c

Mobile power pack with built-in retractable cable

A mobile power pack includes a cover over a guide track which includes first, second, third, and fourth turning points. A sliding block defines a sliding groove to receive a ball, and the slotted ball interacts with the guide track. An elastic element is connected to the sliding block. When a cable is pulled out, the sliding block slides from the first turning point to the second turning point. When the pull on the cable is released, the elastic element restores to cause the sliding block to move until the ball reaches the third turning point, to lock the cable in position. When the cable is pulled and released, the sliding block slides until the ball reaches the fourth turning point, allowing the cable to be retracted into the body of the power pack.




c

Electrical appliance holder system

A power cord management system for managing flexible electrical power cords associated with hair or bathroom handheld appliances includes a power cord storage body. A pair of spaced apart cord wrapping elements are coupled to the power storage body about which the flexible electrical power cord may be wrapped for storage. At least one of the cord wrapping elements is movable between a storage and release position. The cord wrapping elements are configured to retain the wrapped power cord upon the power cord storage body when the at least one of the cord wrapping elements is in the storage position and wherein the wrapped power cord may be removed from the power cord storage body without unwrapping the wrapped power cord when the at least one of the cord wrapping elements is moved to the release position. A power cord coupling mechanism is coupled to the power cord storage body for facilitating releasable retaining of a free end or other portion of the flexible electrical power cord to the power cord storage body.




c

Electrically driven dump truck

A vehicle control device 50, a controller 100, an inverter control device 30 and a steering control device 32 constitute a control device 200 which controls elevation of sliders 4Ra and 4La of power collectors 4R and 4L based on information detected by a trolley wire detecting device (camera) 15. The control device 200 calculates positional relationship between a slider and a trolley wire 3R/3L based on the information detected by the trolley wire detecting device. When the slider has deviated from a prescribed range for being in contact with the trolley wire, the control device executes control to prohibit an operation for elevating the sliders or to lower the sliders when the sliders have been elevated. With this configuration, an electrically driven dump truck capable of lightening the operating load on the driver during the trolley traveling is provided.




c

Arrangement for operating consumers in a rail vehicle with electrical energy, selectively from an energy supply network or from a motor-generator combination

An arrangement for operating a rail vehicle includes a DC voltage intermediate circuit which is connected to an energy supply network, at least one traction inverter which is connected at its DC voltage side to the DC voltage intermediate circuit and at its AC voltage side which is connected one or more traction motors of the rail vehicle. An auxiliary system inverter is connected at its DC voltage side to the DC voltage intermediate circuit and is connected at its AC voltage side to a primary side of an auxiliary system transformer. Auxiliary systems are connected to a secondary side of the auxiliary system transformer via an auxiliary line. Electrical energy generated by an electrical energy supply unit is transferred via the auxiliary line, the auxiliary system transformer and the auxiliary system inverter into the DC voltage intermediate circuit for operation of the at least one traction motor.




c

Transport vehicle equipped with current collector

A transport vehicle equipped with a current collector, includes: a vessel to load a load; a current collector that extends to receive electric power from an overhead line and contracts and retracts so as to be disposed away from the overhead line; and a vehicle body that rotationally drives driving wheels by at least one of the electric power from the current collector and a self-propelled driving source and on which the vessel is placed; a pantograph position detector that detects a relative position of the current collector and the overhead line; and a control device that controls a driving direction of the vehicle body or gives an instruction of information with which a direction in which the vehicle body is to be operated can be recognized, so that the relative position is brought to a position where the current collector and the overhead line are connected.




c

System for transferring energy to a vehicle and method of operating the system

A system for transferring energy to a vehicle, in particular a track bound vehicle, such as a light rail vehicle, wherein the system includes an electric conductor arrangement adapted to produce an electromagnetic field which can be received by the vehicle thereby transferring the energy to the vehicle the system further includes electric and/or electronic devices which are adapted to operate the electric conductor arrangement. The devices produce heat while operating the conductor arrangement and—therefore—are to be cooled. A cooling arrangement of the system includes a structure having a cavity in which at least one of the devices to be cooled is located. The structure includes a cover limiting the cavity at the top, wherein the device(s) to be cooled is/are located at a distance to the cover. The structure is integrated in the ground at the path of travel of the vehicle in such a manner that the cover forms a part of the surface of the ground.




