if First Generic Abilify Approved By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: First Generic Abilify ApprovedCategory: Health NewsCreated: 4/29/2015 12:00:00 AMLast Editorial Review: 4/30/2015 12:00:00 AM Full Article
if Female Pelvis Widens, Then Shrinks Over a Lifetime, Study Finds By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Female Pelvis Widens, Then Shrinks Over a Lifetime, Study FindsCategory: Health NewsCreated: 4/25/2016 12:00:00 AMLast Editorial Review: 4/26/2016 12:00:00 AM Full Article
if Night Shift Work May Be Tough on a Woman's Heart By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Night Shift Work May Be Tough on a Woman's HeartCategory: Health NewsCreated: 4/26/2016 12:00:00 AMLast Editorial Review: 4/27/2016 12:00:00 AM Full Article
if Seizure Control Eases Life for Young Adults With Epilepsy By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Seizure Control Eases Life for Young Adults With EpilepsyCategory: Health NewsCreated: 4/28/2017 12:00:00 AMLast Editorial Review: 5/1/2017 12:00:00 AM Full Article
if California Handgun Sales Spiked After 2 Mass Shootings By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: California Handgun Sales Spiked After 2 Mass ShootingsCategory: Health NewsCreated: 5/1/2017 12:00:00 AMLast Editorial Review: 5/2/2017 12:00:00 AM Full Article
if Life Expectancy Goes Up for Black Americans By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Life Expectancy Goes Up for Black AmericansCategory: Health NewsCreated: 5/2/2017 12:00:00 AMLast Editorial Review: 5/3/2017 12:00:00 AM Full Article
if 4 in 10 People Will Suffer Arthritic Hands Over Lifetime By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: 4 in 10 People Will Suffer Arthritic Hands Over LifetimeCategory: Health NewsCreated: 5/4/2017 12:00:00 AMLast Editorial Review: 5/5/2017 12:00:00 AM Full Article
if Artificial Hand 'Sees' Objects By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Artificial Hand 'Sees' ObjectsCategory: Health NewsCreated: 5/4/2017 12:00:00 AMLast Editorial Review: 5/5/2017 12:00:00 AM Full Article
if Mid-Life Stresses May Be Tied to Late-Life Dementia Risk By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Mid-Life Stresses May Be Tied to Late-Life Dementia RiskCategory: Health NewsCreated: 4/30/2018 12:00:00 AMLast Editorial Review: 5/1/2018 12:00:00 AM Full Article
if End-of-Life Care Saves Money By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: End-of-Life Care Saves MoneyCategory: Health NewsCreated: 4/30/2018 12:00:00 AMLast Editorial Review: 5/1/2018 12:00:00 AM Full Article
if Health Tip: When To Call Your Doctor If You Have Lower Back Pain By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Health Tip: When To Call Your Doctor If You Have Lower Back PainCategory: Health NewsCreated: 5/3/2018 12:00:00 AMLast Editorial Review: 5/3/2018 12:00:00 AM Full Article
if Breast Cancer Prognosis May Be Worse If Diagnosis Follows 'Negative' Mammogram By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Breast Cancer Prognosis May Be Worse If Diagnosis Follows 'Negative' MammogramCategory: Health NewsCreated: 5/3/2018 12:00:00 AMLast Editorial Review: 5/4/2018 12:00:00 AM Full Article
if Cardiac Rehab Boosts Quality of Life After Heart Attack: Study By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Cardiac Rehab Boosts Quality of Life After Heart Attack: StudyCategory: Health NewsCreated: 4/27/2020 12:00:00 AMLast Editorial Review: 4/28/2020 12:00:00 AM Full Article
if AHA News: Coronavirus Intensifies Existing Issues for Older Immigrants By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: AHA News: Coronavirus Intensifies Existing Issues for Older ImmigrantsCategory: Health NewsCreated: 4/28/2020 12:00:00 AMLast Editorial Review: 4/29/2020 12:00:00 AM Full Article
if Will Remdesivir Help COVID-19 Patients? Two Reports Provide Different Answers By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Will Remdesivir Help COVID-19 Patients? Two Reports Provide Different AnswersCategory: Health NewsCreated: 4/29/2020 12:00:00 AMLast Editorial Review: 4/30/2020 12:00:00 AM Full Article
if Thousands of Health Care Workers Lack Insurance If COVID-19 Strikes: Study By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Thousands of Health Care Workers Lack Insurance If COVID-19 Strikes: StudyCategory: Health NewsCreated: 4/30/2020 12:00:00 AMLast Editorial Review: 5/1/2020 12:00:00 AM Full Article
if AHA News: If You Think Before You Snack, It's Not So Bad By www.medicinenet.com Published On :: Fri, 27 Mar 2020 00:00:00 PDT Title: AHA News: If You Think Before You Snack, It's Not So BadCategory: Health NewsCreated: 3/26/2020 12:00:00 AMLast Editorial Review: 3/27/2020 12:00:00 AM Full Article
if AHA News: Traumatic Childhood Increases Lifelong Risk for Heart Disease, Early Death By www.medicinenet.com Published On :: Wed, 29 Apr 2020 00:00:00 PDT Title: AHA News: Traumatic Childhood Increases Lifelong Risk for Heart Disease, Early DeathCategory: Health NewsCreated: 4/28/2020 12:00:00 AMLast Editorial Review: 4/29/2020 12:00:00 AM Full Article
if COVID-19 Daily: Skin Manifestations, HCQ Heart Rhythm Risks By www.webmd.com Published On :: Wed, 06 May 2020 13:11:49 EST These are the coronavirus stories you need to know about today. Full Article
if For Kids With Genetic Condition, Statins May Be Lifesavers By www.medicinenet.com Published On :: Thu, 17 Oct 2019 00:00:00 PDT Title: For Kids With Genetic Condition, Statins May Be LifesaversCategory: Health NewsCreated: 10/16/2019 12:00:00 AMLast Editorial Review: 10/17/2019 12:00:00 AM Full Article
if A Facelift for PMC By www.ncbi.nlm.nih.gov Published On :: Fri, 13 Jul 2012 08:00:00 EST PMC has recently undergone another redesign to improve the look and feel and functionality of the site, featuring more white space, cleaner lines and enhanced navigation on its article, issue, and journal archive pages. For more information, see the article in the July-August 2012 issue of the NLM Technical Bulletin. Full Article
if Unique Identifiers for Supplemental Material By www.ncbi.nlm.nih.gov Published On :: Mon, 4 Feb 2019 08:00:00 EST PMC has updated the Associated Data box to display unique identifiers assigned to supplemental material files by the publisher when available (e.g., DOI; see PMC6351104). In cases where the publisher has not assigned a unique ID to a supplemental file, NLM will generate and display a Globally Unique Identifier (GUID; see PMC6351564). This update aims to support the reporting of datasets as well as the citation and discovery of this content.Publishers that are interested in supplying unique IDs for supplemental material files with their PMC submissions should visit the Tagging Guidelines. Full Article
if How Many Steps Per Day to Lengthen Your Life? By www.medicinenet.com Published On :: Wed, 25 Mar 2020 00:00:00 PDT Title: How Many Steps Per Day to Lengthen Your Life?Category: Health NewsCreated: 3/24/2020 12:00:00 AMLast Editorial Review: 3/25/2020 12:00:00 AM Full Article
