tia

Stop codon read-through of mammalian MTCH2 leading to an unstable isoform regulates mitochondrial membrane potential [Gene Regulation]

Stop codon read-through (SCR) is a process of continuation of translation beyond a stop codon. This phenomenon, which occurs only in certain mRNAs under specific conditions, leads to a longer isoform with properties different from that of the canonical isoform. MTCH2, which encodes a mitochondrial protein that regulates mitochondrial metabolism, was selected as a potential read-through candidate based on evolutionary conservation observed in the proximal region of its 3' UTR. Here, we demonstrate translational read-through across two evolutionarily conserved, in-frame stop codons of MTCH2 using luminescence- and fluorescence-based assays, and by analyzing ribosome-profiling and mass spectrometry (MS) data. This phenomenon generates two isoforms, MTCH2x and MTCH2xx (single- and double-SCR products, respectively), in addition to the canonical isoform MTCH2, from the same mRNA. Our experiments revealed that a cis-acting 12-nucleotide sequence in the proximal 3' UTR of MTCH2 is the necessary signal for SCR. Functional characterization showed that MTCH2 and MTCH2x were localized to mitochondria with a long t1/2 (>36 h). However, MTCH2xx was found predominantly in the cytoplasm. This mislocalization and its unique C terminus led to increased degradation, as shown by greatly reduced t1/2 (<1 h). MTCH2 read-through–deficient cells, generated using CRISPR-Cas9, showed increased MTCH2 expression and, consistent with this, decreased mitochondrial membrane potential. Thus, double-SCR of MTCH2 regulates its own expression levels contributing toward the maintenance of normal mitochondrial membrane potential.





tia

Realizing the Potential of Extractives for Industrial and Economic Development

Realizing the Potential of Extractives for Industrial and Economic Development 18 October 2018 — 5:30PM TO 7:00PM Anonymous (not verified) 3 October 2018 Chatham House | 10 St James's Square | London | SW1Y 4LE

Over the past two decades, the extractives industries have risen in importance for many low- and middle- income countries their prospects for economic development and poverty reduction. During a period of rising commodities prices, the development of extractives became increasingly attractive to both governments and companies. There was - and remains - much discussion about their potential to support inclusive development.

However, there are also risks and uncertainties associated with the extractives industries and many things can, and do, go wrong. Fluctuations in commodity prices can be hard to manage and can lead to considerable fiscal pressures. In the longer-term, climate change and the various policy responses to this, will profoundly affect the extractives sector as renewables replace fossil fuels in the global energy mix.

Managing the extractives sectors will therefore remain highly challenging especially in low-income countries where institutions are often weak. This roundtable will bring together some of the foremost academics and practitioners working in the extractives industries and also in economic development to discuss a major new UNU-WIDER study Extractive Industries: The Management of Resources as a Driver of Sustainable Development.

Attendance at this event is by invitation only.




tia

Identifying the source term in the potential equation with weighted sparsity regularization

Ole Løseth Elvetun and Bjørn Fredrik Nielsen
Math. Comp. 93 (), 2811-2836.
Abstract, references and article information




tia

Degenerate complex Monge-Ampère type equations on compact Hermitian manifolds and applications

Yinji Li, Zhiwei Wang and Xiangyu Zhou
Trans. Amer. Math. Soc. 377 (), 5947-5992.
Abstract, references and article information





tia

Blow-up solutions of fractional diffusion equations with an exponential nonlinearity

Anh Tuan Nguyen, Tómas Caraballo and Nguyen Huy Tuan
Proc. Amer. Math. Soc. 152 (), 5175-5189.
Abstract, references and article information




tia

Threshold approximations for the exponential of a factorized operator family with correctors taken into account

T. A. Suslina
St. Petersburg Math. J. 35 (), 537-570.
Abstract, references and article information




tia

Algebraic solutions of linear differential equations: An arithmetic approach

Alin Bostan, Xavier Caruso and Julien Roques
Bull. Amer. Math. Soc. 61 (), 609-658.
Abstract, references and article information




tia

China reveals reusable cargo shuttle design for Tiangong space station (video)




tia

ARID4B is critical for mouse embryonic stem cell differentiation towards mesoderm and endoderm, linking epigenetics to pluripotency exit [Developmental Biology]

Distinct cell types emerge from embryonic stem cells through a precise and coordinated execution of gene expression programs during lineage commitment. This is established by the action of lineage specific transcription factors along with chromatin complexes. Numerous studies have focused on epigenetic factors that affect embryonic stem cells (ESC) self-renewal and pluripotency. However, the contribution of chromatin to lineage decisions at the exit from pluripotency has not been as extensively studied. Using a pooled epigenetic shRNA screen strategy, we identified chromatin-related factors critical for differentiation toward mesodermal and endodermal lineages. Here we reveal a critical role for the chromatin protein, ARID4B. Arid4b-deficient mESCs are similar to WT mESCs in the expression of pluripotency factors and their self-renewal. However, ARID4B loss results in defects in up-regulation of the meso/endodermal gene expression program. It was previously shown that Arid4b resides in a complex with SIN3A and HDACS 1 and 2. We identified a physical and functional interaction of ARID4B with HDAC1 rather than HDAC2, suggesting functionally distinct Sin3a subcomplexes might regulate cell fate decisions Finally, we observed that ARID4B deficiency leads to increased H3K27me3 and a reduced H3K27Ac level in key developmental gene loci, whereas a subset of genomic regions gain H3K27Ac marks. Our results demonstrate that epigenetic control through ARID4B plays a key role in the execution of lineage-specific gene expression programs at pluripotency exit.




tia

N-acetylglucosamine drives myelination by triggering oligodendrocyte precursor cell differentiation [Molecular Bases of Disease]