c

Vehicle electric power supply system

The present invention is vehicle electric power supply system (A) that supplies electric power wirelessly to a vehicle (M) that is positioned within an electric power supply area (X). The vehicle electric power supply system (A) has: a power-receiving device (m1) that is provided in the vehicle; a plurality of power-transmitting devices (1a1, 1a2, 1a3, 1b1, 1b2, 1b3, 1c1, 1c2, 1c3) that are provided at mutually different positions within the electric power supply area; a position detecting device (4) that detects the position of the power-receiving device within the electric power supply area; and a control device (4) that, based on detection results from the position detecting device, selects from among the plurality of power-transmitting devices the power-transmitting device that is located in a position that corresponds to the power-receiving device, and then causes power to be supplied wirelessly from the selected power-transmitting device.




c

Analysis device of catenary-based transportation system, analysis method and program therefor

In a catenary-based transportation system which is provided with integrated power supply equipment having an electricity storage unit which stores electricity regenerated by vehicles traveling by electricity received from a catenary and supplies electricity to the catenary and the other power supply system which is a power supply system different from the electricity storage unit concerned, the performance of a rectifier of the other power supply system is determined based on a power-supplying contribution ratio γ of the other power supply system so that the cost value of the integrated power supply equipment becomes lower than a target cost value.




c

Method for optimizing the operation of a reversible traction substation and associated devices

The method according to the invention aims to optimize the operation of a reversible traction substation (Sk) of a power supply system (4) for railway vehicles, said reversible substation being able to be commanded in a traction operating mode or a braking mode. This method includes: determining a current value (Mc) of a favored operating mode;maximizing at least one optimization function (F) that depends on the current value of the favored operating mode, based on instantaneous values (G(t)) of multiple operating properties of the substation (Sk);computing optimized values (Popt(t)) for multiple configuration parameters of the substation (Sk) from maximized values (Gmax(t)) of the operating properties.




c

Cord storage apparatus

A cord storage apparatus includes an electric motor configured to retract a power reception cord to be connected to an external power supply and a control unit configured to determine whether or not the power reception cord is retracted away from the ground when the power reception cord is connected to the external power supply and control the electric motor to stop retracting the power reception cord when the power reception cord is retracted away from the ground.




c

Positioning and/or holding a plurality of line sections of electric lines along a drive way of a vehicle

A shaped block for positioning and/or holding a plurality of line sections of one or more electric lines along the track of a vehicle includes a plurality of recesses and/or projections. Edges of the recesses and/or the projections each delimit a space for the line sections into which one of the line sections can be introduced, so that said line section extends through the space in a longitudinal direction of the space. The longitudinal directions of the spaces delimited by the edges of the recesses and/or by the projections extend essentially mutually parallel in a common plane.




c

Method and device for producing process vapor and boiler feed steam in a heatable reforming reactor for producing synthesis gas

A method for producing process vapor and boiler feed steam in a heatable reforming reactor for producing synthesis gas. The sensible heat of a synthesis gas produced from hydrocarbons and steam can be used so that two types of vapor are produced during the heating and evaporation of boiler feed water and process condensate. The method also includes a conversion of the carbon monoxide contained in the synthesis gas. The method includes an optional heating of the boiler feed water using the flue gas from the heating of the reforming reactor. The sensible heat of the synthesis gas and of the flue gas originating from the heating can be used more efficiently. The disadvantages from the flue gas heating, which are caused by the fluctuating heat supply in the flue gas duct, are avoided. A system for practicing the method is also disclosed.




