manu

AROMATIC PRINTED OBJECT AND MANUFACTURE METHOD FOR THE SAME

An aromatic printed object containing a film-like substrate and a printing section formed on the film-like substrate using a perfume microcapsule-containing toner. The aromatic printed object is an adhesive sheet wherein the printing section is adherend surface. A protective layer is pressed with the adherend surface. A fragrance diverges by peeling off the protective layer of the film-like substrates.




manu

LIGHTWEIGHT CONSTRUCTION ELEMENT, MANUFACTURING METHOD THEREFOR, USE OF SAME, AND LIGHTWEIGHT PANEL AND INSULATING MATERIAL

A lightweight construction element (1) comprises at least one lightweight panel (2) and a layer of insulating material (4) associated with the lightweight panel (2), wherein the at least one lightweight panel (2) comprises boards (6), which, on at least one of the main surfaces (8) thereof, have a group of grooves (9) running parallel and which boards (6) are arranged in at least one layer (5) and are connected to one another via adhesive bonds. The layer of insulating material (4) comprises wood chips (19), which are removed from starting boards during the manufacture of boards (6) for the lightweight panels (2). These lightweight construction elements have good load and thermal insulation properties. The material used originates from one source and achieves a large overall volume after processing.




manu

A HIGH STRENGTH STONE PLASTIC FLOOR AND MANUFACTURING METHOD THEREOF

The invention provides a high strength stone plastic floor and manufacturing method thereof. The stone plastic floor comprises a PVC substrate and a surface layer on a surface of the PVC substrate. Compositions of PVC substrate comprise: PVC powder from 20 to 35 weight percent, calcium carbonate from 60 to 70 weight percent, stabilizer from 1 to 3 weight percent, flexibilizer from 1 to 3 weight percent, lubricants from 0.4 to 1 weight percent, and colorant from 0.4 to 1 weight percent. The high strength stone plastic floor does not contain plasticizer so environmental risks are completely avoided. The contractility is good. The high strength stone plastic floor is resistant to high temperature and direct sunlight. Compared with conventional stone plastic floor, lifespan of the present invention is prolonged. The PVC substrate of the floor can be combined with different layers and can integrate different advantages of other floors.




manu

ADHESION LAYER COMPOSITION, METHOD FOR FORMING FILM BY NANOIMPRINTING, METHODS FOR MANUFACTURING OPTICAL COMPONENT, CIRCUIT BOARD AND ELECTRONIC APPARATUS

In nanoimprinting processes, photo-cured products often separate from the substrate and stick to the mold due to insufficient adhesion between the photo-cured product and the substrate. This causes a defect of pattern separation. An adhesion layer composition used for forming an adhesion layer between a substrate and a photocurable composition includes a compound (A) having at least two functional groups, and a solvent (B). The functional groups include at least one functional group capable of being bound to the substrate, selected from the group consisting of hydroxy, carboxy, thiol, amino, epoxy, and (blocked) isocyanate, and at least one hydrogen donating group as a functional group capable of being bound to the photocurable composition.




manu

MAGNETIC TAPE AND METHOD OF MANUFACTURING THE SAME

The magnetic tape has a nonmagnetic layer containing nonmagnetic powder and binder on a nonmagnetic support and a magnetic layer containing ferromagnetic powder and binder on the nonmagnetic layer, wherein a fatty acid ester is contained in at least the magnetic layer, the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, the ferromagnetic hexagonal ferrite powder has a crystallite volume as determined by X-ray diffraction analysis ranges from 1,000 nm3 to 2,400 nm3, and a ratio of the crystallite size Dx(107) obtained from a diffraction peak of a (107) plane to a particle size in a direction of an easy axis of magnetization DTEM as determined by observation with a transmission electron microscope, Dx(107)/DTEM, is greater than or equal to 1.1, and ΔSFD in a longitudinal direction of the magnetic tape as calculated with Equation 1: ΔSFD=SFD25° C.−SFD−190° C., ranges from 0.50 to 1.60.