Myelination plays an important role in cognitive development and in demyelinating diseases like multiple sclerosis (MS), where failure of remyelination promotes permanent neuro-axonal damage. Modification of cell surface receptors with branched N-glycans coordinates cell growth and differentiation by controlling glycoprotein clustering, signaling, and endocytosis. GlcNAc is a rate-limiting metabolite for N-glycan branching. Here we report that GlcNAc and N-glycan branching trigger oligodendrogenesis from precursor cells by inhibiting platelet-derived growth factor receptor-α cell endocytosis. Supplying oral GlcNAc to lactating mice drives primary myelination in newborn pups via secretion in breast milk, whereas genetically blocking N-glycan branching markedly inhibits primary myelination. In adult mice with toxin (cuprizone)-induced demyelination, oral GlcNAc prevents neuro-axonal damage by driving myelin repair. In MS patients, endogenous serum GlcNAc levels inversely correlated with imaging measures of demyelination and microstructural damage. Our data identify N-glycan branching and GlcNAc as critical regulators of primary myelination and myelin repair and suggest that oral GlcNAc may be neuroprotective in demyelinating diseases like MS.




tia

Role of phospholipid synthesis in the development and differentiation of malaria parasites in the blood [Microbiology]

The life cycle of malaria parasites in both their mammalian host and mosquito vector consists of multiple developmental stages that ensure proper replication and progeny survival. The transition between these stages is fueled by nutrients scavenged from the host and fed into specialized metabolic pathways of the parasite. One such pathway is used by Plasmodium falciparum, which causes the most severe form of human malaria, to synthesize its major phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Much is known about the enzymes involved in the synthesis of these phospholipids, and recent advances in genetic engineering, single-cell RNA-Seq analyses, and drug screening have provided new perspectives on the importance of some of these enzymes in parasite development and sexual differentiation and have identified targets for the development of new antimalarial drugs. This Minireview focuses on two phospholipid biosynthesis enzymes of P. falciparum that catalyze phosphoethanolamine transmethylation (PfPMT) and phosphatidylserine decarboxylation (PfPSD) during the blood stages of the parasite. We also discuss our current understanding of the biochemical, structural, and biological functions of these enzymes and highlight efforts to use them as antimalarial drug targets.




tia

Choosing Kamala Harris Puts Identity at the Heart of Presidential Race

12 August 2020

Dr Leslie Vinjamuri

Director, US and the Americas Programme; Dean, Queen Elizabeth II Academy for Leadership in International Affairs
Joe Biden’s choice of Kamala Harris as his running mate will have a lasting impact on how Americans think about the presidential ticket, and confirms the violent killing of George Floyd unleashed a demand for racial equality that continues to have dramatic impact.

2020-08-12-Kamala-Harris

Senator Kamala Harris speaks during a Senate Homeland Security and Governmental Affairs hearing. Photo by ALEXANDER DRAGO/POOL/AFP via Getty Images.

Despite being such a historic selection, in certain aspects, Kamala Harris does not actually signal change. She is a moderate in the Democratic Party, an insider more than an outsider, and a highly experienced leader with national, state level and city level credentials. She worked as a district attorney in San Francisco for several years before being elected attorney general for the state of California, and then to the US Senate in 2016. Harris also stood as a candidate against Biden in the contest to become the Democratic Party's presidential candidate.

Like Joe Biden, she is a highly experienced leader with strong credentials. But California is solidly blue, so she cannot deliver a new state for him. In many ways she is a safe choice and — at a time when Biden is far ahead of Donald Trump in the polls and America faces a lot of uncertainty — many leading political analysts say safe is exactly what the Democratic candidate needs.

The 2020 US Presidential Elections and the State of the Nation

Amy Walter and Adam Boulton discuss the current state of the nation and what this means for the US presidential election.

But certainly as a signal to the American people, and the rest of the world, of what America is and what it stands for, the choice of Kamala Harris is truly historic. The senator from California is the first African-American woman, and the first Asian-American woman, on the presidential ticket. If Biden wins in November, Harris becomes the first female vice-president.

The historic aspects do not end there. Harris also represents a rapidly growing segment of the US population, but one that gets far less mention — multi-racial Americans. The exact size of America’s multi-racial population has been notoriously hard to measure, especially as it has only been 15 years since the US Census Bureau allowed Americans to choose more than one race when completing their census form. But America has long seen itself as a melting pot, so Harris’s place on the ballot underscores a national narrative with a deep resonance across the country, not least among America’s schoolchildren.

In recent weeks, it came to feel inevitable Biden would choose an African-American running mate. His selection comes at a time when more Americans than ever before have taken to the streets to protest the brutal killing of George Floyd and racial injustice. And the demand for racial equality has been accelerated by the COVID-19 pandemic which has disproportionately affected African-Americans who are dying from the virus at around double the rate of their white American counterparts, while twice the number of black businesses are closing relative to their white counterparts.

The choice of Harris also speaks to another fundamental aspect of the ‘American dream’. She is the daughter of two immigrant parents, her father being from Jamaica and her mother from India. Immigration has become one of the toughest issues in US politics, and immigrants have suffered repeated rhetorical attacks from Trump. One of Harris’s first stands in the US Senate was against President Trump’s entry ban to the US on several countries with majority Muslim populations.

When it comes to questions of identity, the choices that the US electorate now face in November could not be more stark. President Trump used the opportunity of the July 4 weekend to deliver a speech at Mount Rushmore which appeared to actively seek division and to ignite America’s cultural wars.

By choosing Kamala Harris, Biden also continues to signal that he will lead from the moderate wing of the Democratic Party.