if Age Makes the Difference in Sticking With HIV Meds By www.medicinenet.com Published On :: Thu, 13 Feb 2020 00:00:00 PDT Title: Age Makes the Difference in Sticking With HIV MedsCategory: Health NewsCreated: 2/12/2020 12:00:00 AMLast Editorial Review: 2/13/2020 12:00:00 AM Full Article
if AHA News: Nearly Killed in OKC Bombing, She Vowed to Change Her Life By www.medicinenet.com Published On :: Fri, 17 Apr 2020 00:00:00 PDT Title: AHA News: Nearly Killed in OKC Bombing, She Vowed to Change Her LifeCategory: Health NewsCreated: 4/16/2020 12:00:00 AMLast Editorial Review: 4/17/2020 12:00:00 AM Full Article
if 'Couch Potato' Lifestyle Poses Danger to Women's Hearts By www.medicinenet.com Published On :: Wed, 19 Feb 2020 00:00:00 PDT Title: 'Couch Potato' Lifestyle Poses Danger to Women's HeartsCategory: Health NewsCreated: 2/18/2020 12:00:00 AMLast Editorial Review: 2/19/2020 12:00:00 AM Full Article
if Birth Control Pill vs. Shot (Depo-Provera): Similarities and Differences By www.medicinenet.com Published On :: Mon, 13 Apr 2020 00:00:00 PDT Title: Birth Control Pill vs. Shot (Depo-Provera): Similarities and DifferencesCategory: Diseases and ConditionsCreated: 6/15/2017 12:00:00 AMLast Editorial Review: 4/13/2020 12:00:00 AM Full Article
if Abilify vs. Invega By www.medicinenet.com Published On :: Fri, 10 Apr 2020 00:00:00 PDT Title: Abilify vs. InvegaCategory: MedicationsCreated: 9/29/2017 12:00:00 AMLast Editorial Review: 4/10/2020 12:00:00 AM Full Article
if Haldol (haloperidol) vs. Abilify (aripiprazole) By www.medicinenet.com Published On :: Fri, 10 Apr 2020 00:00:00 PDT Title: Haldol (haloperidol) vs. Abilify (aripiprazole)Category: MedicationsCreated: 7/30/2019 12:00:00 AMLast Editorial Review: 4/10/2020 12:00:00 AM Full Article
if High Testosterone Levels Have Different Health Impact for Men and Women By www.medicinenet.com Published On :: Tue, 11 Feb 2020 00:00:00 PDT Title: High Testosterone Levels Have Different Health Impact for Men and WomenCategory: Health NewsCreated: 2/10/2020 12:00:00 AMLast Editorial Review: 2/11/2020 12:00:00 AM Full Article
if How Pets Can Be True Lifesavers for Seniors By www.medicinenet.com Published On :: Fri, 3 Apr 2020 00:00:00 PDT Title: How Pets Can Be True Lifesavers for SeniorsCategory: Health NewsCreated: 4/3/2020 12:00:00 AMLast Editorial Review: 4/3/2020 12:00:00 AM Full Article
if Identification of ALDH1A3 as a Viable Therapeutic Target in Breast Cancer Metastasis-Initiating Cells By mct.aacrjournals.org Published On :: 2020-05-04T05:39:42-07:00 The development of efficacious therapies targeting metastatic spread of breast cancer to the brain represents an unmet clinical need. Accordingly, an improved understanding of the molecular underpinnings of central nervous system spread and progression of breast cancer brain metastases (BCBM) is required. In this study, the clinical burden of disease in BCBM was investigated, as well as the role of aldehyde dehydrogenase 1A3 (ALDH1A3) in the metastatic cascade leading to BCBM development. Initial analysis of clinical survival trends for breast cancer and BCBM determined improvement of breast cancer survival rates; however, this has failed to positively affect the prognostic milestones of triple-negative breast cancer (TNBC) brain metastases (BM). ALDH1A3 and a representative epithelial–mesenchymal transition (EMT) gene signature (mesenchymal markers, CD44 or Vimentin) were compared in tumors derived from BM, lung metastases (LM), or bone metastases (BoM) of patients as well as mice after injection of TNBC cells. Selective elevation of the EMT signature and ALDH1A3 were observed in BM, unlike LM and BoM, especially in the tumor edge. Furthermore, ALDH1A3 was determined to play a role in BCBM establishment via regulation of circulating tumor cell adhesion and migration phases in the BCBM cascade. Validation through genetic and pharmacologic inhibition of ALDH1A3 via lentiviral shRNA knockdown and a novel small-molecule inhibitor demonstrated selective inhibition of BCBM formation with prolonged survival of tumor-bearing mice. Given the survival benefits via targeting ALDH1A3, it may prove an effective therapeutic strategy for BCBM prevention and/or treatment. Full Article
if Redefining Medical Competencies for an Oral Medicine Specialty Training Curriculum Using a Modified Delphi Technique By www.jdentaled.org Published On :: 2019-12-01T06:00:19-08:00 This article describes the development of medical competencies for oral medicine specialty training in the UK and Ireland by a collaborative working group using a modified Delphi technique. The current specialty training curriculum for oral medicine (OM) in the UK was developed by a working group including members of the British Society for Oral Medicine (BSOM) and members of the Specialty Advisory Committee for Additional Dental Specialties (SACADS) and adopted by the UK General Dental Council (GDC) in 2010. When the curriculum was developed, the entry requirements for specialty training in OM included undergraduate degrees in both dentistry and medicine. At the time of adoption, the requirement for a medical degree was removed. Medical competencies were assumed to have been delivered in medical undergraduate and postgraduate training. Accordingly, there was a need to define the medical competencies for OM specialty training to benefit trainees, trainers, and assessors. In 2018, a group comprising specialty trainers, recent former specialty trainees, and current specialty trainees in OM held face-to-face meetings in addition to email discussions and developed an updated curriculum document to better reflect the medical competencies required in specialty training. A collaborative modified Delphi approach was used to evaluate medical foundation competencies and to include only those that were considered relevant to OM specialty training. A list of relevant and achievable medical competencies was determined that has been approved by SACADS and will be incorporated into a revised OM curriculum from the UK GDC. The newly agreed-upon document for medical competencies in OM specialty training will serve as a reference for trainees, trainers, and assessors and reflects a successful use of a modified Delphi approach. Full Article