manu

ELECTRODE HAVING NANO MESH MULTI-LAYER STRUCTURE, USING SINGLE CRYSTAL COPPER, AND MANUFACTURING METHOD THEREFOR

The present invention relates to an electrode having a multilayer nanomesh structure using single-crystalline copper and a method for manufacturing same, the electrode comprising: a substrate; a single-crystalline copper electrode layer formed on the substrate and having a hive-shaped pattern with a nano-sized line width; and a metal oxide layer formed on the single-crystalline copper electrode layer, this providing an electrode having excellent optical transmittance, low electrical sheet resistance, and excellent mechanical stability. The present invention is technically characterized by an electrode having a multilayer nanomesh structure using single-crystalline copper, the electrode comprising: a substrate; a single-crystalline copper electrode layer formed on the substrate and having a hive-shaped pattern with a nano-sized line width; and a metal oxide layer formed on the single-crystalline copper electrode layer.




manu

METHOD FOR MANUFACTURING MAGNETIC PARTICLES, MAGNETIC PARTICLES, AND MAGNETIC BODY

Provided is a method for manufacturing magnetic particles, in which an oxidation treatment, a reduction treatment, and a nitriding treatment are performed in that order on raw material particles with a core-shell structure in which a silicon oxide layer is formed on the surfaces of iron microparticles, thereby nitriding the iron microparticles while maintaining the core-shell structure. Due to this configuration, granular magnetic particles with a core-shell structure in which a silicon oxide layer is formed on the surfaces of iron nitride microparticles can be obtained.




manu

Shuffled Playing Cards and Manufacturing Method Thereof

The present invention provides shuffled playing cards which eliminate the need for a game host to shuffle cards before games by taking a lot of time as well as eliminate the possibility of cheating. A shuffled playing cards (1) obtained by shuffling a predetermined number of decks of playing cards (12) using a shuffling machine is packaged as an individual pack. The shuffled playing cards (1) is individually packaged and sealed with an adhesive label (13). A bar code (13a) which represents a unique shuffled card ID has been printed on the adhesive label (13). The shuffled card ID is registered in a database by being associated with information which allows identification of a shuffling machine used to shuffle the playing card set.




manu

Procedure for the preparation of sulphur-based articles of manufacture

The present invention relates to a process for the preparation of articles of manufacture made of or based on sulphur, which comprises cooling of liquid sulphur in a volume of containment until the sulphur mass solidifies and forming of the product, characterized in that elastic pressure waves are applied to the cooling mass of liquid sulphur to produce a crystalline suspension of solid sulphur in liquid sulphur.




manu

Method for manufacturing silicon blocks

A device for taking up a silicon melt comprises at least one block of a refractory with a capillary structure.




manu

ACOUSTIC RESONATOR AND METHOD OF MANUFACTURING THE SAME

An acoustic resonator and a method of manufacturing the same are provided. An acoustic resonator includes a resonating part disposed on a substrate, a cap accommodating the resonating part and bonded to the substrate, and a bonded part bonding the cap and the substrate to each other, the bonding part including at least one block disposed between a bonding surface of the cap and a bonding surface of the substrate to block a leakage of a bonding material that forms the bonded part during a bonding operation.




manu

ACOUSTIC RESONATOR AND METHOD OF MANUFACTURING THE SAME

An acoustic resonator and a method of manufacturing the same are provided. The acoustic resonator includes a resonating part including a first electrode, a second electrode, and a piezoelectric layer; and a plurality of seed layers disposed on one side of the resonating part.




manu

PIEZOELECTRIC DEVICE AND METHOD FOR MANUFACTURING PIEZOELECTRIC DEVICE

In a method of manufacturing a piezoelectric device in which a piezoelectric thin film on which functional conductors are formed is fixed to a support substrate by a fixing layer, an alignment mark is formed on one main surface of a light-transmitting piezoelectric substrate. A sacrificial layer is formed on a main surface of the piezoelectric substrate with reference to the alignment mark and the fixing layer is formed so as to cover the sacrificial layer and is bonded to the support substrate. The piezoelectric thin film is formed by being separated from the piezoelectric substrate and the functional conductors are formed on the surface of the piezoelectric thin film with reference to the alignment mark. The piezoelectric device is able to be manufactured while positions of formation regions of conductors are adjusted efficiently.