Harris may be left of Biden, but she is far to the right of other well-known progressive candidates, especially Elizabeth Warren. She has not, for example, supported more far-reaching measures to redistribute wealth, especially the proposal for a wealth tax. And she has a track record of being tough on crime during her years as a prosecutor. Although she played an active role in recent protests and signalled her commitment to police reform and anti-lynching laws, not all young or progressive protesters will be easily persuaded by her credentials.

However, for voters who hoped for a more progressive candidate, two factors play to the advantage of the Biden-Harris ticket. This election still looks set to be a referendum on President Trump and — especially now — his ability to manage the public health and economic crises at home. And Biden has continued to include the progressive side of the Democratic Party in his plans, giving Bernie Sanders and Alexandria Ocasio-Cortez key roles in developing climate proposals, and establishing a series of Unity task forces to bring the party together.

There are also other more conventional factors at play. Biden has relied on the support of African-American and also female voters. While Harris may not broaden this support, it should help ensure these voters turn out — if primarily via their postal box — to vote for Biden. His choice of Kamala Harris answers the one big outstanding question facing his candidacy and signals the true beginning of the race to the White House.




tia

First US Presidential Debate – Five Key Questions Answered

30 September 2020

Anar Bata

Coordinator, US and the Americas Programme

Dr Leslie Vinjamuri

Director, US and the Americas Programme; Dean, Queen Elizabeth II Academy for Leadership in International Affairs

Megan Greene

Dame DeAnne Julius Senior Academy Fellow in International Economics

Dr Christopher Sabatini

Senior Research Fellow for Latin America, US and the Americas Programme
On 29 September, US president Donald Trump went head-to-head with Joe Biden in the first presidential debate of the 2020 US election. Anar Bata spoke with experts across Chatham House to get their views on the key debate moments and the implications for the US election.

GettyImages-1228797368.jpg

People watch the first presidential debate between US President Donald Trump and Former US Vice President Joe Biden on 29 September 2020 in Hoboken, New Jersey. Photo: Getty Images.

What role do the presidential debates serve in encouraging voter turnout?

Leslie Vinjamuri: Going into the debates, 74% of Americans were set to tune in and watch according to a new Monmouth Poll. This is striking since more than 90% have already decided who their candidate will be, and many have already cast their ballots. 

During President Donald Trump’s time in office, Americans have been far more politically engaged than in previous periods. A record 49.3% of the voting eligible population turned out to vote in the 2018 midterm elections, according to the United States Election Project. This was the highest voter turnout since 1914, and it also reversed a downward trend. 

Debates don’t change voters’ minds and last night’s debate, the first between Donald Trump and Joe Biden is unlikely to be an exception. But debates can shape public sentiment and enthusiasm, not least for voting.

Polling confirms that Trump trails Biden by an average of around 7% nationally, but also that his base is highly enthusiastic. The same is not true for Biden: the older voters that support him are far more enthusiastic than younger voters that do the same.

How credible are Trump's claims that the US economy is experiencing a V-shaped recovery and Biden's claims that there is a K-shaped recovery? 

Megan Greene: Off the back of an unprecedented lockdown in the US and a resultant short and sharp contraction of the economy, the immediate recovery was swift and V-shaped. This is partly a reflection of significant support to Americans in the form of unemployment benefit enhancements and to businesses in the form of Paycheck Protection Program (PPP) loans. But as the economy reopened, growth was always going to rebound and a short-term V-shaped recovery was always going to materialize.  

Don’t be fooled by Donald Trump’s assertion that a V-shaped recovery will persist though. Most of the support for workers and small businesses expired in late July or early August and people and firms have stayed afloat by dipping into their savings. In the absence of another fiscal stimulus package—very unlikely before the end of the year—this is completely unsustainable.  

The K-shaped recovery that Joe Biden has suggested is far more likely going forward. The lockdown revealed extraordinary inequality in the US economy. The death toll of the virus on black and Asian Americans was higher than on white Americans. Huge disparities were laid bare in the labour market as well.

It was precisely those hourly service workers who saw few wage gains since the last recession who were first to lose their jobs in this crisis. The service workers who kept their jobs were real heroes—delivering our food, teaching our kids over Zoom, removing our trash—and yet have not been remunerated accordingly. Unemployment for high-income workers is nearly back to January 2020 levels, but is still down by over 15% for low-income workers.  

This trend will only get worse as small businesses go under and large, superstar companies step in to fill the void. This increase in market concentration reduces the number of potential employers from which workers can choose and reduces workers’ wage negotiating power.  

Rising inequality in the US is by no means a new trend, but as with many things it has been accelerated by the coronavirus crisis. Inequality will continue to drag on the economy if it is left unaddressed.

Did either candidate refer to America’s role in the world?

Leslie Vinjamuri: This debate could only have hurt America’s global image. This comes in the midst of a pandemic, when the gravest problems are at home, and when America’s global leadership depends on getting its house in order. Rather than restoring confidence, Donald Trump used the debates to undermine confidence in the elections and to stoke fear of violence in America’s cities.

By design, most of the debate was focused on domestic issues. But the candidates did discuss climate science, the one issue touched on that matters most beyond America’s borders. The difference between Trump's and Biden’s plans was stark and the debates made clear that America’s global leadership on climate change hinges on these elections.

Biden articulated a clear plan to reduce carbon emissions, create green jobs and invest in green infrastructure. When it comes to global leadership, this would bring the United States back into a debate that China has been leading. Last week, President Xi Jinping committed China to achieving carbon neutrality by 2060; Biden has committed the US to achieving this goal by 2050.

But Trump repeatedly deflected the moderator’s question about whether he accepted climate science. And when asked about the link between climate change and forest fires, he launched a series of attacks on forest managers.

In addition to Trump's comments on China and COVID-19, the only reference made to foreign policy was Biden's comments that he would be tougher on Russia. Did this debate reaffirm the notion that the majority of Americans prefer less engagement with the world? 