if Oral Health-Related Quality of Life of Children: An Assessment of the Relationship between Child and Caregiver Reporting By jdh.adha.org Published On :: 2020-04-30T12:39:03-07:00 Purpose: Oral and craniofacial conditions or diseases can impact an individual's health and quality of life. The purpose of this study was to assess the perceived oral health related quality of life (OHRQoL) of children, and evaluate the reported level of agreement between caregivers and their children.Methods: Purposive sampling was used to recruit children ages 8-15, and their caregivers from a dental clinic in a pediatric hospital for this descriptive, cross-sectional study. A modified version of a validated measure, Child Oral Health Impact Profile-Short Form (COHIP-SF), was used for a 22-item questionnaire encompassing three subscales: oral health, functional well-being, and social emotional well-being. Two additional items were included to assess child/caregiver's level of agreement. A dental chart review was also conducted to assess the child's overbite, overjet, and decayed surfaces. Data were analyzed through descriptive statistics and examined for assumptions of normality and linearity.Results: Sixty child/caregiver pairs (n=120) participated in this study. Overbite, overjet and decayed surfaces were not found to be related to any OHRQoL variable, including child/caregiver ratings and overall agreement (p>.05). Average OHRQoL scores for caregivers found to be more positive those of their children (p=.02). Agreement between caregivers and the child's gender was shown to be significant (p=.01). Female child scores differed significantly from males with respect to their caregiver responses (p=.02). Caregivers rated a higher OHRQoL for female children, thus overestimating their female child's reported OHRQoL.Conclusions: The moderate level of agreement found between children and caregivers reinforces the importance of including the child, as well as the caregiver, when assessing OHRQoL. Full Article
if Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 The pregnane X receptor (PXR) is a nuclear receptor that can be activated by numerous drugs and xenobiotic chemicals. PXR thereby functions as a xenobiotic sensor to coordinately regulate host responses to xenobiotics by transcriptionally regulating many genes involved in xenobiotic metabolism. We have previously reported that PXR has pro-atherogenic effects in animal models, but how PXR contributes to atherosclerosis development in different tissues or cell types remains elusive. In this study, we generated an LDL receptor-deficient mouse model with myeloid-specific PXR deficiency (PXRMyeLDLR–/–) to elucidate the role of macrophage PXR signaling in atherogenesis. The myeloid PXR deficiency did not affect metabolic phenotypes and plasma lipid profiles, but PXRMyeLDLR–/– mice had significantly decreased atherosclerosis at both aortic root and brachiocephalic arteries compared with control littermates. Interestingly, the PXR deletion did not affect macrophage adhesion and migration properties, but reduced lipid accumulation and foam cell formation in the macrophages. PXR deficiency also led to decreased expression of the scavenger receptor CD36 and impaired lipid uptake in macrophages of the PXRMyeLDLR–/– mice. Further, RNA-Seq analysis indicated that treatment with a prototypical PXR ligand affects the expression of many atherosclerosis-related genes in macrophages in vitro. These findings reveal a pivotal role of myeloid PXR signaling in atherosclerosis development and suggest that PXR may be a potential therapeutic target in atherosclerosis management. Full Article
if Collaborative Cross Mice Yield Genetic Modifiers for Pseudomonas aeruginosa Infection in Human Lung Disease By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Human genetics influence a range of pathological and clinical phenotypes in respiratory infections; however, the contributions of disease modifiers remain underappreciated. We exploited the Collaborative Cross (CC) mouse genetic-reference population to map genetic modifiers that affect the severity of Pseudomonas aeruginosa lung infection. Screening for P. aeruginosa respiratory infection in a cohort of 39 CC lines exhibits distinct disease phenotypes ranging from complete resistance to lethal disease. Based on major changes in the survival times, a quantitative-trait locus (QTL) was mapped on murine chromosome 3 to the genomic interval of Mb 110.4 to 120.5. Within this locus, composed of 31 protein-coding genes, two candidate genes, namely, dihydropyrimidine dehydrogenase (Dpyd) and sphingosine-1-phosphate receptor 1 (S1pr1), were identified according to the level of genome-wide significance and disease gene prioritization. Functional validation of the S1pr1 gene by pharmacological targeting in C57BL/6NCrl mice confirmed its relevance in P. aeruginosa pathophysiology. However, in a cohort of Canadian patients with cystic fibrosis (CF) disease, regional genetic-association analysis of the syntenic human locus on chromosome 1 (Mb 97.0 to 105.0) identified two single-nucleotide polymorphisms (rs10875080 and rs11582736) annotated to the Dpyd gene that were significantly associated with age at first P. aeruginosa infection. Thus, there is evidence that both genes might be implicated in this disease. Our results demonstrate that the discovery of murine modifier loci may generate information that is relevant to human disease progression. IMPORTANCE Respiratory infection caused by P. aeruginosa is one of the most critical health burdens worldwide. People affected by P. aeruginosa infection include patients with a weakened immune system, such as those with cystic fibrosis (CF) genetic disease or non-CF bronchiectasis. Disease outcomes range from fatal pneumonia to chronic life-threatening infection and inflammation leading to the progressive deterioration of pulmonary function. The development of these respiratory infections is mediated by multiple causes. However, the genetic factors underlying infection susceptibility are poorly known and difficult to predict. Our study employed novel approaches and improved mouse disease models to identify genetic modifiers that affect the severity of P. aeruginosa lung infection. We identified candidate genes to enhance our understanding of P. aeruginosa infection in humans and provide a proof of concept that could be exploited for other human pathologies mediated by bacterial infection. Full Article
if Defining Stage-Specific Activity of Potent New Inhibitors of Cryptosporidium parvum Growth In Vitro By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Cryptosporidium parvum and Cryptosporidium hominis have emerged as major enteric pathogens of infants in the developing world, in addition to their known importance in immunocompromised adults. Although there has been recent progress in identifying new small molecules that inhibit Cryptosporidium sp. growth in vitro or in animal models, we lack information about their mechanism of action, potency across the life cycle, and cidal versus static activities. Here, we explored four potent classes of compounds that include inhibitors that likely target phosphatidylinositol 4 kinase (PI4K), phenylalanine-tRNA synthetase (PheRS), and several potent inhibitors with unknown mechanisms of action. We utilized monoclonal antibodies and gene expression probes for staging life cycle development to define the timing of when inhibitors were active during the life cycle of Cryptosporidium parvum grown in vitro. These different classes of inhibitors targeted different stages of the life cycle, including compounds that blocked replication (PheRS inhibitors), prevented the segmentation of daughter cells and thus blocked egress (PI4K inhibitors), or affected sexual-stage development (a piperazine compound of unknown mechanism). Long-term cultivation of C. parvum in epithelial cell monolayers derived from intestinal stem cells was used to distinguish between cidal and static activities based on the ability of