manu

MEMS PIEZOELECTRIC DEVICE AND CORRESPONDING MANUFACTURING PROCESS

A MEMS piezoelectric device includes a monolithic semiconductor body having first and second main surfaces extending parallel to a horizontal plane formed by first and second horizontal axes. A housing cavity is arranged within the monolithic semiconductor body. A membrane is suspended above the housing cavity at the first main surface. A piezoelectric material layer is arranged above a first surface of the membrane with a proof mass coupled to a second surface, opposite to the first surface, along the vertical axis. An electrode arrangement is provided in contact with the piezoelectric material layer. The proof mass causes deformation of the piezoelectric material layer in response to environmental mechanical vibrations. The proof mass is coupled to the membrane by a connection element arranged, in a central position, between the membrane and the proof mass in the direction of the vertical axis.




manu

ELECTRIC MACHINE, METHOD OF MANUFACTURING THE ELECTRIC MACHINE, ROTOR AND ADJUSTMENT DEVICE

An electric machine of a motor vehicle, in particular of an adjustment drive or of a radiator fan, has a rotor which is mounted so as to be rotatable about a machine axis. The rotor has a number of permanent magnets which are arranged in the radial direction. Each permanent magnet has one side with a strong magnetic flux and one side with a weak magnetic flux in the tangential direction. When the permanent magnets are adjacent in the tangential direction, different sides are directed towards one another.




manu

PERMANENT MAGNET, PERMANENT MAGNET MANUFACTURING METHOD, ROTATING ELECTRIC MACHINE, AND ROTATING ELECTRIC MACHINE MANUFACTURING METHOD

Raw material magnet is milled to magnet powder, and the magnet powder thus milled is mixed with a binder to form a compound 12. Then, the compound 12 thus formed is molded to a green sheet 14 having a sheet shape. Thereafter, a magnetic field orientation is carried out by applying a magnetic field to the green sheet 14 thus molded, and then, the green sheet 14 having been subjected to the magnetic field orientation is shaped to a product shape by deforming thereof. Thereafter, the permanent magnet 1 is produced by sintering thereof. The permanent magnet 1 has a ring shape, and is constituted such that an axis of easy magnetization may be orientated at a slant so as to converge in a direction along a converging axis P which is set to a radius direction as well as to a center direction of the ring shape.




manu

VIBRATION MOTOR, VIBRATOR-ATTACHED BOARD, SILENT NOTIFICATION DEVICE, AND METHOD FOR MANUFACTURING VIBRATION MOTOR

A vibration motor includes a base portion arranged to extend perpendicularly to a central axis extending in a vertical direction; a shaft having a lower end fixed to the base portion, and arranged to project upward along the central axis; a circuit board; a coil portion; a bearing portion; a rotor holder; a magnet portion; an eccentric weight; a cover portion; and a motor electrode portion electrically connected to the circuit board, and arranged to project downward below a lower surface of the base portion. The entire base portion and the entire circuit board are arranged inside of an outer circumferential edge of a lower end of the cover portion.




manu

ROTOR, MANUFACTURING METHOD OF THE ROTOR, AND DC MOTOR

Provided are a rotor, a manufacturing method of the rotor, and a DC motor including the rotor, the rotor including: a core around which a winding is wound, the core being rotatable integrally with a shaft; a commutator being fixed to the shaft and having a terminal to be connected to one end of the winding; and a conduction plate being externally fitted onto the shaft via an insulator part between the terminal of the commutator and the core, the conduction plate having a connection part to be connected to the other end of the winding, wherein an axial direction position of the connection part is set in an intermediate portion that is between a winding projection of the winding and the terminal.