Chris Sabatini: According to the themes set by the moderator Chris Wallace and the debate committee, foreign policy was not scheduled to be among the topics covered in the 29 September debates. That will come up later. When it did appear in the first debates it was around largely domestic topics: COVID-19, allegations of corruption, concerns about trade and manufacturing and suspicions of Russian influence shaping the US elections and US foreign policy. 

That foreign policy surfaced in this debate and around those specific, partisan issues demonstrates not a lack of interest by US voters in the world but the ways in which extra-national influence is seen by some (and played by the candidates) as damaging US politics, society and the economy. The problem is that such fears don't make for coherent or constructive foreign policies, but rather reinforce a perception of the US as a victim. Let's hope the issue of foreign policy comes up and is discussed more thoughtfully and positively in future debates when it is on the docket.

How will this debate impact the rest of the race?

Leslie Vinjamuri: For voters at home, the most disturbing part of tonight’s debates should be Donald Trump’s repeated attacks on the integrity of the electoral process.  This comes on the heels of the president’s failure last week to confirm that he would respect the outcome of the elections.

Trump used the debates as a platform to launch a series of attacks on mail-in ballots, casting them as fraudulent and saying that people should just turn up and vote. The recent debates confirmed that when it comes to the pandemic, the economy, and especially the environment, the alternatives are stark and there is a lot at stake. Whether this drives voters to the polls, or to switch off the television remains to be seen.




tia

Ascertaining the biochemical function of an essential pectin methylesterase in the gut microbe Bacteroides thetaiotaomicron [Metabolism]

Pectins are a major dietary nutrient source for the human gut microbiota. The prominent gut microbe Bacteroides thetaiotaomicron was recently shown to encode the founding member (BT1017) of a new family of pectin methylesterases essential for the metabolism of the complex pectin rhamnogalacturonan-II (RG-II). However, biochemical and structural knowledge of this family is lacking. Here, we showed that BT1017 is critical for the metabolism of an RG-II–derived oligosaccharide ΔBT1017oligoB generated by a BT1017 deletion mutant (ΔBT1017) during growth on carbohydrate extract from apple juice. Structural analyses of ΔBT1017oligoB using a combination of enzymatic, mass spectrometric, and NMR approaches revealed that it is a bimethylated nonaoligosaccharide (GlcA-β1,4-(2-O-Me-Xyl-α1,3)-Fuc-α1,4-(GalA-β1,3)-Rha-α1,3-Api-β1,2-(Araf-α1,3)-(GalA-α1,4)-GalA) containing components of the RG-II backbone and its side chains. We showed that the catalytic module of BT1017 adopts an α/β-hydrolase fold, consisting of a central twisted 10-stranded β-sheet sandwiched by several α-helices. This constitutes a new fold for pectin methylesterases, which are predominantly right-handed β-helical proteins. Bioinformatic analyses revealed that the family is dominated by sequences from prominent genera of the human gut microbiota, including Bacteroides and Prevotella. Our re-sults not only highlight the critical role played by this family of enzymes in pectin metabolism but also provide new insights into the molecular basis of the adaptation of B. thetaiotaomicron to the human gut.




tia

Reply: One Bite from the Apple, One Bite from the Orange in the PRECISE-MDT Study and Limitations of Retrospective Study Design and Potential Bias in the PRECISE-MDT Study




tia

Limitations of Retrospective Study Design and Potential Bias in the PRECISE-MDT Study




tia

Intraarterial Administration of Peptide Receptor Radionuclide Therapy in Patients with Advanced Meningioma: Initial Safety and Efficacy

Visual Abstract




tia

Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals

Tricia Rowlison
Dec 1, 2020; 19:2090-2103
Research




tia

High-throughput and site-specific N-glycosylation analysis of human alpha-1-acid glycoprotein offers a great potential for new biomarker discovery

Toma Keser
Dec 29, 2020; 0:RA120.002433v1-mcp.RA120.002433
Research




tia

A Mouse Brain-based Multi-omics Integrative Approach Reveals Potential Blood Biomarkers for Ischemic Stroke

Alba Simats
Dec 1, 2020; 19:1921-1935
Research




tia

Systematic identification of P. falciparum sporozoite membrane protein interactions reveals an essential role for the p24 complex in host infection

Julia Knöckel
Dec 22, 2020; 0:RA120.002432v1-mcp.RA120.002432
Research




tia

A potential role for the Gsdf-eEF1{alpha} complex in inhibiting germ cell proliferation: A protein-interaction analysis in medaka (Oryzias latipes) from a proteomics perspective

Xinting Zhang
Dec 8, 2020; 0:RA120.002306v1-mcp.RA120.002306
Research




tia

Proteomic analyses identify differentially expressed proteins and pathways between low-risk and high-risk subtypes of early-stage lung adenocarcinoma and their prognostic impacts

Juntuo Zhou
Nov 30, 2020; 0:RA120.002384v1-mcp.RA120.002384
Research




tia

A proteomic approach to understand the clinical significance of acute myeloid leukemia-derived extracellular vesicles reflecting essential characteristics of leukemia

Ka-Won Kang
Nov 30, 2020; 0:RA120.002169v1-mcp.RA120.002169
Research




tia

Prediction and validation of mouse meiosis-essential genes based on spermatogenesis proteome dynamics

Kailun Fang
Nov 30, 2020; 0:RA120.002081v1-mcp.RA120.002081
Research




tia

Spatially Resolved Activity-based Proteomic Profiles of the Murine Small Intestinal Lipases

Matthias Schittmayer
Dec 1, 2020; 19:2104-2114
Research




tia

AggreCount: an unbiased image analysis tool for identifying and quantifying cellular aggregates in a spatially defined manner [Methods and Resources]