parasites to recover from treatment. Collectively, these approaches should aid in identifying mechanisms of action and for designing in vivo efficacy studies based on time-dependent concentrations needed to achieve cidal activity. IMPORTANCE Currently, nitazoxanide is the only FDA-approved treatment for cryptosporidiosis; unfortunately, it is ineffective in immunocompromised patients, has varied efficacy in immunocompetent individuals, and is not approved in infants under 1 year of age. Identifying new inhibitors for the treatment of cryptosporidiosis requires standardized and quantifiable in vitro assays for assessing potency, selectivity, timing of activity, and reversibility. Here, we provide new protocols for defining which stages of the life cycle are susceptible to four highly active compound classes that likely inhibit different targets in the parasite. We also utilize a newly developed long-term culture system to define assays for monitoring reversibility as a means of defining cidal activity as a function of concentration and time of treatment. These assays should provide valuable in vitro parameters to establish conditions for efficacious in vivo treatment. Full Article
if A Sustained Immune Response Supports Long-Term Antiviral Immune Priming in the Pacific Oyster, Crassostrea gigas By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Over the last decade, innate immune priming has been evidenced in many invertebrate phyla. If mechanistic models have been proposed, molecular studies aiming to substantiate these models have remained scarce. We reveal here the transcriptional signature associated with immune priming in the oyster Crassostrea gigas. Oysters were fully protected against Ostreid herpesvirus 1 (OsHV-1), a major oyster pathogen, after priming with poly(I·C), which mimics viral double-stranded RNA. Global analysis through RNA sequencing of oyster and viral genes after immune priming and viral infection revealed that poly(I·C) induces a strong antiviral response that impairs OsHV-1 replication. Protection is based on a sustained upregulation of immune genes, notably genes involved in the interferon pathway and apoptosis, which control subsequent viral infection. This persistent antiviral alert state remains active over 4 months and supports antiviral protection in the long term. This acquired resistance mechanism reinforces the molecular foundations of the sustained response model of immune priming. It further opens the way to applications (pseudovaccination) to cope with a recurrent disease that causes dramatic economic losses in the shellfish farming industry worldwide. IMPORTANCE In the last decade, important discoveries have shown that resistance to reinfection can be achieved without a functional adaptive immune system, introducing the concept of innate immune memory in invertebrates. However, this field has been constrained by the limited number of molecular mechanisms evidenced to support these phenomena. Taking advantage of an invertebrate species, the Pacific oyster (Crassostrea gigas), in which we evidenced one of the longest and most effective periods of protection against viral infection observed in an invertebrate, we provide the first comprehensive transcriptomic analysis of antiviral innate immune priming. We show that priming with poly(I·C) induced a massive upregulation of immune-related genes, which control subsequent viral infection, and it was maintained for over 4 months after priming. This acquired resistant mechanism reinforces the molecular foundations of the sustained response model of immune priming. It opens the way to pseudovaccination to prevent the recurrent diseases that currently afflict economically or ecologically important invertebrates. Full Article
if A Shift in Central Metabolism Accompanies Virulence Activation in Pseudomonas aeruginosa By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT The availability of energy has significant impact on cell physiology. However, the role of cellular metabolism in bacterial pathogenesis is not understood. We investigated the dynamics of central metabolism during virulence induction by surface sensing and quorum sensing in early-stage biofilms of the multidrug-resistant bacterium Pseudomonas aeruginosa. We established a metabolic profile for P. aeruginosa using fluorescence lifetime imaging microscopy (FLIM), which reports the activity of NADH in live cells. We identified a critical growth transition period during which virulence is activated. We performed FLIM measurements and direct measurements of NADH and NAD+ concentrations during this period. Here, planktonic (low-virulence) and surface-attached (virulence-activated) populations diverged into distinct metabolic states, with the surface-attached population exhibiting FLIM lifetimes that were associated with lower levels of enzyme-bound NADH and decreasing total NAD(H) production. We inhibited virulence by perturbing central metabolism using citrate and pyruvate, which further decreased the enzyme-bound NADH fraction and total NAD(H) production and suggested the involvement of the glyoxylate pathway in virulence activation in surface-attached populations. In addition, we induced virulence at an earlier time using the electron transport chain oxidase inhibitor antimycin A. Our results demonstrate the use of FLIM to noninvasively measure NADH dynamics in biofilms and suggest a model in which a metabolic rearrangement accompanies the virulence activation period. IMPORTANCE The rise of antibiotic resistance requires the development of new strategies to combat bacterial infection and pathogenesis. A major direction has been the development of drugs that broadly target virulence. However, few targets have been identified due to the species-specific nature of many virulence regulators. The lack of a virulence regulator that is conserved across species has presented a further challenge to the development of therapeutics. Here, we identify that NADH activity has an important role in the induction of virulence in the pathogen P. aeruginosa. This finding, coupled with the ubiquity of NADH in bacterial pathogens, opens up the possibility of targeting enzymes that process NADH as a potential broad antivirulence approach. Full Article
