linear Estimation of linear projections of non-sparse coefficients in high-dimensional regression By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT David Azriel, Armin Schwartzman. Source: Electronic Journal of Statistics, Volume 14, Number 1, 174--206.Abstract: In this work we study estimation of signals when the number of parameters is much larger than the number of observations. A large body of literature assumes for these kind of problems a sparse structure where most of the parameters are zero or close to zero. When this assumption does not hold, one can focus on low-dimensional functions of the parameter vector. In this work we study one-dimensional linear projections. Specifically, in the context of high-dimensional linear regression, the parameter of interest is ${oldsymbol{eta}}$ and we study estimation of $mathbf{a}^{T}{oldsymbol{eta}}$. We show that $mathbf{a}^{T}hat{oldsymbol{eta}}$, where $hat{oldsymbol{eta}}$ is the least squares estimator, using pseudo-inverse when $p>n$, is minimax and admissible. Thus, for linear projections no regularization or shrinkage is needed. This estimator is easy to analyze and confidence intervals can be constructed. We study a high-dimensional dataset from brain imaging where it is shown that the signal is weak, non-sparse and significantly different from zero. Full Article
linear A fast and consistent variable selection method for high-dimensional multivariate linear regression with a large number of explanatory variables By projecteuclid.org Published On :: Fri, 27 Mar 2020 22:00 EDT Ryoya Oda, Hirokazu Yanagihara. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1386--1412.Abstract: We put forward a variable selection method for selecting explanatory variables in a normality-assumed multivariate linear regression. It is cumbersome to calculate variable selection criteria for all subsets of explanatory variables when the number of explanatory variables is large. Therefore, we propose a fast and consistent variable selection method based on a generalized $C_{p}$ criterion. The consistency of the method is provided by a high-dimensional asymptotic framework such that the sample size and the sum of the dimensions of response vectors and explanatory vectors divided by the sample size tend to infinity and some positive constant which are less than one, respectively. Through numerical simulations, it is shown that the proposed method has a high probability of selecting the true subset of explanatory variables and is fast under a moderate sample size even when the number of dimensions is large. Full Article
linear Derivative-Free Methods for Policy Optimization: Guarantees for Linear Quadratic Systems By Published On :: 2020 We study derivative-free methods for policy optimization over the class of linear policies. We focus on characterizing the convergence rate of these methods when applied to linear-quadratic systems, and study various settings of driving noise and reward feedback. Our main theoretical result provides an explicit bound on the sample or evaluation complexity: we show that these methods are guaranteed to converge to within any pre-specified tolerance of the optimal policy with a number of zero-order evaluations that is an explicit polynomial of the error tolerance, dimension, and curvature properties of the problem. Our analysis reveals some interesting differences between the settings of additive driving noise and random initialization, as well as the settings of one-point and two-point reward feedback. Our theory is corroborated by simulations of derivative-free methods in application to these systems. Along the way, we derive convergence rates for stochastic zero-order optimization algorithms when applied to a certain class of non-convex problems. Full Article
linear Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables By Published On :: 2020 We consider the problem of learning causal models from observational data generated by linear non-Gaussian acyclic causal models with latent variables. Without considering the effect of latent variables, the inferred causal relationships among the observed variables are often wrong. Under faithfulness assumption, we propose a method to check whether there exists a causal path between any two observed variables. From this information, we can obtain the causal order among the observed variables. The next question is whether the causal effects can be uniquely identified as well. We show that causal effects among observed variables cannot be identified uniquely under mere assumptions of faithfulness and non-Gaussianity of exogenous noises. However, we are able to propose an efficient method that identifies the set of all possible causal effects that are compatible with the observational data. We present additional structural conditions on the causal graph under which causal effects among observed variables can be determined uniquely. Furthermore, we provide necessary and sufficient graphical conditions for unique identification of the number of variables in the system. Experiments on synthetic data and real-world data show the effectiveness of our proposed algorithm for learning causal models. Full Article