Protein quality control is maintained by a number of integrated cellular pathways that monitor the folding and functionality of the cellular proteome. Defects in these pathways lead to the accumulation of misfolded or faulty proteins that may become insoluble and aggregate over time. Protein aggregates significantly contribute to the development of a number of human diseases such as amyotrophic lateral sclerosis, Huntington's disease, and Alzheimer's disease. In vitro, imaging-based, cellular studies have defined key biomolecular components that recognize and clear aggregates; however, no unifying method is available to quantify cellular aggregates, limiting our ability to reproducibly and accurately quantify these structures. Here we describe an ImageJ macro called AggreCount to identify and measure protein aggregates in cells. AggreCount is designed to be intuitive, easy to use, and customizable for different types of aggregates observed in cells. Minimal experience in coding is required to utilize the script. Based on a user-defined image, AggreCount will report a number of metrics: (i) total number of cellular aggregates, (ii) percentage of cells with aggregates, (iii) aggregates per cell, (iv) area of aggregates, and (v) localization of aggregates (cytosol, perinuclear, or nuclear). A data table of aggregate information on a per cell basis, as well as a summary table, is provided for further data analysis. We demonstrate the versatility of AggreCount by analyzing a number of different cellular aggregates including aggresomes, stress granules, and inclusion bodies caused by huntingtin polyglutamine expansion.




tia

AMPK{beta}1 and AMPK{beta}2 define an isoform-specific gene signature in human pluripotent stem cells, differentially mediating cardiac lineage specification [Cell Biology]

AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism that phosphorylates a wide range of proteins to maintain cellular homeostasis. AMPK consists of three subunits: α, β, and γ. AMPKα and β are encoded by two genes, the γ subunit by three genes, all of which are expressed in a tissue-specific manner. It is not fully understood, whether individual isoforms have different functions. Using RNA-Seq technology, we provide evidence that the loss of AMPKβ1 and AMPKβ2 lead to different gene expression profiles in human induced pluripotent stem cells (hiPSCs), indicating isoform-specific function. The knockout of AMPKβ2 was associated with a higher number of differentially regulated genes than the deletion of AMPKβ1, suggesting that AMPKβ2 has a more comprehensive impact on the transcriptome. Bioinformatics analysis identified cell differentiation as one biological function being specifically associated with AMPKβ2. Correspondingly, the two isoforms differentially affected lineage decision toward a cardiac cell fate. Although the lack of PRKAB1 impacted differentiation into cardiomyocytes only at late stages of cardiac maturation, the availability of PRKAB2 was indispensable for mesoderm specification as shown by gene expression analysis and histochemical staining for cardiac lineage markers such as cTnT, GATA4, and NKX2.5. Ultimately, the lack of AMPKβ1 impairs, whereas deficiency of AMPKβ2 abrogates differentiation into cardiomyocytes. Finally, we demonstrate that AMPK affects cellular physiology by engaging in the regulation of hiPSC transcription in an isoform-specific manner, providing the basis for further investigations elucidating the role of dedicated AMPK subunits in the modulation of gene expression.




tia

Nuclear translocation ability of Lipin differentially affects gene expression and survival in fed and fasting Drosophila

Stephanie E. Hood
Dec 1, 2020; 61:1720-1732
Research Articles




tia

Bioavailability and spatial distribution of fatty acids in the rat retina after dietary omega-3 supplementation

Elisa Vidal
Dec 1, 2020; 61:1733-1746
Research Articles




tia

Depletion of essential isoprenoids and ER stress induction following acute liver-specific deletion of HMG-CoA reductase

Marco De Giorgi
Dec 1, 2020; 61:1675-1686
Research Articles




tia

Spatial profiling of gangliosides in mouse brain by mass spectrometry imaging

Douglas A. Andres
Dec 1, 2020; 61:1537-1537
Images in Lipid Research




tia

Problem Notes for SAS®9 - 66542: The initial loading of a rule set and a rule flow takes significantly longer in SAS Business Rules Manager 3.3 compared with release 3.2

In SAS Business Rules Manager 3.3, the initial loading of a rule set and a rule flow takes significantly longer than it does in release 3.2. When this problem happens, long time gaps are evident in the local




tia

Problem Notes for SAS®9 - 66487: Authentication to the CAS server fails with the error "Access denied..." when initiated on a SAS/CONNECT server in a Microsoft Windows environment

You might see the following error messages: "ERROR: Connection failed. Server returned: SAS Logon Manager authentication failed: Access denied." and "ERROR: Unable to connect to Cloud Analytic Services host-name on port 5570. Veri




tia

Characterization of essential domains in HSD17B13 for cellular localization and enzymatic activity [Research Articles]

Human genetic studies recently identified an association of SNPs in the 17-β hydroxysteroid dehydrogenase 13 (HSD17B13) gene with alcoholic and nonalcoholic fatty liver disease development. Mutant HSD17B13 variants devoid of enzymatic function have been demonstrated to be protective from cirrhosis and liver cancer, supporting the development of HSD17B13 as a promising therapeutic target. Previous studies have demonstrated that HSD17B13 is a lipid droplet (LD)-associated protein. However, the critical domains that drive LD targeting or determine the enzymatic activity have yet to be defined. Here we used mutagenesis to generate multiple truncated and point-mutated proteins and were able to demonstrate in vitro that the N-terminal hydrophobic domain, PAT-like domain, and a putative α-helix/β-sheet/α-helix domain in HSD17B13 are all critical for LD targeting. Similarly, we characterized the predicted catalytic, substrate-binding, and homodimer interaction sites and found them to be essential for the enzymatic activity of HSD17B13, in addition to our previous identification of amino acid P260 and cofactor binding site. In conclusion, we identified critical domains and amino acid sites that are essential for the LD localization and protein function of HSD17B13, which may facilitate understanding of its function and targeting of this protein to treat chronic liver diseases.