if The Multifunctional Long-Distance Movement Protein of Pea Enation Mosaic Virus 2 Protects Viral and Host Transcripts from Nonsense-Mediated Decay By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT The nonsense-mediated decay (NMD) pathway presents a challenge for RNA viruses with termination codons that precede extended 3' untranslated regions (UTRs). The umbravirus Pea enation mosaic virus 2 (PEMV2) is a nonsegmented, positive-sense RNA virus with an unusually long 3' UTR that is susceptible to NMD. To establish a systemic infection, the PEMV2 long-distance movement protein p26 was previously shown to both stabilize viral RNAs and bind them for transport through the plant’s vascular system. The current study demonstrated that p26 protects both viral and nonviral messenger RNAs from NMD. Although p26 localizes to both the cytoplasm and nucleolus, p26 exerts its anti-NMD effects exclusively in the cytoplasm independently of long-distance movement. Using a transcriptome-wide approach in the model plant Nicotiana benthamiana, p26 protected a subset of cellular NMD target transcripts, particularly those containing long, structured, GC-rich 3' UTRs. Furthermore, transcriptome sequencing (RNA-seq) revealed that the NMD pathway is highly dysfunctional during PEMV2 infection, with 1,820 (48%) of NMD targets increasing in abundance. Widespread changes in the host transcriptome are common during plant RNA virus infections, and these results suggest that, in at least some instances, virus-mediated NMD inhibition may be a major contributing factor. IMPORTANCE Nonsense-mediated decay (NMD) represents an RNA regulatory pathway that degrades both natural and faulty messenger RNAs with long 3' untranslated regions. NMD targets diverse families of RNA viruses, requiring that viruses counteract the NMD pathway for successful amplification in host cells. A protein required for long-distance movement of Pea enation mosaic virus 2 (PEMV2) is shown to also protect both viral and host mRNAs from NMD. RNA-seq analyses of the Nicotiana benthamiana transcriptome revealed that PEMV2 infection significantly impairs the host NMD pathway. RNA viruses routinely induce large-scale changes in host gene expression, and, like PEMV2, may use NMD inhibition to alter the host transcriptome in an effort to increase virus amplification. Full Article
if RNA Binding Motif Protein RBM45 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19 through Binding to Novel Intron Splicing Enhancers By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT During infection of human parvovirus B19 (B19V), one viral precursor mRNA (pre-mRNA) is transcribed by a single promoter and is alternatively spliced and alternatively polyadenylated. Here, we identified a novel cis-acting sequence (5'-GUA AAG CUA CGG GAC GGU-3'), intronic splicing enhancer 3 (ISE3), which lies 72 nucleotides upstream of the second splice acceptor (A2-2) site of the second intron that defines the exon of the mRNA encoding the 11-kDa viral nonstructural protein. RNA binding motif protein 45 (RBM45) specifically binds to ISE3 with high affinity (equilibrium dissociation constant [KD] = 33 nM) mediated by its RNA recognition domain and 2-homo-oligomer assembly domain (RRM2-HOA). Knockdown of RBM45 expression or ectopic overexpression of RRM2-HOA in human erythroid progenitor cells (EPCs) expanded ex vivo significantly decreased the level of viral mRNA spliced at the A2-2 acceptor but not that of the mRNA spliced at A2-1 that encodes VP2. Moreover, silent mutations of ISE3 in an infectious DNA of B19V significantly reduced 11-kDa expression. Notably, RBM45 also specifically interacts in vitro with ISE2, which shares the octanucleotide (GGGACGGU) with ISE3. Taken together, our results suggest that RBM45, through binding to both ISE2 and ISE3, is an essential host factor for maturation of 11-kDa-encoding mRNA. IMPORTANCE Human parvovirus B19 (B19V) is a human pathogen that causes severe hematological disorders in immunocompromised individuals. B19V infection has a remarkable tropism with respect to human erythroid progenitor cells (EPCs) in human bone marrow and fetal liver. During B19V infection, only one viral precursor mRNA (pre-mRNA) is transcribed by a single promoter of the viral genome and is alternatively spliced and alternatively polyadenylated, a process which plays a key role in expression of viral proteins. Our studies revealed that a cellular RNA binding protein, RBM45, binds to two intron splicing enhancers and is essential for the maturation of the small nonstructural protein 11-kDa-encoding mRNA. The 11-kDa protein plays an important role not only in B19V infection-induced apoptosis but also in viral DNA replication. Thus, the identification of the RBM45 protein and its cognate binding site in B19V pre-mRNA provides a novel target for antiviral development to combat B19V infection-caused severe hematological disorders. Full Article
if New Host-Directed Therapeutics for the Treatment of Clostridioides difficile Infection By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Frequent and excessive use of antibiotics primes patients to Clostridioides difficile infection (CDI), which leads to fatal pseudomembranous colitis, with limited treatment options. In earlier reports, we used a drug repurposing strategy and identified amoxapine (an antidepressant), doxapram (a breathing stimulant), and trifluoperazine (an antipsychotic), which provided significant protection to mice against lethal infections with several pathogens, including C. difficile. However, the mechanisms of action of these drugs were not known. Here, we provide evidence that all three drugs offered protection against experimental CDI by reducing bacterial burden and toxin levels, although the drugs were neither bacteriostatic nor bactericidal in nature and had minimal impact on the composition of the microbiota. Drug-mediated protection was dependent on the presence of the microbiota, implicating its role in evoking host defenses that promoted protective immunity. By utilizing transcriptome sequencing (RNA-seq), we identified that each drug increased expression of several innate immune response-related genes, including those involved in the recruitment of neutrophils, the production of interleukin 33 (IL-33), and the IL-22 signaling pathway. The RNA-seq data on selected genes were confirmed by quantitative real-time PCR (qRT-PCR) and protein assays. Focusing on amoxapine, which had the best anti-CDI outcome, we demonstrated that neutralization of IL-33 or depletion of neutrophils resulted in loss of drug efficacy. Overall, our lead drugs promote disease alleviation and survival in the murine model through activation of IL-33 and by clearing the pathogen through host defense mechanisms that critically include an early influx of neutrophils. IMPORTANCE Clostridioides difficile is a spore-forming anaerobic bacterium and the leading cause of antibiotic-associated colitis. With few therapeutic options and high rates of disease recurrence, the need to develop new treatment options is urgent. Prior studies utilizing a repurposing approach identified three nonantibiotic Food and Drug Administration-approved drugs, amoxapine, doxapram, and trifluoperazine, with efficacy against a broad range of human pathogens; however, the protective mechanisms remained unknown. Here, we identified mechanisms leading to drug efficacy in a murine model of lethal C. difficile infection (CDI), advancing our understanding of the role of these drugs in infectious disease pathogenesis that center on host immune responses to C. difficile. Overall, these studies highlight the crucial involvement of innate immune responses, as well as the importance of immunomodulation as a potential therapeutic option to combat CDI. Full Article