linear Branch and Bound for Piecewise Linear Neural Network Verification By Published On :: 2020 The success of Deep Learning and its potential use in many safety-critical applicationshas motivated research on formal verification of Neural Network (NN) models. In thiscontext, verification involves proving or disproving that an NN model satisfies certaininput-output properties. Despite the reputation of learned NN models as black boxes,and the theoretical hardness of proving useful properties about them, researchers havebeen successful in verifying some classes of models by exploiting their piecewise linearstructure and taking insights from formal methods such as Satisifiability Modulo Theory.However, these methods are still far from scaling to realistic neural networks. To facilitateprogress on this crucial area, we exploit the Mixed Integer Linear Programming (MIP) formulation of verification to propose a family of algorithms based on Branch-and-Bound (BaB). We show that our family contains previous verification methods as special cases.With the help of the BaB framework, we make three key contributions. Firstly, we identifynew methods that combine the strengths of multiple existing approaches, accomplishingsignificant performance improvements over previous state of the art. Secondly, we introducean effective branching strategy on ReLU non-linearities. This branching strategy allows usto efficiently and successfully deal with high input dimensional problems with convolutionalnetwork architecture, on which previous methods fail frequently. Finally, we proposecomprehensive test data sets and benchmarks which includes a collection of previouslyreleased testcases. We use the data sets to conduct a thorough experimental comparison ofexisting and new algorithms and to provide an inclusive analysis of the factors impactingthe hardness of verification problems. Full Article
linear Stein characterizations for linear combinations of gamma random variables By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Benjamin Arras, Ehsan Azmoodeh, Guillaume Poly, Yvik Swan. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 394--413.Abstract: In this paper we propose a new, simple and explicit mechanism allowing to derive Stein operators for random variables whose characteristic function satisfies a simple ODE. We apply this to study random variables which can be represented as linear combinations of (not necessarily independent) gamma distributed random variables. The connection with Malliavin calculus for random variables in the second Wiener chaos is detailed. An application to McKay Type I random variables is also outlined. Full Article
linear Robust Bayesian model selection for heavy-tailed linear regression using finite mixtures By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Flávio B. Gonçalves, Marcos O. Prates, Victor Hugo Lachos. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 51--70.Abstract: In this paper, we present a novel methodology to perform Bayesian model selection in linear models with heavy-tailed distributions. We consider a finite mixture of distributions to model a latent variable where each component of the mixture corresponds to one possible model within the symmetrical class of normal independent distributions. Naturally, the Gaussian model is one of the possibilities. This allows for a simultaneous analysis based on the posterior probability of each model. Inference is performed via Markov chain Monte Carlo—a Gibbs sampler with Metropolis–Hastings steps for a class of parameters. Simulated examples highlight the advantages of this approach compared to a segregated analysis based on arbitrarily chosen model selection criteria. Examples with real data are presented and an extension to censored linear regression is introduced and discussed. Full Article
linear A new log-linear bimodal Birnbaum–Saunders regression model with application to survival data By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Francisco Cribari-Neto, Rodney V. Fonseca. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 329--355.Abstract: The log-linear Birnbaum–Saunders model has been widely used in empirical applications. We introduce an extension of this model based on a recently proposed version of the Birnbaum–Saunders distribution which is more flexible than the standard Birnbaum–Saunders law since its density may assume both unimodal and bimodal shapes. We show how to perform point estimation, interval estimation and hypothesis testing inferences on the parameters that index the regression model we propose. We also present a number of diagnostic tools, such as residual analysis, local influence, generalized leverage, generalized Cook’s distance and model misspecification tests. We investigate the usefulness of model selection criteria and the accuracy of prediction intervals for the proposed model. Results of Monte Carlo simulations are presented. Finally, we also present and discuss an empirical application. Full Article
linear Bayesian robustness to outliers in linear regression and ratio estimation By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Alain Desgagné, Philippe Gagnon. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 205--221.Abstract: Whole robustness is a nice property to have for statistical models. It implies that the impact of outliers gradually vanishes as they approach plus or minus infinity. So far, the Bayesian literature provides results that ensure whole robustness for the location-scale model. In this paper, we make two contributions. First, we generalise the results to attain whole robustness in simple linear regression through the origin, which is a necessary step towards results for general linear regression models. We allow the variance of the error term to depend on the explanatory variable. This flexibility leads to the second contribution: we provide a simple Bayesian approach to robustly estimate finite population means and ratios. The strategy to attain whole robustness is simple since it lies in replacing the traditional normal assumption on the error term by a super heavy-tailed distribution assumption. As a result, users can estimate the parameters as usual, using the posterior distribution. Full Article