tia

Bioavailability and spatial distribution of fatty acids in the rat retina after dietary omega-3 supplementation [Research Articles]

Spatial changes of FAs in the retina in response to different dietary n-3 formulations have never been explored, although a diet rich in EPA and DHA is recommended to protect the retina against the effects of aging. In this study, Wistar rats were fed for 8 weeks with balanced diet including either EPA-containing phospholipids (PLs), EPA-containing TGs, DHA-containing PLs, or DHA-containing TGs. Qualitative changes in FA composition of plasma, erythrocytes, and retina were evaluated by gas chromatography-flame ionization detector. Following the different dietary intakes, changes to the quantity and spatial organization of PC and PE species in retina were determined by LC coupled to MS/MS and MALDI coupled to MS imaging. The omega-3 content in the lipids of plasma and erythrocytes suggests that PLs as well as TGs are good omega-3 carriers for retina. However, a significant increase in DHA content in retina was observed, especially molecular species as di-DHA-containing PC and PE, as well as an increase in very long chain PUFAs (more than 28 carbons) following PL-EPA and TG-DHA diets only. All supplemented diets triggered spatial organization changes of DHA in the photoreceptor layer around the optic nerve. Taken together, these findings suggest that dietary omega-3 supplementation can modify the content of FAs in the rat retina.




tia

Nuclear translocation ability of Lipin differentially affects gene expression and survival in fed and fasting Drosophila [Research Articles]

Lipins are eukaryotic proteins with functions in lipid synthesis and the homeostatic control of energy balance. They execute these functions by acting as phosphatidate phosphatase enzymes in the cytoplasm and by changing gene expression after translocation into the cell nucleus, in particular under fasting conditions. Here, we asked whether nuclear translocation and the enzymatic activity of Drosophila Lipin serve essential functions and how gene expression changes, under both fed and fasting conditions, when nuclear translocation is impaired. To address these questions, we created a Lipin null mutant, a mutant expressing Lipin lacking a nuclear localization signal (LipinNLS), and a mutant expressing enzymatically dead Lipin. Our data support the conclusion that the enzymatic but not nuclear gene regulatory activity of Lipin is essential for survival. Notably, adult LipinNLS flies were not only viable but also exhibited improved life expectancy. In contrast, they were highly susceptible to starvation. Both the improved life expectancy in the fed state and the decreased survival in the fasting state correlated with changes in metabolic gene expression. Moreover, increased life expectancy of fed flies was associated with a decreased metabolic rate. Interestingly, in addition to metabolic genes, genes involved in feeding behavior and the immune response were misregulated in LipinNLS flies. Altogether, our data suggest that the nuclear activity of Lipin influences the genomic response to nutrient availability with effects on life expectancy and starvation resistance. Thus, nutritional or therapeutic approaches that aim at lowering nuclear translocation of lipins in humans may be worth exploring.




tia

Depletion of essential isoprenoids and ER stress induction following acute liver-specific deletion of HMG-CoA reductase [Research Articles]

HMG-CoA reductase (Hmgcr) is the rate-limiting enzyme in the mevalonate pathway and is inhibited by statins. In addition to cholesterol, Hmgcr activity is also required for synthesizing nonsterol isoprenoids, such as dolichol, ubiquinone, and farnesylated and geranylgeranylated proteins. Here, we investigated the effects of Hmgcr inhibition on nonsterol isoprenoids in the liver. We have generated new genetic models to acutely delete genes in the mevalonate pathway in the liver using AAV-mediated delivery of Cre-recombinase (AAV-Cre) or CRISPR/Cas9 (AAV-CRISPR). The genetic deletion of Hmgcr by AAV-Cre resulted in extensive hepatocyte apoptosis and compensatory liver regeneration. At the biochemical level, we observed decreased levels of sterols and depletion of the nonsterol isoprenoids, dolichol and ubiquinone. At the cellular level, Hmgcr-null hepatocytes showed ER stress and impaired N-glycosylation. We further hypothesized that the depletion of dolichol, essential for N-glycosylation, could be responsible for ER stress. Using AAV-CRISPR, we somatically disrupted dehydrodolichyl diphosphate synthase subunit (Dhdds), encoding a branch point enzyme required for dolichol biosynthesis. Dhdds-null livers showed ER stress and impaired N-glycosylation, along with apoptosis and regeneration. Finally, the combined deletion of Hmgcr and Dhdds synergistically exacerbated hepatocyte ER stress. Our data show a critical role for mevalonate-derived dolichol in the liver and suggest that dolichol depletion is at least partially responsible for ER stress and apoptosis upon potent Hmgcr inhibition.




tia

Spatial profiling of gangliosides in mouse brain by mass spectrometry imaging [Images In Lipid Research]




tia

Leptin modulates pancreatic {beta}-cell membrane potential through Src kinase-mediated phosphorylation of NMDA receptors [Membrane Biology]