if In Vivo Targeting of Clostridioides difficile Using Phage-Delivered CRISPR-Cas3 Antimicrobials By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Clostridioides difficile is an important nosocomial pathogen that causes approximately 500,000 cases of C. difficile infection (CDI) and 29,000 deaths annually in the United States. Antibiotic use is a major risk factor for CDI because broad-spectrum antimicrobials disrupt the indigenous gut microbiota, decreasing colonization resistance against C. difficile. Vancomycin is the standard of care for the treatment of CDI, likely contributing to the high recurrence rates due to the continued disruption of the gut microbiota. Thus, there is an urgent need for the development of novel therapeutics that can prevent and treat CDI and precisely target the pathogen without disrupting the gut microbiota. Here, we show that the endogenous type I-B CRISPR-Cas system in C. difficile can be repurposed as an antimicrobial agent by the expression of a self-targeting CRISPR that redirects endogenous CRISPR-Cas3 activity against the bacterial chromosome. We demonstrate that a recombinant bacteriophage expressing bacterial genome-targeting CRISPR RNAs is significantly more effective than its wild-type parent bacteriophage at killing C. difficile both in vitro and in a mouse model of CDI. We also report that conversion of the phage from temperate to obligately lytic is feasible and contributes to the therapeutic suitability of intrinsic C. difficile phages, despite the specific challenges encountered in the disease phenotypes of phage-treated animals. Our findings suggest that phage-delivered programmable CRISPR therapeutics have the potential to leverage the specificity and apparent safety of phage therapies and improve their potency and reliability for eradicating specific bacterial species within complex communities, offering a novel mechanism to treat pathogenic and/or multidrug-resistant organisms. IMPORTANCE Clostridioides difficile is a bacterial pathogen responsible for significant morbidity and mortality across the globe. Current therapies based on broad-spectrum antibiotics have some clinical success, but approximately 30% of patients have relapses, presumably due to the continued perturbation to the gut microbiota. Here, we show that phages can be engineered with type I CRISPR-Cas systems and modified to reduce lysogeny and to enable the specific and efficient targeting and killing of C. difficile in vitro and in vivo. Additional genetic engineering to disrupt phage modulation of toxin expression by lysogeny or other mechanisms would be required to advance a CRISPR-enhanced phage antimicrobial for C. difficile toward clinical application. These findings provide evidence into how phage can be combined with CRISPR-based targeting to develop novel therapies and modulate microbiomes associated with health and disease. Full Article
if Translation Inhibition by Rocaglates Activates a Species-Specific Cell Death Program in the Emerging Fungal Pathogen Candida auris By mbio.asm.org Published On :: 2020-03-10T01:30:42-07:00 ABSTRACT Fungal infections are a major contributor to infectious disease-related deaths worldwide. Recently, global emergence of the fungal pathogen Candida auris has caused considerable concern because most C. auris isolates are resistant to fluconazole, the most commonly administered antifungal, and some isolates are resistant to drugs from all three major antifungal classes. To identify novel agents with bioactivity against C. auris, we screened 2,454 compounds from a diversity-oriented synthesis collection. Of the five hits identified, most shared a common rocaglate core structure and displayed fungicidal activity against C. auris. These rocaglate hits inhibited translation in C. auris but not in its pathogenic relative Candida albicans. Species specificity was contingent on variation at a single amino acid residue in Tif1, a fungal member of the eukaryotic initiation factor 4A (eIF4A) family of translation initiation factors known to be targeted by rocaglates. Rocaglate-mediated inhibition of translation in C. auris activated a cell death program characterized by loss of mitochondrial membrane potential, increased caspase-like activity, and disrupted vacuolar homeostasis. In a rocaglate-sensitized C. albicans mutant engineered to express translation initiation factor 1 (Tif1) with the variant amino acid that we had identified in C. auris, translation was inhibited but no programmed cell death phenotypes were observed. This surprising finding suggests divergence between these related fungal pathogens in their pathways of cellular responses to translation inhibition. From a therapeutic perspective, the chemical biology that we have uncovered reveals species-specific vulnerability in C. auris and identifies a promising target for development of new, mechanistically distinct antifungals in the battle against this emerging pathogen. IMPORTANCE Emergence of the fungal pathogen Candida auris has ignited intrigue and alarm within the medical community and the public at large. This pathogen is unusually resistant to antifungals, threatening to overwhelm current management options. By screening a library of structurally diverse molecules, we found that C. auris is surprisingly sensitive to translation inhibition by a class of compounds known as rocaglates (also known as flavaglines). Despite the high level of conservation across fungi in their protein synthesis machinery, these compounds inhibited translation initiation and activated a cell death program in C. auris but not in its relative Candida albicans. Our findings highlight a surprising divergence across the cell death programs operating in Candida species and underscore the need to understand the specific biology of a pathogen in attempting to develop more-effective treatments against it. Full Article
if Species-Specific Recognition of Sulfolobales Mediated by UV-Inducible Pili and S-Layer Glycosylation Patterns By mbio.asm.org Published On :: 2020-03-10T01:30:42-07:00 ABSTRACT The UV-inducible pili system of Sulfolobales (Ups) mediates the formation of species-specific cellular aggregates. Within these aggregates, cells exchange DNA to repair DNA double-strand breaks via homologous recombination. Substitution of the Sulfolobus acidocaldarius pilin subunits UpsA and UpsB with their homologs from Sulfolobus tokodaii showed that these subunits facilitate species-specific aggregation. A region of low conservation within the UpsA homologs is primarily important for this specificity. Aggregation assays in the presence of different sugars showed the importance of N-glycosylation in the recognition process. In addition, the N-glycan decorating the S-layer of S. tokodaii is different from the one of S. acidocaldarius. Therefore, each Sulfolobus species seems to have developed a unique UpsA binding pocket and unique N-glycan composition to ensure aggregation and, consequently, also DNA exchange with cells from only the same species, which is essential for DNA repair by homologous recombination. IMPORTANCE Type IV pili can be found on the cell surface of many archaea and bacteria where they play important roles in different processes. The UV-inducible pili system of Sulfolobales (Ups) pili from the crenarchaeal Sulfolobales species are essential in establishing species-specific mating partners, thereby assisting in genome stability. With this work, we show that different Sulfolobus species have specific regions in their Ups pili subunits, which allow them to interact only with cells from the same species. Additionally, different Sulfolobus species have unique surface-layer N-glycosylation patterns. We propose that the unique features of each species allow the recognition of specific mating partners. This knowledge for the first time gives insights into the molecular basis of archaeal self-recognition. Full Article