c

Method of controlling combustion of gas appliance

A method of controlling combustion of a gas appliance includes the following steps: a) Read a first burning data in a database; b) Burn gas according to the first burning data; c) Obtain a burning efficiency of the gas appliance; and d) Compare the burning efficiency with a predetermined value, and repeat the step b to the step d when the burning efficiency is higher than the value, or read a second burning data in the database and burn gas according to the second burning data when the burning efficiency is lower than the value. The present invention provides plural stages of burning according to the main component of the gas to be burned to increase the total burning efficiency.




c

Model-free adaptive control of supercritical circulating fluidized-bed boilers

A novel 3-Input-3-Output (3×3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7×7) MFA control system is also described for controlling a combined 3-Input-3-Output (3×3) process of Boiler-Turbine-Generator (BTG) units and a 5×5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.




c

Cascading once through evaporator

A steam generator includes a substantially horizontal gas conduit (1) to guide a heating gas flow (2) and an evaporator unit positioned at least partially in the horizontal gas conduit for transferring heat from the heating gas to a flow medium which flows through the evaporator unit. The heat transfer section of the evaporator unit of the steam generator is bottom fed, which means that the inlet conduit is arranged at a lower region of the heat transfer section. The outlet conduit is arranged at an upper region. The inlet conduit allows an once through operation of the evaporator section which is necessary to enable operation under supercritical circumstances. The evaporator unit includes at least two evaporator stages (3, 4) which are arranged in a cascade. Each evaporator stage includes a heat transfer section (12, 21) and a separator (14, 23). The presence of the separators (14, 23) subdivides the evaporator unit into evaporator stages (3, 4).




c

Condensing gas appliance and condensate trap therefor

A condensing fuel-fired appliance has a condensate trap that includes a trap body; a float; a flue gas inlet port for the introduction of flue gas into the interior region of the trap body; a condensate outlet port for the discharge of condensate from the interior region; and a flue gas outlet port for the discharge of flue gas from the interior region of the trap body. The float is configured to move in response to condensate collected in the interior region of the trap body to a position to substantially block the discharge of flue gas from the interior region through the flue gas outlet port. The float is also configured to move to a position to substantially block the discharge of flue gas from the interior region through the condensate outlet port when there is little or no condensate in the interior region of the trap body.




c

Water delivery system and method for making hot water available in a domestic hot water installation

A water delivery system is provided, comprising at least one faucet device with a cold water faucet part and a hot water faucet part, a cold water line to the at least one faucet device, a tankless heater device for heating water, a hot water line having a first portion running from an outlet of the tankless heater device to the at least one faucet device and having a second portion running from the at least one faucet device to an inlet of the tankless heater device, and a circulatory pump arranged in the second portion of the hot water line, wherein the circulatory pump has a prefixed first performance level and a prefixed second performance level, wherein the first performance level causes a finite water flow in the hot water line which is below an operation threshold value of the tankless heater device.




c

Tubesheet walker for heat exchanger inspections

A robotic tubesheet walker having two rails connected by a central hinge, wherein the central hinge can be opened or closed by an actuation device. Upon each rail is mounted a carriage, wherein each carriage can move along its respective rail toward or away from the central hinge by means of a drive mechanism. Each carriage further contains at least two “gripper” attachment mechanisms, such as camlocks, to grip the tubesheet. The grippers either insert into tube holes within the tubesheet to fasten the respective carriage to the tubesheet, or retract to disengage. Further attached to the central hinge is a tool support fixture, and attached to the tool support fixture is a coupler that holds maintenance or inspection tools.




c

Buckstay connecting system

A buckstay connecting system includes a socket part that is fixed to the horizontal buckstay being separated from a lower end of the vertical buckstay between the lower end of the vertical buckstay and the horizontal buckstay, and an insertion part that is fixed to a lower portion of the vertical buckstay, is inserted into the socket part so as to be able to slide in a vertical direction, inhibits the horizontal buckstay from being inclined, and is allowed to be fastened to the socket part.