The adipocyte-derived hormone leptin increases trafficking of KATP and Kv2.1 channels to the pancreatic β-cell surface, resulting in membrane hyperpolarization and suppression of insulin secretion. We have previously shown that this effect of leptin is mediated by the NMDA subtype of glutamate receptors (NMDARs). It does so by potentiating NMDAR activity, thus enhancing Ca2+ influx and the ensuing downstream signaling events that drive channel trafficking to the cell surface. However, the molecular mechanism by which leptin potentiates NMDARs in β-cells remains unknown. Here, we report that leptin augments NMDAR function via Src kinase–mediated phosphorylation of the GluN2A subunit. Leptin-induced membrane hyperpolarization diminished upon pharmacological inhibition of GluN2A but not GluN2B, indicating involvement of GluN2A-containing NMDARs. GluN2A harbors tyrosine residues that, when phosphorylated by Src family kinases, potentiate NMDAR activity. We found that leptin increases phosphorylation of Tyr-418 in Src, an indicator of kinase activation. Pharmacological inhibition of Src or overexpression of a kinase-dead Src mutant prevented the effect of leptin, whereas a Src kinase activator peptide mimicked it. Using mutant GluN2A overexpression, we show that Tyr-1292 and Tyr-1387 but not Tyr-1325 are responsible for the effect of leptin. Importantly, β-cells from db/db mice, a type 2 diabetes mouse model lacking functional leptin receptors, or from obese diabetic human donors failed to respond to leptin but hyperpolarized in response to NMDA. Our study reveals a signaling pathway wherein leptin modulates NMDARs via Src to regulate β-cell excitability and suggests NMDARs as a potential target to overcome leptin resistance.




tia

Solvent accessibility changes in a Na+-dependent C4-dicarboxylate transporter suggest differential substrate effects in a multistep mechanism [Membrane Biology]

The divalent anion sodium symporter (DASS) family (SLC13) plays critical roles in metabolic homeostasis, influencing many processes, including fatty acid synthesis, insulin resistance, and adiposity. DASS transporters catalyze the Na+-driven concentrative uptake of Krebs cycle intermediates and sulfate into cells; disrupting their function can protect against age-related metabolic diseases and can extend lifespan. An inward-facing crystal structure and an outward-facing model of a bacterial DASS family member, VcINDY from Vibrio cholerae, predict an elevator-like transport mechanism involving a large rigid body movement of the substrate-binding site. How substrate binding influences the conformational state of VcINDY is currently unknown. Here, we probe the interaction between substrate binding and protein conformation by monitoring substrate-induced solvent accessibility changes of broadly distributed positions in VcINDY using a site-specific alkylation strategy. Our findings reveal that accessibility to all positions tested is modulated by the presence of substrates, with the majority becoming less accessible in the presence of saturating concentrations of both Na+ and succinate. We also observe separable effects of Na+ and succinate binding at several positions suggesting distinct effects of the two substrates. Furthermore, accessibility changes to a solely succinate-sensitive position suggests that substrate binding is a low-affinity, ordered process. Mapping these accessibility changes onto the structures of VcINDY suggests that Na+ binding drives the transporter into an as-yet-unidentified conformational state, involving rearrangement of the substrate-binding site–associated re-entrant hairpin loops. These findings provide insight into the mechanism of VcINDY, which is currently the only structurally characterized representative of the entire DASS family.




tia

Differential Complex Formation via Paralogs in the Human Sin3 Protein Interaction Network [Research]

Despite the continued analysis of HDAC inhibitors in clinical trials, the heterogeneous nature of the protein complexes they target limits our understanding of the beneficial and off-target effects associated with their application. Among the many HDAC protein complexes found within the cell, Sin3 complexes are conserved from yeast to humans and likely play important roles as regulators of transcriptional activity. The presence of two Sin3 paralogs in humans, SIN3A and SIN3B, may result in a heterogeneous population of Sin3 complexes and contributes to our poor understanding of the functional attributes of these complexes. Here, we profile the interaction networks of SIN3A and SIN3B to gain insight into complex composition and organization. In accordance with existing data, we show that Sin3 paralog identity influences complex composition. Additionally, chemical cross-linking MS identifies domains that mediate interactions between Sin3 proteins and binding partners. The characterization of rare SIN3B proteoforms provides additional evidence for the existence of conserved and divergent elements within human Sin3 proteins. Together, these findings shed light on both the shared and divergent properties of human Sin3 proteins and highlight the heterogeneous nature of the complexes they organize.




tia

MSstatsTMT: Statistical Detection of Differentially Abundant Proteins in Experiments with Isobaric Labeling and Multiple Mixtures [Technological Innovation and Resources]

Tandem mass tag (TMT) is a multiplexing technology widely-used in proteomic research. It enables relative quantification of proteins from multiple biological samples in a single MS run with high efficiency and high throughput. However, experiments often require more biological replicates or conditions than can be accommodated by a single run, and involve multiple TMT mixtures and multiple runs. Such larger-scale experiments combine sources of biological and technical variation in patterns that are complex, unique to TMT-based workflows, and challenging for the downstream statistical analysis. These patterns cannot be adequately characterized by statistical methods designed for other technologies, such as label-free proteomics or transcriptomics. This manuscript proposes a general statistical approach for relative protein quantification in MS- based experiments with TMT labeling. It is applicable to experiments with multiple conditions, multiple biological replicate runs and multiple technical replicate runs, and unbalanced designs. It is based on a flexible family of linear mixed-effects models that handle complex patterns of technical artifacts and missing values. The approach is implemented in MSstatsTMT, a freely available open-source R/Bioconductor package compatible with data processing tools such as Proteome Discoverer, MaxQuant, OpenMS, and SpectroMine. Evaluation on a controlled mixture, simulated datasets, and three biological investigations with diverse designs demonstrated that MSstatsTMT balanced the sensitivity and the specificity of detecting differentially abundant proteins, in large-scale experiments with multiple biological mixtures.




tia

High-dimensional Cytometry (ExCYT) and Mass Spectrometry of Myeloid Infiltrate in Clinically Localized Clear Cell Renal Cell Carcinoma Identifies Novel Potential Myeloid Targets for Immunotherapy [Research]