manu

Triboelectric Energy Harvesting Device and Method for Manufacturing Same

The present invention relates to a triboelectric energy harvesting device and a method for manufacturing the same. The triboelectric energy harvesting device according to an embodiment of the present invention includes a first frictional layer provided with a first surface having first electron affinity, and a second frictional layer facing the first surface and having second electron affinity, wherein at least one of the first and second frictional layers is formed of an elastic material and is provided in an elastic structure.




manu

ELASTIC WAVE DEVICE AND MANUFACTURING METHOD THEREFOR

In an elastic wave device, a piezoelectric substrate is stacked on a support substrate and an IDT electrode is provided on the piezoelectric substrate. Wiring line portions are provided on the piezoelectric substrate. A first hollow portion is provided in the support substrate at least below at least one of the wiring line portions and or below a region between the wiring line portions.




manu

Article of manufacture for stretchable night visibility bands for people and animals

An article of manufacture for stretchable night visibility bands for people and animals with a inner band consisting of a primarily stretchable material, an outer band consisting of a night visibility material, a way to attach the inner band to the outer band, a means to interchange said inner bands and said outer bands and a way to close the inner band around an object. A preferred embodiment includes further an outer band made of a night visibility material fabricated of least one of the following: a reflective, a florescent or a glow in the dark material and backed with a material such as VELCRO that attaches to the inner band, A preferred embodiment includes the element of inner band consisting of a stretchable material with a looped surface such as Velstretch™.




manu

System for manufacturing a reinforcement

A structural element for constructing an auxiliary means for the manufacture of a reinforcement includes at least one coupling point for coupling the structural element to another structural element. The structural element is formed from a basic element. The structural element may further include a holding means for holding a reinforcement rod. A method for constructing an auxiliary means and a method for manufacturing a reinforcement are also provided.




manu

Installation for manufacturing a prefabricated reinforced cement mortar panel

Anchor positioning equipment for pre-fabricating panels of reinforced cement mortar (10) that includes a prestressed biaxial reinforcement (9). The panel has some versatile actuator means (6) embedded into the mass of cement mortar (10), that do not project from any of the faces (11) thereof, for handling and/or securing said panel to the structure of a building. The means (6) comprise, on the one hand, means for retaining (13) in the set mortar mass and, panel anchoring means (14). The equipment has a fixed base structure (2) for supporting stable seat elastic arrangements (5), which receive means (6) and, on the other hand, movable frameworks (1) comprising gripping arrangements (3) for gripping means (6). Movable frameworks (1) are responsible for removing means (6) from stable seat elastic arrangements (5).




manu

METHOD OF MANUFACTURING THIN-FILM TRANSISTOR, THIN-FILM TRANSISTOR SUBSTRATE, AND FLAT PANEL DISPLAY APPARATUS

A method of manufacturing a thin-film transistor includes forming an oxide semiconductor on a substrate, stacking an insulating layer and a metal layer on the substrate to cover the oxide semiconductor, forming a photosensitive pattern on the metal layer, forming a gate electrode by etching the metal layer using the photosensitive pattern as a mask, where a part of the gate electrode overlaps a first oxide semiconductor region of the oxide semiconductor, forming a gate insulating film by partially etching the insulating layer using the photosensitive pattern as a mask, where the gate insulating film includes a first insulating region with a first thickness under the photosensitive pattern and a second insulating region with a second thickness less than the first thickness, and performing plasma processing on the gate insulating film so that a second oxide semiconductor region of the oxide semiconductor under the second insulating region becomes conductive.




manu

COMPENSATION FILM AND METHOD OF MANUFACTURING THE SAME

A compensation film includes an elongation film having an elongation rate of greater than or equal to about 200% in a uniaxial direction and having a surface energy of about 40 mJ/m2 to about 65 mJ/m2 and a liquid crystal layer disposed on one side of the elongation film and including liquid crystals.