linear lmSubsets: Exact Variable-Subset Selection in Linear Regression for R By www.jstatsoft.org Published On :: Tue, 28 Apr 2020 00:00:00 +0000 An R package for computing the all-subsets regression problem is presented. The proposed algorithms are based on computational strategies recently developed. A novel algorithm for the best-subset regression problem selects subset models based on a predetermined criterion. The package user can choose from exact and from approximation algorithms. The core of the package is written in C++ and provides an efficient implementation of all the underlying numerical computations. A case study and benchmark results illustrate the usage and the computational efficiency of the package. Full Article
linear Optimal prediction in the linearly transformed spiked model By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Edgar Dobriban, William Leeb, Amit Singer. Source: The Annals of Statistics, Volume 48, Number 1, 491--513.Abstract: We consider the linearly transformed spiked model , where the observations $Y_{i}$ are noisy linear transforms of unobserved signals of interest $X_{i}$: egin{equation*}Y_{i}=A_{i}X_{i}+varepsilon_{i},end{equation*} for $i=1,ldots ,n$. The transform matrices $A_{i}$ are also observed. We model the unobserved signals (or regression coefficients) $X_{i}$ as vectors lying on an unknown low-dimensional space. Given only $Y_{i}$ and $A_{i}$ how should we predict or recover their values? The naive approach of performing regression for each observation separately is inaccurate due to the large noise level. Instead, we develop optimal methods for predicting $X_{i}$ by “borrowing strength” across the different samples. Our linear empirical Bayes methods scale to large datasets and rely on weak moment assumptions. We show that this model has wide-ranging applications in signal processing, deconvolution, cryo-electron microscopy, and missing data with noise. For missing data, we show in simulations that our methods are more robust to noise and to unequal sampling than well-known matrix completion methods. Full Article
linear Efficient estimation of linear functionals of principal components By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Vladimir Koltchinskii, Matthias Löffler, Richard Nickl. Source: The Annals of Statistics, Volume 48, Number 1, 464--490.Abstract: We study principal component analysis (PCA) for mean zero i.i.d. Gaussian observations $X_{1},dots,X_{n}$ in a separable Hilbert space $mathbb{H}$ with unknown covariance operator $Sigma $. The complexity of the problem is characterized by its effective rank $mathbf{r}(Sigma):=frac{operatorname{tr}(Sigma)}{|Sigma |}$, where $mathrm{tr}(Sigma)$ denotes the trace of $Sigma $ and $|Sigma|$ denotes its operator norm. We develop a method of bias reduction in the problem of estimation of linear functionals of eigenvectors of $Sigma $. Under the assumption that $mathbf{r}(Sigma)=o(n)$, we establish the asymptotic normality and asymptotic properties of the risk of the resulting estimators and prove matching minimax lower bounds, showing their semiparametric optimality. Full Article
linear Hypothesis testing on linear structures of high-dimensional covariance matrix By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Shurong Zheng, Zhao Chen, Hengjian Cui, Runze Li. Source: The Annals of Statistics, Volume 47, Number 6, 3300--3334.Abstract: This paper is concerned with test of significance on high-dimensional covariance structures, and aims to develop a unified framework for testing commonly used linear covariance structures. We first construct a consistent estimator for parameters involved in the linear covariance structure, and then develop two tests for the linear covariance structures based on entropy loss and quadratic loss used for covariance matrix estimation. To study the asymptotic properties of the proposed tests, we study related high-dimensional random matrix theory, and establish several highly useful asymptotic results. With the aid of these asymptotic results, we derive the limiting distributions of these two tests under the null and alternative hypotheses. We further show that the quadratic loss based test is asymptotically unbiased. We conduct Monte Carlo simulation study to examine the finite sample performance of the two tests. Our simulation results show that the limiting null distributions approximate their null distributions quite well, and the corresponding asymptotic critical values keep Type I error rate very well. Our numerical comparison implies that the proposed tests outperform existing ones in terms of controlling Type I error rate and power. Our simulation indicates that the test based on quadratic loss seems to have better power than the test based on entropy loss. Full Article
linear Projected spline estimation of the nonparametric function in high-dimensional partially linear models for massive data By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Heng Lian, Kaifeng Zhao, Shaogao Lv. Source: The Annals of Statistics, Volume 47, Number 5, 2922--2949.Abstract: In this paper, we consider the local asymptotics of the nonparametric function in a partially linear model, within the framework of the divide-and-conquer estimation. Unlike the fixed-dimensional setting in which the parametric part does not affect the nonparametric part, the high-dimensional setting makes the issue more complicated. In particular, when a sparsity-inducing penalty such as lasso is used to make the estimation of the linear part feasible, the bias introduced will propagate to the nonparametric part. We propose a novel approach for estimation of the nonparametric function and establish the local asymptotics of the estimator. The result is useful for massive data with possibly different linear coefficients in each subpopulation but common nonparametric function. Some numerical illustrations are also presented. Full Article