c

Foam dam for appliance

An apparatus includes an inner rim, a base wall, a side wall and an outer rim. The inner rim has a first opening formed therein. The base wall extends outward from an inner edge of the inner rim and is integral with the inner rim. The side wall extends outward from an outer edge of the inner rim and is integral with the inner rim. The outer rim has a second opening formed therein and an inner edge integral with the side wall. The inner rim, base wall, side wall and outer rim are formed to prevent liquid seepage to one or more surrounding components of an appliance in which the apparatus is installed.




c

Heat recovery system and method

A system providing for heat recovery from exhausted flue gas in a steam generator is described comprising a flue gas outlet conduit defining a flow path for flue gas from a flue gas outlet of a steam generator to a flue gas conduit junction point; a flue gas primary conduit defining a flow path for flue gas from the junction to a primary air preheater; a flue gas secondary conduit defining a flow path for flue gas from the junction to a secondary air preheater; wherein a steam generator process fluid heat exchanger is disposed within the flow path of the flue gas primary conduit upstream of the primary air preheater to recover some heat from the flue gas in advance of the primary air preheater. A method implementing the flow principles embodied in such a system is also described.




c

Building heat exchange system

The building heat exchange system is suited for installation in areas having warmer seasonal climates. The system can include an external solar heated water supply, and an indoor water heater. An enclosure extends around the water heater, with indoor air flowing between the enclosure and water heater to a duct for distribution. During cooler conditions the water heater heats incoming water from the relatively cool external water supply, with the warmth of the water heater warming the air for distribution into the bathroom or other area as desired. In warmer times, the water supplied from the water supply can be sufficiently hot that additional heating is not needed, and can be hotter than desired. In such warmer conditions, the water heater can serve as a radiator, with heat radiated from the water heater being absorbed by air flowing past the water heater and expelled to the external environment.




c

Burner control

A fuel-fired water heater is shut down when a predicted steady state combustion chamber temperature is below a known threshold. The predicted steady state temperature is based on combustion chamber temperatures during heat up of the burner and appliance.




c

Method and apparatus for heat recovery within a syngas cooler

A method of assembling a syngas cooler is provided. The method includes coupling a supply line within a cooler shell, coupling a heat transfer panel within the cooler shell, and coupling a heat transfer enclosure within the cooler shell such that the heat transfer enclosure substantially isolates the heat transfer panel from the cooler shell. A manifold is coupled in flow communication with the supply line, the heat transfer enclosure, and the heat transfer panel.




c

Masterless control system methods for networked water heaters

Disclosed is a masterless control system for controlling a plurality of fluidly and operably connected water heaters to meet a hot water demand such that overall efficiency is maximized and usage disparity between water heaters is minimized. There is further disclosed a method for detecting a small system demand in said network by adjusting the setting of each flow limiting valve of each water heater. There is still further disclosed a method for enabling seamless addition or removal of a heater in service and heating load distribution to water heaters.




c

Control method for a hybrid tankless water heater

An on demand tankless water heater system that is capable of quickly delivering water within a desired temperature range. The tankless water heater provides a hybrid heating method that contains a primary heating system and a secondary heating system disposed in a buffer tank that cooperate to facilitate control of output water temperature during water usage. A pressure differential switch detects low flow demand and allows the secondary heating system to provide immediate heating to the water. This secondary heating system provides a faster temperature response and fine tuning of output water temperature.




c

Steam-generator temperature control and optimization

A control method for boiler outlet temperatures includes predictive control of SH and RH desuperheater systems. The control method also includes control and optimization of steam generation conditions, for a boiler system, such as burner tilt and intensity, flue-gas recirculation, boiler fouling, and other conditions for the boiler. The control method assures a proportional-valve control action in the desuperheater system, that affects the boiler system.