manu

Liquid Crystal Display Panel, Array Substrate And Manufacturing Method Thereof

The disclosure provides a liquid crystal display panel, an array substrate and a manufacturing method thereof. In the method, controllable resistance spacer layers are formed on at least one of a source doped region and a drain doped region of a low temperature polysilicon active layer, wherein when a turn-on signal is not applied to the gate layer, the controllable resistance spacer layers serve as a blocking action for a flowing current, and when the turn-on signal is applied to the gate layer, the controllable resistance spacer layers serve as a conducting action for the flowing current, such that a contact region formed of the controllable resistance spacer layers is connected the corresponding source layer and the corresponding drain through the controllable resistance spacer layers. Therefore, the disclosure is capable of effectively decreasing a leakage of a thin film transistor.




manu

SEMICONDUCTOR APPARATUS, METHOD OF MANUFACTURING SAME, AND LIQUID CRYSTAL DISPLAY APPARATUS

A semiconductor device includes a substrate, a first thin film transistor supported on the substrate and having a first active layer that primarily contains a first oxide semiconductor, and second thin film transistor supported on the substrate and having a second active layer that primarily contains a second oxide semiconductor with a higher mobility than the first oxide semiconductor. The first active layer and the second active layer are positioned on the same insulating layer and contact the same insulating layer.




manu

DISPLAY APPARATUS AND RELATED MANUFACTURING METHOD

A display apparatus may include a display panel, a touch electrode, a connecting pad, a first inorganic insulation layer, and a second inorganic insulation layer. The display panel may display an image according to image data. The touch electrode and the connecting pad may be formed of the same conductive material and may be spaced from each other. The first inorganic insulation layer may be positioned between the display panel and the touch electrode and may directly contact each of the touch electrode and the connecting pad. The second inorganic insulation layer may directly contact each of the first inorganic insulation layer and the touch electrode. The touch electrode may be covered by the second inorganic insulation layer. The connecting pad may be positioned between two portions of the second inorganic insulation layer and have a side not covered by the second inorganic insulation layer.




manu

LIQUID CRYSTAL DISPLAY DEVICE, MANUFACTURING METHOD OF THE SAME AND ELECTRONIC EQUIPMENT

A liquid crystal display device includes first and second substrates, liquid crystal layer, and first and second spacer sections. The first substrate has a first surface including a light-shielding region in a lattice form and a plurality of opening regions surrounded by the light-shielding region. The light-shielding region includes a plurality of first extended portions extending in a first direction and a plurality of second extended portions extending in a second direction that intersects the first direction. The first substrate has a plurality of transistors formed thereon. The second substrate has a second surface that is opposed to and spaced from the first surface. The liquid crystal layer is arranged between the first and second surfaces. The first spacer section has long sides oriented in the second direction, and the second spacer section has long sides oriented in the first direction. The spacer sections protrude into the liquid crystal layer.




manu

DISPLAY DEVICE, ADHESIVE SHEET USED FOR DISPLAY DEVICE, AND METHOD OF MANUFACTURING DISPLAY DEVICE

According to one embodiment, a display device includes a liquid crystal display panel, a cover panel on a display surface of the liquid crystal display panel, a backlight unit opposed to the liquid crystal display panel, a case covering the backlight unit and the liquid crystal display panel, and including at least a part fixed to the cover panel, and an adhesive provided on the cover panel along the liquid crystal display panel. The adhesive includes a surface opposite to the cover panel, a first area on the surface, and a second area on the surface, located on an inner side closer to the liquid crystal display panel than the first area. The part of the case is adhered to the second area.




manu

DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME

According to one embodiment, a display device includes a cover panel, a display panel opposed to the cover panel, an adhesive layer provided between the cover panel and the display panel and attaching the display panel to the cover panel, the adhesive layer including a first area to which the display panel is fixed and a second area located further outward than an outer periphery of the display panel, a backlight unit opposed to the display panel, and a case containing the display panel and the backlight unit, at least a part of the case being fixed to the cover panel by the second area of the adhesive layer.