linear Linear hypothesis testing for high dimensional generalized linear models By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Chengchun Shi, Rui Song, Zhao Chen, Runze Li. Source: The Annals of Statistics, Volume 47, Number 5, 2671--2703.Abstract: This paper is concerned with testing linear hypotheses in high dimensional generalized linear models. To deal with linear hypotheses, we first propose the constrained partial regularization method and study its statistical properties. We further introduce an algorithm for solving regularization problems with folded-concave penalty functions and linear constraints. To test linear hypotheses, we propose a partial penalized likelihood ratio test, a partial penalized score test and a partial penalized Wald test. We show that the limiting null distributions of these three test statistics are $chi^{2}$ distribution with the same degrees of freedom, and under local alternatives, they asymptotically follow noncentral $chi^{2}$ distributions with the same degrees of freedom and noncentral parameter, provided the number of parameters involved in the test hypothesis grows to $infty$ at a certain rate. Simulation studies are conducted to examine the finite sample performance of the proposed tests. Empirical analysis of a real data example is used to illustrate the proposed testing procedures. Full Article
linear Modeling wildfire ignition origins in southern California using linear network point processes By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Medha Uppala, Mark S. Handcock. Source: The Annals of Applied Statistics, Volume 14, Number 1, 339--356.Abstract: This paper focuses on spatial and temporal modeling of point processes on linear networks. Point processes on linear networks can simply be defined as point events occurring on or near line segment network structures embedded in a certain space. A separable modeling framework is introduced that posits separate formation and dissolution models of point processes on linear networks over time. While the model was inspired by spider web building activity in brick mortar lines, the focus is on modeling wildfire ignition origins near road networks over a span of 14 years. As most wildfires in California have human-related origins, modeling the origin locations with respect to the road network provides insight into how human, vehicular and structural densities affect ignition occurrence. Model results show that roads that traverse different types of regions such as residential, interface and wildland regions have higher ignition intensities compared to roads that only exist in each of the mentioned region types. Full Article
linear Optimal asset allocation with multivariate Bayesian dynamic linear models By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Jared D. Fisher, Davide Pettenuzzo, Carlos M. Carvalho. Source: The Annals of Applied Statistics, Volume 14, Number 1, 299--338.Abstract: We introduce a fast, closed-form, simulation-free method to model and forecast multiple asset returns and employ it to investigate the optimal ensemble of features to include when jointly predicting monthly stock and bond excess returns. Our approach builds on the Bayesian dynamic linear models of West and Harrison ( Bayesian Forecasting and Dynamic Models (1997) Springer), and it can objectively determine, through a fully automated procedure, both the optimal set of regressors to include in the predictive system and the degree to which the model coefficients, volatilities and covariances should vary over time. When applied to a portfolio of five stock and bond returns, we find that our method leads to large forecast gains, both in statistical and economic terms. In particular, we find that relative to a standard no-predictability benchmark, the optimal combination of predictors, stochastic volatility and time-varying covariances increases the annualized certainty equivalent returns of a leverage-constrained power utility investor by more than 500 basis points. Full Article
linear Joint model of accelerated failure time and mechanistic nonlinear model for censored covariates, with application in HIV/AIDS By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Hongbin Zhang, Lang Wu. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2140--2157.Abstract: For a time-to-event outcome with censored time-varying covariates, a joint Cox model with a linear mixed effects model is the standard modeling approach. In some applications such as AIDS studies, mechanistic nonlinear models are available for some covariate process such as viral load during anti-HIV treatments, derived from the underlying data-generation mechanisms and disease progression. Such a mechanistic nonlinear covariate model may provide better-predicted values when the covariates are left censored or mismeasured. When the focus is on the impact of the time-varying covariate process on the survival outcome, an accelerated failure time (AFT) model provides an excellent alternative to the Cox proportional hazard model since an AFT model is formulated to allow the influence of the outcome by the entire covariate process. In this article, we consider a nonlinear mixed effects model for the censored covariates in an AFT model, implemented using a Monte Carlo EM algorithm, under the framework of a joint model for simultaneous inference. We apply the joint model to an HIV/AIDS data to gain insights for assessing the association between viral load and immunological restoration during antiretroviral therapy. Simulation is conducted to compare model performance when the covariate model and the survival model are misspecified. Full Article