c

Process and apparatus for making improved samosa-pastry and patisserie products

An improved method of making a baked pastry, particularly, a shell or wrap for a samosa from a pastry dough in a convection baking oven having a convection atmosphere, the method comprising baking the dough in the oven at a baking temperature for a baking period of time, the improvement having the convection atmosphere with a sufficiently moist atmosphere for the duration of the baking time to prevent the pastry from becoming dry.




c

Heating or cooling system featuring a split buffer tank

This invention relates to a heating/cooling system operating on the basis of a novel SPLIT BUFFER TANK; representing an efficiency improvement alternative to HVAC systems functioning with existing commercial buffer tanks. Currently, commercial buffers have the heat source provider (HSP)-return and system-return discharging to a common buffer/vessel. Novel SPLIT BUFFER is provided with a SEPARATION DISK placed inside the tank as mechanical way of separating the hot water inflow from the HSP from the warmer water inflow from system return. The disk moves up and down along the tank driven by demanded water supply and return. Pump-1 circulates hot water from the hot section of the buffer to the secondary system claiming for heat. Pump-2 circulates warmer water from the warmer section of the buffer through the HSP where it is reheated, and subsequently stored in the hot section of the buffer to reinitiate this cycle again.




c

Diploid control of water heaters

A method of controlling a water heater is provided. The method comprises evaluating the fitness of solutions associated with a plurality of individuals in a population for a current operating environment of the water heater. Each of the plurality of individuals comprises a dominant genotype and a recessive genotype. Each genotype represents a solution for controlling the water heater. A fitness function is applied to the dominant genotype of each individual. The fitness function is based on at least one of water flow demand data and energy price data. The method further comprises storing previously encountered genotypes in the recessive genotypes of the individuals. The method further comprises selecting a solution for controlling operation of the water heater based on the fitness evaluation.




c

System and method for thermal control in a gas turbine engine

A system includes a gas turbine engine that includes a compressor section configured to generate compressed air and a combustor coupled to the compressor section. The combustor is configured to combust a first mixture comprising the compressed air and a first fuel to generate a first combustion gas. The gas turbine engine also includes a turbine section coupled to the combustor. The turbine section is configured to expand the first combustion gas to generate an exhaust gas. The gas turbine engine also includes a boiler coupled to the turbine section. The boiler is configured to combust a second mixture comprising a portion of the first combustion gas and a second fuel to generate a second combustion gas that is routed to the turbine section. In addition, the boiler generates a first steam from heat exchange with the second combustion gas.




c

High efficiency gas-fired water heater

The efficiencies of illustrative embodiments of vertical center flue type fuel-fired base water heaters are improved by installing in the water heaters variously configured tubular condensing type secondary heat exchangers of smaller diameters than the associated center flues. The efficiency increases are achieved with components and manufacturing processes similar to those utilized in the base water heaters and secondary heat exchanger materials similar to those in the tank portions of the base water heaters.




c

Circulating fluidized bed boiler

A circulating fluidized bed boiler includes a rectangular furnace having multiple particle separators connected to an upper portion of each of a front wall and a back wall of the furnace. Each particle separator includes a gas outlet, and a flue gas duct system connected to the gas outlets for conducting cleaned flue gas to a back pass. The particle separators are arranged in pairs. Each pair includes a front separator arranged adjacent to the front wall and a back separator arranged adjacent to the back wall. The flue gas duct system includes cross over ducts, each duct connecting the gas outlet of a front separator of a pair of particle separators, across and over the furnace, to the gas outlet of the back separator of the same pair of particle separators, and to the back pass, which back pass is arranged on the back wall side of the furnace.




c

Water heater and flow rate control method

A water heater in which by applying pulsation of a liquid to be heated which circulates between a tank and a heat exchanger, scale that has been deposited on the inner wall (heat-transfer surface) of a to-be-heated liquid flow channel in a heat exchanger is detached, and the number of times of circulation of the liquid to be heated which circulates between the tank and the heat exchanger is controlled to be three times or less. The number of times of circulation is determined, based on the entire volume of the to-be-heated liquid stored in the tank, a boiling time to be taken for the entire volume of the to-be-heated liquid in the tank to reach a predetermined temperature, and the flow rate of the to-be-heated liquid which passes through the to-be-heated liquid flow channel.