manu

LIQUID CRYSTAL DISPLAY AND MANUFACTURING METHOD THEREOF

A liquid crystal display (LCD) is presented. The LCD includes: a substrate; a plurality of thin film transistors disposed on the substrate; a plurality of liquid crystal (LC) layers disposed within a plurality of microcavities on the substrate; a partition wall disposed between the LC layers adjacent in a first direction; and signal lines disposed between the LC layers and the partition wall and connected to the plurality of thin film transistors.




manu

LIQUID CRYSTAL DISPLAY AND METHOD OF MANUFACTURING THE SAME

A liquid crystal display includes a display panel, an opposite display panel, a liquid crystal layer between the display panel and the opposite display panel. The display panel includes a first base substrate, a pretilt alignment stabilization layer including a polymer of a reactive mesogen, a first vertical alignment layer including a decomposition product of a polymerization initiator between the first base substrate and the pretilt alignment stabilization layer, and a pattern electrode between the first base substrate and the first vertical alignment layer. The opposite display panel includes a second base substrate, a patternless electrode on the second base substrate, and a second vertical alignment layer on the patternless electrode, which includes the decomposition product of the polymerization initiator. The liquid crystal layer includes a liquid crystal composition having negative dielectric anisotropy. A surface of the LCD that faces a viewer has a concave shaped curve.




manu

CAMERA MODULE INTEGRATED LIQUID DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF

A liquid-crystal display (LCD) device includes: an array substrate on which a sub-pixel is disposed; a color filter substrate on which a color filter corresponding to the sub-pixel is disposed; and a liquid-crystal layer between the array substrate and the color filter substrate. The array substrate comprises a lens hole, the color filter substrate comprises a lens hole guide, and a diameter of the lens hole is smaller than an inner diameter of the lens hole guide.




manu

SPUTTERING SOURCE ARRANGEMENT, SPUTTERING SYSTEM AND METHOD OF MANUFACTURING METAL-COATED PLATE-SHAPED SUBSTRATES

For coating substrates (S) having along their surfaces to be coated high aspect ratio vias, a sputtering system has a sputtering source arrangement, which includes a first DC pulse operated magnetron sub-source (1203) and a second frame-shaped magnetron sub-source (1213) which latter is arranged, in the system, between the substrate (S) and the first magnetron sub-source (1203). The second magnetron sub-source (1213) may be operated in DC, pulsed DC, thereby also HIPIMS mode. The first magnetron sub-source (1203) is advantageously also operated in HIPIMS mode. The substrate (S) is biased by an Rf power source (1253).




manu

Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING SAME

A Cu—Ga alloy sputtering target includes, as a component composition, Ga: 0.1 to 40.0 at % and a balance including Cu and inevitable impurities, in which a porosity is 3.0% or lower, an average diameter of circumscribed circles of pores is 150 μm or less, and an average crystal grain size of Cu—Ga alloy particles is 50 μm or less.




manu

FILM FORMATION APPARATUS AND FILM-FORMED WORKPIECE MANUFACTURING METHOD

A film formation apparatus and a film-formed workpiece manufacturing method which are capable of forming a film with a uniform thickness on a workpiece like a three-dimensional object that includes a plurality of surfaces by a simple structure are provided. A film formation apparatus includes a target 21 that is a film formation material including a plane SU3, a power supply unit 3 applying power to the target 21, a rotating unit 4 rotating a workpiece W that is a film formation object around a rotation axis AX1, and a revolving unit 5 revolving the rotating unit 4 around a revolution axis AX2 separate from the rotation axis AX1 to repeatedly make the workpiece W to come close to and move apart from the target 21.




manu

Needle Protection Device With Gauge Specific Color Coding and Method for Manufacturing Thereof

