed to various surfaces of the contact portion to aide in comminuting and/or longevity of the curved hammer.




c

Agitation system for blowing wool machine

A machine for distributing blowing wool from a bag of compressed blowing wool is provided. The machine includes a chute having an inlet end configured to receive the bag of compressed blowing wool. A shredding chamber is positioned downstream from the chute and configured to shred and pick apart the blowing wool. The shredding chamber includes a plurality of shredders configured for rotation. Each shredder includes a plurality of paddle assemblies mounted to a shredder shaft. Each paddle assembly has a plurality of paddles. The paddles have a hardness within the range of 60 A to 70 A Durometer to better grip the blowing wool for shredding and prevent jamming of the blowing wool within the shredder.




c

Device for producing chocolate

The invention relates to a device (1) for producing chocolate by mixing and grinding ingredients, such as cacao mass, cacao butter, sugar and/or milk powder, comprising a mixer (3), a grinder (4), and means for passing the mixture from the mixer (3) to the grinder (4). The mixer (3) comprises a toroidal, preferably annular vessel (6) for receiving and mixing the ingredients.




c

Osteobiologic milling machine

The present disclosure, in one aspect, relates to a milling apparatus having a cutter housing and feed chute, a rotary cutter, at least partially housed within the cutter housing and in communication with the feed chute, and a feed ram removably positioned within the feed chute for maintaining a workpiece against the rotary cutter. The feed chute and feed ram may be selectively positionable at one of several angular positions with respect to the rotary cutter. In this manner, the force applied by the feed ram on the workpiece is a function of the weight of the feed ram and the angular position of the feed ram with respect to the rotary cutter.




c

Shredding machine

A machine for shredding plastic container including a pressing device having a main housing having an interior space, a first opening for feeding container and a second opening for disposing the shredded pieces, a fixed plate position at one end within the housing and having slits arranged in matrix pattern, facing the interior of the housing, and having sharp edges, a movable plate having plurality of blades connected to at least one arm. The movable plate can move along a central axis within the housing and the blades have edges facing the sharp edges of the fixed plate. The containers are placed between the plates, such that when the movable plates moves along the central axis of the housing toward the fixed plate, the blades crash and cut the container into flakes. Pegs protrude from the blades, such that when the arm moves forward, the pegs punch the container.




c

Method for producing a confectionery semi-processed product, such as a chocolate-type product

A method of producing a semifinished confectionary product, such as chocolate or similar, using at least one centrifugal unit for simultaneously grinding and mixing at least some of the ingredients of the semifinished product, and which includes an elongated processing chamber with a substantially horizontal axis, at least one inlet for the ingredients to be processed and one outlet for the processed ingredients, and a powered shaft fitted inside the processing chamber, coaxially with the axis, and fitted with a succession of radial appendixes arranged between the inlet and the outlet; the method including the steps of loading at least a first ingredient of the semifinished product through the inlet; grinding the first ingredient inside the grinding and mixing unit by rotating the shaft at a first speed; loading at least a second ingredient through the inlet, after grinding; rotating the shaft at a second speed to grind and mix the ingredients to form a mixture of the same grain size as the semifinished product; loading at least a third ingredient through the inlet; mixing the third ingredient with the previously ground mixture to form a further mixture; bringing the further mixture to a given temperature to obtain the semifinished product; and transferring the semifinished product to a storage or packaging station.




c

Multipass rotary shear comminution process to produce corn stover particles

A process of comminution of corn stover having a grain direction to produce a mixture of corn stover, by feeding the corn stover in a direction of travel substantially randomly to the grain direction one or more times through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of corn stover travel.




c

Organic shredder apparatus and method for operating an organic shredder

An apparatus and method is provided for organic material reduction and preparation for subsequent recycling or disposal in a self-contained system which is safe for equipment operators, and highly cost and floor-space efficient. The apparatus includes a preferably-shaped hopper for receiving organic materials to the reduced, preferably a floating auger, a solids pump and a macerator. The system preferably generates a processed organic material discharge with a particle size on the order of ⅛″ without concern as to the liquid content of the incoming organic material. The apparatus may be operated by a method which is completely automated following operator initiation, including automatically attempting self-clearing actions in the event of detecting clogs or jams in the processing components.