if A Solution to Antifolate Resistance in Group B Streptococcus: Untargeted Metabolomics Identifies Human Milk Oligosaccharide-Induced Perturbations That Result in Potentiation of Trimethoprim By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT Adjuvants can be used to potentiate the function of antibiotics whose efficacy has been reduced by acquired or intrinsic resistance. In the present study, we discovered that human milk oligosaccharides (HMOs) sensitize strains of group B Streptococcus (GBS) to trimethoprim (TMP), an antibiotic to which GBS is intrinsically resistant. Reductions in the MIC of TMP reached as high as 512-fold across a diverse panel of isolates. To better understand HMOs’ mechanism of action, we characterized the metabolic response of GBS to HMO treatment using ultrahigh-performance liquid chromatography–high-resolution tandem mass spectrometry (UPLC-HRMS/MS) analysis. These data showed that when challenged by HMOs, GBS undergoes significant perturbations in metabolic pathways related to the biosynthesis and incorporation of macromolecules involved in membrane construction. This study represents reports the metabolic characterization of a cell that is perturbed by HMOs. IMPORTANCE Group B Streptococcus is an important human pathogen that causes serious infections during pregnancy which can lead to chorioamnionitis, funisitis, premature rupture of gestational membranes, preterm birth, neonatal sepsis, and death. GBS is evolving antimicrobial resistance mechanisms, and the work presented in this paper provides evidence that prebiotics such as human milk oligosaccharides can act as adjuvants to restore the utility of antibiotics. Full Article
if Global Transcriptome Analysis Identifies a Diagnostic Signature for Early Disseminated Lyme Disease and Its Resolution By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT A bioinformatics approach was employed to identify transcriptome alterations in the peripheral blood mononuclear cells of well-characterized human subjects who were diagnosed with early disseminated Lyme disease (LD) based on stringent microbiological and clinical criteria. Transcriptomes were assessed at the time of presentation and also at approximately 1 month (early convalescence) and 6 months (late convalescence) after initiation of an appropriate antibiotic regimen. Comparative transcriptomics identified 335 transcripts, representing 233 unique genes, with significant alterations of at least 2-fold expression in acute- or convalescent-phase blood samples from LD subjects relative to healthy donors. Acute-phase blood samples from LD subjects had the largest number of differentially expressed transcripts (187 induced, 54 repressed). This transcriptional profile, which was dominated by interferon-regulated genes, was sustained during early convalescence. 6 months after antibiotic treatment the transcriptome of LD subjects was indistinguishable from that of healthy controls based on two separate methods of analysis. Return of the LD expression profile to levels found in control subjects was concordant with disease outcome; 82% of subjects with LD experienced at least one symptom at the baseline visit compared to 43% at the early convalescence time point and only a single patient (9%) at the 6-month convalescence time point. Using the random forest machine learning algorithm, we developed an efficient computational framework to identify sets of 20 classifier genes that discriminated LD from other bacterial and viral infections. These novel LD biomarkers not only differentiated subjects with acute disseminated LD from healthy controls with 96% accuracy but also distinguished between subjects with acute and resolved (late convalescent) disease with 97% accuracy. IMPORTANCE Lyme disease (LD), caused by Borrelia burgdorferi, is the most common tick-borne infectious disease in the United States. We examined gene expression patterns in the blood of individuals with early disseminated LD at the time of diagnosis (acute) and also at approximately 1 month and 6 months following antibiotic treatment. A distinct acute LD profile was observed that was sustained during early convalescence (1 month) but returned to control levels 6 months after treatment. Using a computer learning algorithm, we identified sets of 20 classifier genes that discriminate LD from other bacterial and viral infections. In addition, these novel LD biomarkers are highly accurate in distinguishing patients with acute LD from healthy subjects and in discriminating between individuals with active and resolved infection. This computational approach offers the potential for more accurate diagnosis of early disseminated Lyme disease. It may also allow improved monitoring of treatment efficacy and disease resolution. Full Article
if Evolution of Host Specificity by Malaria Parasites through Altered Mechanisms Controlling Genome Maintenance By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT The protozoan parasites that cause malaria infect a wide variety of vertebrate hosts, including birds, reptiles, and mammals, and the evolutionary pressures inherent to the host-parasite relationship have profoundly shaped the genomes of both host and parasite. Here, we report that these selective pressures have resulted in unexpected alterations to one of the most basic aspects of eukaryotic biology, the maintenance of genome integrity through DNA repair. Malaria parasites that infect humans continuously generate genetic diversity within their antigen-encoding gene families through frequent ectopic recombination between gene family members, a process that is a crucial feature of the persistence of malaria globally. The continuous generation of antigen diversity ensures that different parasite isolates are antigenically distinct, thus preventing extensive cross-reactive immunity and enabling parasites to maintain stable transmission within human populations. However, the molecular basis of the recombination between gene family members is not well understood. Through computational analyses of the antigen-encoding, multicopy gene families of different Plasmodium species, we report the unexpected observation that malaria parasites that infect rodents do not display the same degree of antigen diversity as observed in Plasmodium falciparum and appear to undergo significantly less ectopic recombination. Using comparative genomics, we also identify key molecular