To enable a user to readily determine the gauge of the needle of a needle assembly that has a base and a needle protective housing pivotably attached thereto, the needle assembly is injection molded from a color coded molding material which color was preassigned to correspond to the gauge of the needle. As a result, both the base and the protective housing of the needle assembly have—the same specific color, and reflect or provide an indication of the given gauge of the needle. The needle sheath that covers the needle prior to use may be made of a plastics material that may be clear, or have the same or a different color than that of the needle assembly. The gauge of the needle of a fixed needle syringe could also be ascertained by its color coded needle protective housing. Color coded markings that correspond to the gauge of the needle may also be printed onto the syringe barrel of the fixed needle syringe.




manu

Heat Exchange Catheters and Their Methods of Manufacture and Use

A closed loop catheter useable for heat exchange is manufactured by forming a plurality of generally transverse bore holes though a flexible, multilumen catheter body, lacing a tube trough the bore holes so that loops of the tube protrude from the catheter body, connecting one end of the tube to an inflow lumen of the catheter and connecting the other end of the tube to an outflow lumen of the catheter. A heated or cooled heat exchange medium may then be circulated through the tube while the catheter is inserted in the vasculature of a subject, thereby resulting in heat exchange between the subject's flowing blood and the heat exchange medium being circulated through the tube.




manu

Reduced-Friction Catheter Introducer and Method of Manufacturing and Using the Same

A sheath introducer for a catheter includes a sheath having a lumen, a hub positioned on a proximal end of the sheath, and a housing positioned on the hub. The hub can include a splittable penetration member having a port in fluid communication with the sheath lumen. The housing can include a valve having a closed upper surface and a channel surrounding the splittable penetration member. Movement of the housing with respect to the hub can expose the port of the splittable penetration member for insertion of the catheter.




manu

Method for controlling and optimizing the manufacture of gasoline blendstocks for blending with an alcohol as an oxygenate

A method for manufacturing an oxygenated gasoline-blend by blending a hydrocarbon Basestock for Oxygenate Blending (BOB) with an alcohol such as ethanol to a required octane specification first blends the BOB to an octane number, (RON+MON)/2 based on the octane sensitivity (RON−MON) of the BOB and the proportion of alcohol to be added to the BOB, such that when the BOB is blended with the specification proportion of alcohol to form the oxygenated gasoline blend, this blend will have the required octane specification. The blending of the BOB with the alcohol will typically be done at a location remote from that where the BOB is blended, e.g. at the product distribution terminal after being transported from the refinery by pipeline or tank car.




manu

METHOD OF MANUFACTURING REFINED PITCH

A method of manufacturing a refined pitch includes the steps of providing a pitch and performing a heated blending process thereon to produce a pitch solution; adding an aromatic additive to the pitch solution; adding an aliphatic additive to the pitch solution; performing a quiescent sedimentation process on the pitch solution; and separating a liquid part from the pitch solution. Therefore, the method allows a concentrated mesophase pitch to be manufactured quickly and by heat processing.




manu

FLEXIBLE CIRCUIT BOARD AND METHOD FOR MANUFACTURING SAME

A flexible circuit board includes a first circuit substrate, a second circuit substrate and a bonding layer. The first circuit substrate includes a first base layer, a first circuit layer, a second circuit layer and metal coating layer. The first circuit layer includes a signal line and at least two grounding lines. The metal coating layer encloses the signal line. The second circuit substrate includes a third circuit layer. The bonding layer is located between and bonding the first circuit substrate and the second circuit substrate. The second circuit layer, the third circuit layer are electrically coupled with the grounding lines by a plurality of electrically conductive holes. The first base layer, the bonding layer and the second circuit substrate cooperatively enclose a hermetic medium layer receiving the signal line. The hermitic medium layer is filled with air. A method for manufacturing the flexible circuit board is also provided.




manu

ELECTRONIC DEVICE AND METHOD FOR MANUFACTURING THE SAME

An electronic device is provided. The electronic device includes a support member including at least a portion formed of a conductive material, an enclosure member configured to receive the support member and including at least a portion of which is formed of a conductive material. The conductive material portion of the enclosure member and the conductive material portion of the support member are insulated from each other.