linear Bayesian linear regression for multivariate responses under group sparsity By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Bo Ning, Seonghyun Jeong, Subhashis Ghosal. Source: Bernoulli, Volume 26, Number 3, 2353--2382.Abstract: We study frequentist properties of a Bayesian high-dimensional multivariate linear regression model with correlated responses. The predictors are separated into many groups and the group structure is pre-determined. Two features of the model are unique: (i) group sparsity is imposed on the predictors; (ii) the covariance matrix is unknown and its dimensions can also be high. We choose a product of independent spike-and-slab priors on the regression coefficients and a new prior on the covariance matrix based on its eigendecomposition. Each spike-and-slab prior is a mixture of a point mass at zero and a multivariate density involving the $ell_{2,1}$-norm. We first obtain the posterior contraction rate, the bounds on the effective dimension of the model with high posterior probabilities. We then show that the multivariate regression coefficients can be recovered under certain compatibility conditions. Finally, we quantify the uncertainty for the regression coefficients with frequentist validity through a Bernstein–von Mises type theorem. The result leads to selection consistency for the Bayesian method. We derive the posterior contraction rate using the general theory by constructing a suitable test from the first principle using moment bounds for certain likelihood ratios. This leads to posterior concentration around the truth with respect to the average Rényi divergence of order $1/2$. This technique of obtaining the required tests for posterior contraction rate could be useful in many other problems. Full Article
linear Dynamic linear discriminant analysis in high dimensional space By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Binyan Jiang, Ziqi Chen, Chenlei Leng. Source: Bernoulli, Volume 26, Number 2, 1234--1268.Abstract: High-dimensional data that evolve dynamically feature predominantly in the modern data era. As a partial response to this, recent years have seen increasing emphasis to address the dimensionality challenge. However, the non-static nature of these datasets is largely ignored. This paper addresses both challenges by proposing a novel yet simple dynamic linear programming discriminant (DLPD) rule for binary classification. Different from the usual static linear discriminant analysis, the new method is able to capture the changing distributions of the underlying populations by modeling their means and covariances as smooth functions of covariates of interest. Under an approximate sparse condition, we show that the conditional misclassification rate of the DLPD rule converges to the Bayes risk in probability uniformly over the range of the variables used for modeling the dynamics, when the dimensionality is allowed to grow exponentially with the sample size. The minimax lower bound of the estimation of the Bayes risk is also established, implying that the misclassification rate of our proposed rule is minimax-rate optimal. The promising performance of the DLPD rule is illustrated via extensive simulation studies and the analysis of a breast cancer dataset. Full Article
linear Estimation of the linear fractional stable motion By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Stepan Mazur, Dmitry Otryakhin, Mark Podolskij. Source: Bernoulli, Volume 26, Number 1, 226--252.Abstract: In this paper, we investigate the parametric inference for the linear fractional stable motion in high and low frequency setting. The symmetric linear fractional stable motion is a three-parameter family, which constitutes a natural non-Gaussian analogue of the scaled fractional Brownian motion. It is fully characterised by the scaling parameter $sigma>0$, the self-similarity parameter $Hin(0,1)$ and the stability index $alphain(0,2)$ of the driving stable motion. The parametric estimation of the model is inspired by the limit theory for stationary increments Lévy moving average processes that has been recently studied in ( Ann. Probab. 45 (2017) 4477–4528). More specifically, we combine (negative) power variation statistics and empirical characteristic functions to obtain consistent estimates of $(sigma,alpha,H)$. We present the law of large numbers and some fully feasible weak limit theorems. Full Article
linear A Loss-Based Prior for Variable Selection in Linear Regression Methods By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Cristiano Villa, Jeong Eun Lee. Source: Bayesian Analysis, Volume 15, Number 2, 533--558.Abstract: In this work we propose a novel model prior for variable selection in linear regression. The idea is to determine the prior mass by considering the worth of each of the regression models, given the number of possible covariates under consideration. The worth of a model consists of the information loss and the loss due to model complexity. While the information loss is determined objectively, the loss expression due to model complexity is flexible and, the penalty on model size can be even customized to include some prior knowledge. Some versions of the loss-based prior are proposed and compared empirically. Through simulation studies and real data analyses, we compare the proposed prior to the Scott and Berger prior, for noninformative scenarios, and with the Beta-Binomial prior, for informative scenarios. Full Article