c

Domestic combined heat and power system

A domestic combined heat and power system including a power unit, a heat-storage tank which receives waste heat of the power unit for storing heat in direct water, and a main heat exchanger connected to the heat-storage tank, being heated by a burner so as to use the water as hot water. A waste-heat heat exchanger filled with a heat-transfer medium is installed between the power unit and the heat-storage tank such that a waste-heat pipe is arranged in the form of a coil at one side inside the waste-heat heat exchanger, and a heat-storage pipe of the heat-storage tank is arranged in the form of a coil at the other side. Waste heat of the power unit is indirectly heat exchanged to the heat-storage tank through the heat-transfer medium. Costs and waste of energy consumption are reduced, and there is sharing of functions that are duplicated across the heat-storage tank.




c

Ultra low NOx burner using distributed direct fuel injection

A burner box includes a housing, a fuel tube and a porous heat dissipating surface. The housing is bounded by a sidewall and has a top and an opposite bottom that are each open so that the sidewall defines an open passage that allows unimpeded vertical airflow. The fuel tube extends into the passage and defines a plurality of spaced apart orifices that distribute fuel into the open passage. The fuel tube is at a distance from the top of the housing so that substantially all of the fuel is entrained by the combustion air before the fuel reaches the top. The heat dissipating surface is disposed across the top of the housing and supports a flame. The heat dissipating surface includes enough open area so that the fuel/air mixture passes through the porous heat dissipating surface unimpeded. The heat dissipating surface dissipates heat from the flame and prevents flashback.




c

Evaporator surface structure of a circulating fluidized bed boiler and a circulating fluidized bed boiler with such an evaporator surface structure

An evaporator surface structure of a circulating fluidized bed boiler having a furnace that is enclosed by sidewalls and has a bottom and a ceiling. The evaporator surface structure includes at least one vertical and separate evaporator surface unit that is spaced apart from the sidewalls of the furnace. The at least one evaporator surface unit (i) is formed of planar water tube panels that extend from the bottom of the furnace to the ceiling of the furnace, and (ii) consists of two cross-wise joined vertical water tube panels.




c

Cooling plate arrangement and method for installing cooling plates in a metallurgical furnace

The present invention proposes a gap-filler insert (20) for use with cooling plates (12, 12') for a metallurgical furnace, the cooling plates (12, 12') having a front face (14, 14') directed towards the interior of the furnace, an opposite rear face (16, 16') directed towards a furnace wall (10) of the furnace and four edge faces (18, 18'). In accordance with an aspect of the present invention, the gap-filler insert (20) comprises a metal front plate (24) with a front side (24) facing the interior of the furnace and anchoring means (28, 28', 30, 30', 32, 34) for mounting the front plate (24) between two neighboring cooling plates (12, 12') in such a way that the front plate (24) extends between the edge faces (18, 18') of both cooling plates (12, 12'), and that the front side (26) of the front plate (24) is flush with the front faces (14, 14') of both cooling plates (12, 12').




c

Livestock guide and manipulator

A livestock guide and manipulator panel prod is disclosed by this invention wherein electronic shocking circuitry is provided in combination with a hand-held livestock guiding and directing panel having electronic prods of said circuitry arranged on the surface of the panel.




c

Combined crop and longeing whip

A device for use during riding and training of animals such as horses which can be utilized either as a riding crop or longeing whip. The body portion of the device defines a crop having a handle formed at one end and a cracker attached to the opposite end. A plurality of flexible wand elements are nested within the body portion and are telescopically extendable from that end to which the cracker is attached. A line defining a lash is attached to the wand element whose axis coincides with that of the body portion and the cracker is fabricated in the form of a closeable pocket. The device forms a longeing whip with the lash and wand elements fully extended and when retracted the lash is retained in coiled form within the closeable pocket thus converting the device to a riding crop.