manu

SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SAME

The semiconductor device according to the present invention has an upper electrode, a first lower layer wiring that also functions as a lower electrode, an electrical resistance-changing film interposed between the upper electrode and the first lower layer wiring, a second lower layer wiring, and a contact plug, the contact plug connecting to the upper electrode and to the second lower layer wiring. The present invention yields a semiconductor device with which it is possible to dispose elements in high density while maintaining the reliability and manufacturing yield of the electrical resistance-changing element.




manu

ORGANIC LIGHT EMITTING DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME

An organic light emitting display (OLED) device can include a substrate on which first to third light emitting portions are defined, first electrodes respectively positioned on the first to third light emitting portions, a first stack formed on the first electrodes and including first, second and third light emitting layers corresponding to the first, second and third light emitting portions, respectively, an N-type charge generation layer (CGL) positioned on the first stack, a transition metal oxide layer positioned on the N-type CGL, a second stack positioned on the transition metal oxide layer and including fourth, fifth and sixth light emitting layers corresponding to the first, second and third light emitting portions, respectively, and a second electrode positioned on the second stack.




manu

LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME

A light emitting device and a method for manufacturing the same are disclosed. Herein, the light emitting device comprises: a substrate having a light emitting region and a sealing region surrounding the light emitting region; an OLED unit disposed over the light emitting region; a protection layer disposed over the OLED unit; a support unit disposed over the sealing region, wherein materials of the protection layer and the support unit are the same, and the support unit connects to the protection layer; and a cover disposed over the protection layer and the support unit; wherein a first height is between a surface of the support unit adjacent to the cover and a surface of the substrate, a second height is between a surface of the protection layer adjacent to the cover and the surface of the substrate, and the first height is larger than the second height.




manu

ORGANIC LIGHT-EMITTING DIODE (OLED) DISPLAY PANEL, ELECTRONIC DEVICE AND MANUFACTURING METHOD

The present disclosure provides an OLED display panel, an electronic device, and a manufacturing method. The OLED display panel comprises a substrate, a first electrode, a light-emitting function layer, and a second electrode including Ag or a metal alloy containing Ag. When the second electrode is made of the metal alloy containing Ag, a content of Ag in the second electrode is more than a sum of contents of all other elements in the second electrode.




manu

LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME

A light emitting device having a structure in which oxygen and moisture are prevented from reaching light emitting elements, and a method of manufacturing the same, are provided. Further, the light emitting elements are sealed by using a small number of process steps, without enclosing a drying agent. The present invention has a top surface emission structure. A substrate on which the light emitting elements are formed is bonded to a transparent sealing substrate. The structure is one in which a transparent second sealing material covers the entire surface of a pixel region when bonding the two substrates, and a first sealing material (having a higher viscosity than the second sealing material), which contains a gap material (filler, fine particles, or the like) for protecting a gap between the two substrates, surrounds the pixel region. The two substrates are sealed by the first sealing material and the second sealing material. Further, reaction between electrodes of the light emitting elements (cathodes or anodes) and the sealing materials can be prevented by covering the electrodes with a transparent protective layer, for example, CaF2, MgF2, or BaF2.




manu

DISPLAY APPARATUS AND A METHOD OF MANUFACTURING THE SAME

A display apparatus including a substrate; a display unit disposed on the substrate; a sealing layer disposed on the display unit; a touch screen layer disposed on the sealing layer; and a buffer layer disposed between the sealing layer and the touch screen layer. The sealing layer includes n sealing units each including an organic layer and an inorganic layer, in which n is an integer of 1 or greater. The organic layer and the inorganic layer are sequentially stacked on the display unit. The organic layer includes a cured product for forming an organic layer including a first photocurable monomer. The buffer layer includes a cured product for forming a buffer layer including a second and third photocurable monomer. The first and second photocurable monomers include a photocurable functional group. The third photocurable monomer is represented by Formulae 1A to 1C.