linear A New Bayesian Approach to Robustness Against Outliers in Linear Regression By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Philippe Gagnon, Alain Desgagné, Mylène Bédard. Source: Bayesian Analysis, Volume 15, Number 2, 389--414.Abstract: Linear regression is ubiquitous in statistical analysis. It is well understood that conflicting sources of information may contaminate the inference when the classical normality of errors is assumed. The contamination caused by the light normal tails follows from an undesirable effect: the posterior concentrates in an area in between the different sources with a large enough scaling to incorporate them all. The theory of conflict resolution in Bayesian statistics (O’Hagan and Pericchi (2012)) recommends to address this problem by limiting the impact of outliers to obtain conclusions consistent with the bulk of the data. In this paper, we propose a model with super heavy-tailed errors to achieve this. We prove that it is wholly robust, meaning that the impact of outliers gradually vanishes as they move further and further away from the general trend. The super heavy-tailed density is similar to the normal outside of the tails, which gives rise to an efficient estimation procedure. In addition, estimates are easily computed. This is highlighted via a detailed user guide, where all steps are explained through a simulated case study. The performance is shown using simulation. All required code is given. Full Article
linear Dynamic Quantile Linear Models: A Bayesian Approach By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Kelly C. M. Gonçalves, Hélio S. Migon, Leonardo S. Bastos. Source: Bayesian Analysis, Volume 15, Number 2, 335--362.Abstract: The paper introduces a new class of models, named dynamic quantile linear models, which combines dynamic linear models with distribution-free quantile regression producing a robust statistical method. Bayesian estimation for the dynamic quantile linear model is performed using an efficient Markov chain Monte Carlo algorithm. The paper also proposes a fast sequential procedure suited for high-dimensional predictive modeling with massive data, where the generating process is changing over time. The proposed model is evaluated using synthetic and well-known time series data. The model is also applied to predict annual incidence of tuberculosis in the state of Rio de Janeiro and compared with global targets set by the World Health Organization. Full Article
linear Adaptive Bayesian Nonparametric Regression Using a Kernel Mixture of Polynomials with Application to Partial Linear Models By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Fangzheng Xie, Yanxun Xu. Source: Bayesian Analysis, Volume 15, Number 1, 159--186.Abstract: We propose a kernel mixture of polynomials prior for Bayesian nonparametric regression. The regression function is modeled by local averages of polynomials with kernel mixture weights. We obtain the minimax-optimal contraction rate of the full posterior distribution up to a logarithmic factor by estimating metric entropies of certain function classes. Under the assumption that the degree of the polynomials is larger than the unknown smoothness level of the true function, the posterior contraction behavior can adapt to this smoothness level provided an upper bound is known. We also provide a frequentist sieve maximum likelihood estimator with a near-optimal convergence rate. We further investigate the application of the kernel mixture of polynomials to partial linear models and obtain both the near-optimal rate of contraction for the nonparametric component and the Bernstein-von Mises limit (i.e., asymptotic normality) of the parametric component. The proposed method is illustrated with numerical examples and shows superior performance in terms of computational efficiency, accuracy, and uncertainty quantification compared to the local polynomial regression, DiceKriging, and the robust Gaussian stochastic process. Full Article
linear Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Ioannis Ntzoufras, Claudia Tarantola, Monia Lupparelli. Source: Bayesian Analysis, Volume 14, Number 3, 797--823.Abstract: We introduce a novel Bayesian approach for quantitative learning for graphical log-linear marginal models. These models belong to curved exponential families that are difficult to handle from a Bayesian perspective. The likelihood cannot be analytically expressed as a function of the marginal log-linear interactions, but only in terms of cell counts or probabilities. Posterior distributions cannot be directly obtained, and Markov Chain Monte Carlo (MCMC) methods are needed. Finally, a well-defined model requires parameter values that lead to compatible marginal probabilities. Hence, any MCMC should account for this important restriction. We construct a fully automatic and efficient MCMC strategy for quantitative learning for such models that handles these problems. While the prior is expressed in terms of the marginal log-linear interactions, we build an MCMC algorithm that employs a proposal on the probability parameter space. The corresponding proposal on the marginal log-linear interactions is obtained via parameter transformation. We exploit a conditional conjugate setup to build an efficient proposal on probability parameters. The proposed methodology is illustrated by a simulation study and a real dataset. Full Article
linear Comment: “Models as Approximations I: Consequences Illustrated with Linear Regression” by A. Buja, R. Berk, L. Brown, E. George, E. Pitkin, L. Zhan and K. Zhang By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Roderick J. Little. Source: Statistical Science, Volume 34, Number 4, 580--583. Full Article