c

Electrical shocking device with audible and visible spark display

A battery powered, hand-held, lightweight electrical shocking device provides a visible and audible display of sparks continuously upon the operation of a switch. The device is capable of delivering a jolting shock. The display of sparks makes clear the nature of the device and serves as a deterrent to unruly persons. The device is comprised of a non-conductive housing in a generally annular shape, permitting it to be gripped in one hand. On one surface away from the hand are first and second conductive plates separated from each other by an insulator. The electrical circuit comprises a free-running multi-vibrator, a small transformer, a rectifier, a voltage doubler and an internal spark gap. The circuit can deliver a series of short duration, high voltage, low current electrical shocks from two penlight batteries.




c

DC voltage converter and shock-type high voltage utilization devices

A DC voltage converter includes an oscillator that converts a DC battery voltage to an oscillating voltage, a low voltage transformer that increases the oscillating voltage to a higher oscillating voltage, and a voltage rectifying-capacitor charging network or multiplier that increases the higher oscillating voltage to yet a higher DC voltage at an output terminal for DC high voltage utilization devices and the like. An electric control switch is selectively actuated by the user to apply the battery voltage to the oscillator, resulting in the generation of the stepped-up DC voltage at an output terminal. Another DC voltage converter has an electronic switching circuit that automatically turns the oscillator on and off and a load capacitor across the electrodes that is charged and discharged to provide a shocking voltage. Utilization devices for the voltage developed by the converter shown are a miniature animal training device and a cattle prod device. The miniature animal training device has a pair of outwardly projecting electrodes mounted on a side at one end of the housing that is sized and shaped to fit within and conform to the palm of a hand. The cattle prod device has a pair of electrodes fixedly mounted on the end of a housing assembly made up of telescoping tubular housing sections arranged for relative axial movement whereby the pressing of the electrodes against an object to be shocked actuates the electric control switch and causes a shock of the object. The housing assembly is releasably supported by a rigid handle or an extensible handle assembly.




c

Apparatus for generating electric shock pulses

An apparatus for generating electric pulses is disclosed. The apparatus comprises a generator or oscillator for charging a storage capacitor and a control circuit for controlling the discharge of the capacitor through an output or discharge circuit which includes a controllable switch device and two output terminals or electrodes. In an embodiment, the output circuit also includes a high voltage output pulse transformer.Whenever a load resistance exists or occurs between the two output electrodes, a particular detector current will flow through the load resistance and through a specific detector or load sensing circuit in the apparatus. This detector current indicating that an external load resistance is present, will automatically start the charging generator which then will operate to charge and recharge the storage capacitor as long as the detector current exists, i.e. as long as the external load is present.




c

Electrified glove

An electrified glove is disclosed for subduing criminal suspects and arrested individuals. The glove includes a circuit powered by a small battery that may be rechargable and will deliver a continuous A.C. shock and intermittent D.C. shocks to open output terminals located on the glove exterior. The shocks will temporarily incapacitate a suspect or arrestee and enable him to be subdued and handcuffed, if necessary. The circuit design enables a number of shocks to be delivered before a recharge is required.




c

Electric stock prod

A stock or cattle prod for applying an electric shock to stock to induce them to move when loading them for transportation or through a cattle chute or the like comprises a handle having a high voltage generator and a battery therein. A head, which is angularly rotatable relative to the handle structure, is provided, this head having electrical contact means adapted to electrically, conductively contact said handle in any selectable angular position therebetween the head being adapted to extend forward from said handle and comprising a shaft carrying the contact means and, forward from this shaft terminating in a pair of spaced conducting tips or electrodes. The handle is constructed to insulate and protect the high voltage conductors and to provide a convenient switch for energizing the tips. The handle and shaft are constructed to afford rotation of the tips to any desired angle with respect to the operator's hand, both the handle and head being provided with external electrical insulation means effective to protect the operator from the electrical shock voltage, insulation while maintaining the electrical connections to the tips. The head on which the tips are mounted is relatively flat and is adapted to be held in face engagement with an animal's body, this facilitating the effective handling of the prod during use.