Renal Cell Carcinoma (RCC) is one of the most commonly diagnosed cancers worldwide with research efforts dramatically improving understanding of the biology of the disease. To investigate the role of the immune system in treatment-naïve clear cell Renal Cell Carcinoma (ccRCC), we interrogated the immune infiltrate in patient-matched ccRCC tumor samples, benign normal adjacent tissue (NAT) and peripheral blood mononuclear cells (PBMCs isolated from whole blood, focusing our attention on the myeloid cell infiltrate. Using flow cytometric, MS, and ExCYT analysis, we discovered unique myeloid populations in PBMCs across patient samples. Furthermore, normal adjacent tissues and ccRCC tissues contained numerous myeloid populations with a unique signature for both tissues. Enrichment of the immune cell (CD45+) fraction and subsequent gene expression analysis revealed a number of myeloid-related genes that were differentially expressed. These data provide evidence, for the first time, of an immunosuppressive and pro-tumorigenic role of myeloid cells in early, clinically localized ccRCC. The identification of a number of immune proteins for therapeutic targeting provides a rationale for investigation into the potential efficacy of earlier intervention with single-agent or combination immunotherapy for ccRCC.




tia

Spatially Resolved Activity-based Proteomic Profiles of the Murine Small Intestinal Lipases [Research]

Despite the crucial function of the small intestine in nutrient uptake our understanding of the molecular events underlying the digestive function is still rudimentary. Recent studies demonstrated that enterocytes do not direct the entire dietary triacylglycerol toward immediate chylomicron synthesis. Especially after high-fat challenges, parts of the resynthesized triacylglycerol are packaged into cytosolic lipid droplets for transient storage in the endothelial layer of the small intestine. The reason for this temporary storage of triacylglycerol is not completely understood. To utilize lipids from cytosolic lipid droplets for chylomicron synthesis in the endoplasmic reticulum, stored triacylglycerol has to be hydrolyzed either by cytosolic lipolysis or lipophagy. Interestingly, triacylglycerol storage and chylomicron secretion rates are unevenly distributed along the small intestine, with the proximal jejunum exhibiting the highest intermittent storage capacity. We hypothesize that correlating hydrolytic enzyme activities with the reported distribution of triacylglycerol storage and chylomicron secretion in different sections of the small intestine is a promising strategy to determine key enzymes in triacylglycerol remobilization. We employed a serine hydrolase specific activity-based labeling approach in combination with quantitative proteomics to identify and rank hydrolases based on their relative activity in 11 sections of the small intestine. Moreover, we identified several clusters of enzymes showing similar activity distribution along the small intestine. Merging our activity-based results with substrate specificity and subcellular localization known from previous studies, carboxylesterase 2e and arylacetamide deacetylase emerge as promising candidates for triacylglycerol mobilization from cytosolic lipid droplets in enterocytes.




tia

Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals [Research]

Extracellular vesicles (EVs) secreted by the epididymal epithelium transfer to spermatozoa key proteins that are essential in promoting motility and subsequent fertilization success. Using the domestic cat model, the objectives were to (1) characterize and compare protein content of EVs between segments of the epididymis, and (2) compare EV protein compositions between normo- and teratospermic individuals (producing >60% of abnormal spermatozoa). Epididymal EVs from adult cats were isolated and assessed via liquid chromatography tandem MS. Both male types shared 3008 proteins in total, with 98 and 20 EV proteins unique to normospermic and teratospermic males, respectively. Expression levels of several proteins changed between epididymal segments in both male types. Several proteins in both groups were related to sperm motility (e.g. hexokinase 1, adenylate kinase isoenzyme) and zona pellucida or oolemma binding (e.g. disintegrin and metalloproteinase domain proteins, zona binding proteins 1 and 2). Interestingly, seven cauda-derived EV proteins trended downward in teratospermic compared with normospermic males, which may relate to poor sperm quality. Collective results revealed, for the first time, EV proteins related to sequential sperm maturation with differences observed between normospermic and teratospermic individuals.




tia

A Mouse Brain-based Multi-omics Integrative Approach Reveals Potential Blood Biomarkers for Ischemic Stroke [Research]

Stroke remains a leading cause of death and disability worldwide. Despite continuous advances, the identification of key molecular signatures in the hyper-acute phase of ischemic stroke is still a primary interest for translational research on stroke diagnosis, prognosis, and treatment. Data integration from high-throughput -omics techniques has become crucial to unraveling key interactions among different molecular elements in complex biological contexts, such as ischemic stroke. Thus, we used advanced data integration methods for a multi-level joint analysis of transcriptomics and proteomics data sets obtained from mouse brains at 2 h after cerebral ischemia. By modeling net-like correlation structures, we identified an integrated network of genes and proteins that are differentially expressed at a very early stage after stroke. We validated 10 of these deregulated elements in acute stroke, and changes in their expression pattern over time after cerebral ischemia were described. Of these, CLDN20, GADD45G, RGS2, BAG5, and CTNND2 were next evaluated as blood biomarkers of cerebral ischemia in mice and human blood samples, which were obtained from stroke patients and patients presenting stroke-mimicking conditions. Our findings indicate that CTNND2 levels in blood might potentially be useful for distinguishing ischemic strokes from stroke-mimicking conditions in the hyper-acute phase of the disease. Furthermore, circulating GADD45G content within the first 6 h after stroke could also play a key role in predicting poor outcomes in stroke patients. For the first time, we have used an integrative biostatistical approach to elucidate key molecules in the initial stages of stroke pathophysiology and highlight new notable molecules that might be further considered as blood biomarkers of ischemic stroke.




tia

WITHDRAWN: Heralds of parallel MS: Data-independent acquisition surpassing sequential identification of data dependent acquisition in proteomics [Research]

This article has been withdrawn by the authors. This article did not comply with the editorial guidelines of MCP. Specifically, single peptide based protein identifications of 9-19% were included in the analysis and discussed in the results and conclusions. We wish to withdraw this article and resubmit a clarified, corrected manuscript for review.