linear Models as Approximations I: Consequences Illustrated with Linear Regression By projecteuclid.org Published On :: Wed, 08 Jan 2020 04:00 EST Andreas Buja, Lawrence Brown, Richard Berk, Edward George, Emil Pitkin, Mikhail Traskin, Kai Zhang, Linda Zhao. Source: Statistical Science, Volume 34, Number 4, 523--544.Abstract: In the early 1980s, Halbert White inaugurated a “model-robust” form of statistical inference based on the “sandwich estimator” of standard error. This estimator is known to be “heteroskedasticity-consistent,” but it is less well known to be “nonlinearity-consistent” as well. Nonlinearity, however, raises fundamental issues because in its presence regressors are not ancillary, hence cannot be treated as fixed. The consequences are deep: (1) population slopes need to be reinterpreted as statistical functionals obtained from OLS fits to largely arbitrary joint ${x extrm{-}y}$ distributions; (2) the meaning of slope parameters needs to be rethought; (3) the regressor distribution affects the slope parameters; (4) randomness of the regressors becomes a source of sampling variability in slope estimates of order $1/sqrt{N}$; (5) inference needs to be based on model-robust standard errors, including sandwich estimators or the ${x extrm{-}y}$ bootstrap. In theory, model-robust and model-trusting standard errors can deviate by arbitrary magnitudes either way. In practice, significant deviations between them can be detected with a diagnostic test. Full Article
linear Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex By www.jneurosci.org Published On :: 1997-11-01 Matteo CarandiniNov 1, 1997; 17:8621-8644Articles Full Article
linear Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 By www.jneurosci.org Published On :: 1996-07-01 Geoffrey M. BoyntonJul 1, 1996; 16:4207-4221Articles Full Article
linear Monetary policy gradualism and the nonlinear effects of monetary shocks By www.bancaditalia.it Published On :: 2020-04-01T00:00:00Z Bank of Italy Working Papers by Luca Metelli, Filippo Natoli and Luca Rossi Full Article
linear Linear Static FEA Productivity with Simulation Professional By blogs.solidworks.com Published On :: Tue, 14 Apr 2020 12:00:19 +0000 Read to learn about the features and functionality of Simulation Professional that could significantly increase your linear static productivity. Author information Brian Zias Senior Territory Technical Manager at Dassault Systemes SOLIDWORKS Brian is a 15-year, expert SOLIDWORKS CAD, FEA, and CFD user and community advocate. His interests include engineering, simulation, team leadership, and predictive analytics. Brian holds a BS in Aerospace Engineering and an MBA in Data Science. The post Linear Static FEA Productivity with Simulation Professional appeared first on The SOLIDWORKS Blog. Full Article Design Product Designers and Mechanical Engineers SOLIDWORKS SOLIDWORKS Simulation Factor of safety FEA linear linear static nonlinear Parametric Optimization simplification solidworks simulation professional topology study
linear Video: Learning From Mistakes: Linear Equations By feedproxy.google.com Published On :: Wed, 04 Feb 2015 00:00:00 +0000 Watch students in 8th grade teacher Susie Morehead's class deepen their understanding of math principles by working through problems with their peers. Full Article Middleschools
linear A New Liquid Human Milk Fortifier and Linear Growth in Preterm Infants By pediatrics.aappublications.org Published On :: 2012-09-17T00:07:40-07:00 Current human milk fortifiers fail to provide the higher protein intake that is now recommended for feeding human milk–fed infants. There is a desire to avoid the use of powdered products when feeding these infants.A new ultraconcentrated liquid human milk fortifier that provides more protein than current powdered fortifiers is safe and supports better growth in human milk–fed infants than a powdered fortifier. (Read the full article) Full Article
linear Isolated Linear Skull Fractures in Children With Blunt Head Trauma By pediatrics.aappublications.org Published On :: 2015-03-16T00:05:28-07:00 Many children with blunt head trauma and isolated skull fractures are admitted to the hospital. Several small studies suggest that children with simple isolated skull fractures are at very low risk of clinical deterioration.In this large cohort of children with isolated linear skull fractures after minor blunt head trauma, none developed significant intracranial hemorrhages resulting in neurosurgical interventions. These children may be considered for emergency department discharge if neurologically normal. (Read the full article) Full Article
linear Linear interpolation in SAS By feedproxy.google.com Published On :: Mon, 04 May 2020 09:23:53 +0000 SAS programmers sometimes ask about ways to perform one-dimensional linear interpolation in SAS. This article shows three ways to perform linear interpolation in SAS: PROC IML (in SAS/IML software), PROC EXPAND (in SAS/ETS software), and PROC TRANSREG (in SAS/STAT software). Of these, PROC IML Is the simplest to use and [...] The post Linear interpolation in SAS appeared first on The DO Loop. Full Article Uncategorized Data Analysis Numerical Analysis
linear Linear eMerge E3 1.00-06 Arbitrary File Upload Remote Root Code Execution By packetstormsecurity.com Published On :: Tue, 12 Nov 2019 17:10:03 GMT Linear eMerge E3 versions 1.00-06 and below arbitrary file upload remote root code execution exploit. Full Article
linear AN3444 Driving LEDs with Constant Current and Sequential Linear LED Drivers By www.microchip.com Published On :: 4/7/2020 3:12:44 PM AN3444 Driving LEDs with Constant Current and Sequential Linear LED Drivers Full Article