c

Electric shock prod

The shock prod comprises a circuit for producing high-voltage electrical pulses. The circuit is mounted in a housing and communicates electrically with two conductors integral with a prod extension. The prod extension extends from the housing in a fixed predetermined direction with respect to the housing. The extension is elongated in the fixed direction, terminates in a free end, and is generally flat with a high width-to-thickness ratio, having sufficiently high flexural rigidity and buckling resistance to avoid excessive deflection or deformation in use. With this novel configuration, the extension is constrained to bend in a preferred plane parallel to the thickness dimension. Loads applied in the other planes produce torsional deflection so as to allow bending in this preferred deflection plane. This wide, thin cross-section permits a wide electrode spacing simultaneously with a thin bending surface, resulting in the following: A minimum bending radius which greatly reduces instances of breakage; allows electrification and desired electrode spacing over any desired portion of the prod extension; eliminates need for separate electrode mounting hardware; remains operational even if the extension is snapped in two, when a sufficient electrode-conductor spacing geometry exists along the length of the prod extension.




c

Animal deterrent device for joggers

An animal deterrent device consists essentially of a palm-sized handle of six to eight inches in length for hand gripping and defining a housing within the central portion thereof to house a plurality of generally rigid tubular sections telescoping one within the other within the housing and being adhered thereto by a fusible adhesive adhering an outer sleeve of the telescoping sections. A pocket clip is attached to the handle and the plurality of sections when fully protracted extending to a length of about three feet with the overall apparatus weighing less than six ounces. The apparatus may additionally have a loop attached for hand transporting of the apparatus. The apparatus is utilized by a jogger upon an attacking animal by extending the telescoping sections to form a rigid whip-like structure so as to engage the attacking animal with the extended telescoping sections.




c

Controlled shock animal training device

A controlled shock animal training device is shown which includes a mounting collar for mounting the device about a portion of the animal's body. The strap has a pair of electrical contacts which are spaced apart on the mounting strap. An electrical circuit, carried on the mounting strap, connects the pair of spaced electrical contacts and provides a controlled voltage output through the contacts upon triggering of an electrical switch within the circuit. A foldable flap formed in the collar interrupts the electrical circuit during installation of the collar. The shock provided is of limited duration and controlled intensity and requires that the electrical switch be opened and then reclosed to repeat the shocking operation.




c

Trespass discouraging device for pets

This device is designed to discourage pets from trespassing in neighbors yards, etc. Primarily, it consists of a plastic cylinder rotatable on a shaft placed in the ground. The cylinder includes a wire whip extending from its outer wall, for striking the pet when it licks bait on a bait stick extending from the device, and a spring on the inside of the cylinder is wound by a crank pin on the shaft, to set the device, which is harmless, and also produces the noise of a rattlesnake.




c

Spring whip defensive mechanism having means to permit disassembly thereof

A knock down spring whip assembly including a hollow housing which serves as a handgrip, and also stores a spring subassembly formed of lengths of helically wound springs of sequentially increasingly larger diameter size to move between a telescoped position within the housing and an extended whipping position projecting from one end of the housing with the springs wedgingly engaging each other in an end to end arrangement. A removable closure unit is provided for plugging the other end of the housing to define a storage compartment. The closure unit includes an integral magnet for retaining the spring subassembly in the telescoped position, where the closure unit can be replaced with other types of closure units. The housing includes a tapered end and an annular constriction for providing both a wedging engagement of the projecting springs as well as a positive locking action. Weighted ball bearings can be included within one of the springs for spiral rotation therethrough to provide an additional striking force. The striking spring can be replaced by a solid rod for an increased striking force. Preferably, the tip portion at the striking end is also removable to permit the spring whip assembly to be disassembled into its component parts.