linear Processing, Export, and Identification of Novel Linear Peptides from Staphylococcus aureus By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Staphylococcus aureus can colonize the human host and cause a variety of superficial and invasive infections. The success of S. aureus as a pathogen derives from its ability to modulate its virulence through the release, sensing of and response to cyclic signaling peptides. Here we provide, for the first time, evidence that S. aureus processes and secretes small linear peptides through a specialized pathway that converts a lipoprotein leader into an extracellular peptide signal. We have identified and confirmed the machinery for each step and demonstrate that the putative membrane metalloprotease Eep and the EcsAB transporter are required to complete the processing and secretion of the peptides. In addition, we have identified several linear peptides, including the interspecies signaling molecule staph-cAM373, that are dependent on this processing and secretion pathway. These findings are particularly important because multiple Gram-positive bacteria rely on small linear peptides to control bacterial gene expression and virulence. IMPORTANCE Here, we provide evidence indicating that S. aureus secretes small linear peptides into the environment via a novel processing and secretion pathway. The discovery of a specialized pathway for the production of small linear peptides and the identification of these peptides leads to several important questions regarding their role in S. aureus biology, most interestingly, their potential to act as signaling molecules. The observations in this study provide a foundation for further in-depth studies into the biological activity of small linear peptides in S. aureus. Full Article
linear A nonlinear beam model of photomotile structures [Engineering] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Actuation remains a significant challenge in soft robotics. Actuation by light has important advantages: Objects can be actuated from a distance, distinct frequencies can be used to actuate and control distinct modes with minimal interference, and significant power can be transmitted over long distances through corrosion-free, lightweight fiber optic cables.... Full Article
linear Chinese VC Linear Capital reaches first close of latest USD fund at $110m By www.dealstreetasia.com Published On :: Thu, 07 May 2020 06:02:35 +0000 The VC firm manages four funds with about 2.5 billion yuan ($352 million) in total AUM. The post Chinese VC Linear Capital reaches first close of latest USD fund at $110m appeared first on DealStreetAsia. Full Article Linear Capital
linear Nonlinear interference in crystal superlattices By feeds.nature.com Published On :: 2020-05-09 Full Article
linear Public debt, economic growth and nonlinear effects: myth or reality? By dx.doi.org Published On :: Wed, 17 Oct 2012 00:00:00 GMT The economics profession seems to increasingly endorse the existence of a strongly negative nonlinear effect of public debt on economic growth. Reinhart and Rogoff (2010) were the first to point out that a public debt to GDP ratio higher than 90% of GDP is associated with considerably lower economic performance in advanced and emerging economies alike. Full Article
linear Nonlinear water waves : an interdisciplinary interface [Electronic book] / David Henry, Konstantinos Kalimeris, Emilian I. Părău, Jean-Marc Vanden-Broeck, Erik Wahlén, editors. By encore.st-andrews.ac.uk Published On :: Cham, Switzerland : Birkhäuser, [2019] Full Article
linear Multilinear Operator Integrals [Electronic book] : Theory and Applications / Anna Skripka, Anna Tomskova. By encore.st-andrews.ac.uk Published On :: Cham : Springer, c2019. Full Article
linear Bifurcation and stability in nonlinear dynamical systems [Electronic book] / Albert C.J. Luo. By encore.st-andrews.ac.uk Published On :: Cham, Switzerland : Springer, [2019] Full Article
linear Advanced linear modeling [Electronic book] : statistical learning and dependent data / Ronald Christensen. By encore.st-andrews.ac.uk Published On :: Cham : Springer, 2019. Full Article
linear Water quality index prediction using multiple linear fuzzy regression model: case study in Perak River, Malaysia / Samsul Ariffin Abdul Karim, Nur Fatonah Kamsani By library.mit.edu Published On :: Sun, 29 Mar 2020 06:19:37 EDT Online Resource Full Article
linear Pillar[5]arene-based self-assembled linear supramolecular polymer driven by guest halogen–halogen interactions in solid and solution states By feeds.rsc.org Published On :: Polym. Chem., 2020, Advance ArticleDOI: 10.1039/D0PY00327A, PaperTalal F. Al-Azemi, Mickey VinodhA pillar[5]arene-based linear supramolecular polymer mediated by guest halogen–halogen interactions (C–Br⋯Br–C) was studied in both the solution and solid states.To cite this article before page numbers are assigned, use the DOI form of citation above.The content of this RSS Feed (c) The Royal Society of Chemistry Full Article
linear Double-click synthesis of polysiloxane third-order nonlinear optical polymers with donor–acceptor chromophores By feeds.rsc.org Published On :: Polym. Chem., 2020, 11,3046-3053DOI: 10.1039/C9PY01771B, PaperZhitao Li, Dong Wang, Daniele Ramella, Hong Gao, Hui Cao, Yuzhen Zhao, Zongcheng Miao, Zhou Yang, Wanli HeA series of third-order nonlinear polysiloxane polymer materials were prepared by thiol–ene click polymerization and [2 + 2] click chemistry. All the polymers exhibit good electron transfer capabilities and nonlinear optical properties.The content of this RSS Feed (c) The Royal Society of Chemistry Full Article