components of the diversification process, thus shedding new light on how malaria parasites balance the maintenance of genome integrity with the requirement for continuous genetic diversification. IMPORTANCE Malaria remains one of the most prevalent and deadly infectious diseases of the developing world, causing approximately 228 million clinical cases and nearly half a million deaths annually. The disease is caused by protozoan parasites of the genus Plasmodium, and of the five species capable of infecting humans, infections with P. falciparum are the most severe. In addition to the parasites that infect people, there are hundreds of additional species that infect birds, reptiles, and other mammals, each exquisitely evolved to meet the specific challenges inherent to survival within their respective hosts. By comparing the unique strategies that each species has evolved, key insights into host-parasite interactions can be gained, including discoveries regarding the pathogenesis of human disease. Here, we describe the surprising observation that closely related parasites with different hosts have evolved remarkably different methods for repairing their genomes. This observation has important implications for the ability of parasites to maintain chronic infections and for the development of host immunity. Full Article
if Snake Deltavirus Utilizes Envelope Proteins of Different Viruses To Generate Infectious Particles By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT Satellite viruses, most commonly found in plants, rely on helper viruses to complete their replication cycle. The only known example of a human satellite virus is the hepatitis D virus (HDV), and it is generally thought to require hepatitis B virus (HBV) to form infectious particles. Until 2018, HDV was the sole representative of the genus Deltavirus and was thought to have evolved in humans, the only known HDV host. The subsequent identification of HDV-like agents in birds, snakes, fish, amphibians, and invertebrates indicated that the evolutionary history of deltaviruses is likely much longer than previously hypothesized. Interestingly, none of the HDV-like agents were found in coinfection with an HBV-like agent, suggesting that these viruses use different helper virus(es). Here we show, using snake deltavirus (SDeV), that HBV and hepadnaviruses represent only one example of helper viruses for deltaviruses. We cloned the SDeV genome into a mammalian expression plasmid, and by transfection could initiate SDeV replication in cultured snake and mammalian cell lines. By superinfecting persistently SDeV-infected cells with reptarenaviruses and hartmaniviruses, or by transfecting their surface proteins, we could induce production of infectious SDeV particles. Our findings indicate that deltaviruses can likely use a multitude of helper viruses or even viral glycoproteins to form infectious particles. This suggests that persistent infections, such as those caused by arenaviruses and orthohantaviruses used in this study, and recurrent infections would be beneficial for the spread of deltaviruses. It seems plausible that further human or animal disease associations with deltavirus infections will be identified in the future. IMPORTANCE Deltaviruses need a coinfecting enveloped virus to produce infectious particles necessary for transmission to a new host. Hepatitis D virus (HDV), the only known deltavirus until 2018, has been found only in humans, and its coinfection with hepatitis B virus (HBV) is linked with fulminant hepatitis. The recent discovery of deltaviruses without a coinfecting HBV-like agent in several different taxa suggested that deltaviruses could employ coinfection by other enveloped viruses to complete their life cycle. In this report, we show that snake deltavirus (SDeV) efficiently utilizes coinfecting reptarena- and hartmaniviruses to form infectious particles. Furthermore, we demonstrate that cells expressing the envelope proteins of arenaviruses and orthohantaviruses produce infectious SDeV particles. As the envelope proteins are responsible for binding and infecting new host cells, our findings indicate that deltaviruses are likely not restricted in their tissue tropism, implying that they could be linked to animal or human diseases other than hepatitis. Full Article
if Magnaporthe oryzae Auxiliary Activity Protein MoAa91 Functions as Chitin-Binding Protein To Induce Appressorium Formation on Artificial Inductive Surfaces and Suppress Plant Immunity By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 ABSTRACT The appressoria that are generated by the rice blast fungus Magnaporthe oryzae in response to surface cues are important for successful colonization. Previous work showed that regulators of G-protein signaling (RGS) and RGS-like proteins play critical roles in appressorium formation. However, the mechanisms by which these proteins orchestrate surface recognition for appressorium induction remain unclear. Here, we performed comparative transcriptomic studies of Morgs mutant and wild-type strains and found that M. oryzae Aa91 (MoAa91), a homolog of the auxiliary activity family 9 protein (Aa9), was required for surface recognition of M. oryzae. We found that MoAA91 was regulated by the MoMsn2 transcription factor and that its disruption resulted in defects in both appressorium formation on the artificial inductive surface and full virulence of the pathogen. We further showed that MoAa91 was secreted into the apoplast space and was capable of competing with the immune receptor chitin elicitor-binding protein precursor (CEBiP) for chitin binding, thereby suppressing chitin-induced plant immune responses. In summary, we have found that MoAa91 is a novel signaling molecule regulated by RGS and RGS-like proteins and that MoAa91 not only governs appressorium development and virulence but also functions as an effector to suppress host immunity. IMPORTANCE The rice blast fungus Magnaporthe oryzae generates infection structure appressoria in response to surface cues largely due to functions of signaling molecules, including G-proteins, regulators of G-protein signaling (RGS), mitogen-activated protein (MAP) kinase pathways, cAMP signaling, and TOR signaling pathways. M. oryzae encodes eight RGS and RGS-like proteins (MoRgs1 to MoRgs8), and MoRgs1, MoRgs3, MoRgs4, and MoRgs7 were found to be particularly important in appressorium development. To explore the mechanisms by which these proteins regulate appressorium development, we have performed a comparative in planta transcriptomic study and identified an auxiliary activity family 9 protein (Aa9) homolog that we named MoAa91. We showed that MoAa91 was secreted from appressoria and that the recombinant MoAa91 could compete with a chitin elicitor-binding protein precursor (CEBiP) for chitin binding, thereby suppressing chitin-induced plant immunity. By identifying MoAa91 as a novel signaling molecule functioning in appressorium development and an effector in suppressing host immunity, our studies revealed a novel mechanism by which RGS and RGS-like proteins regulate pathogen-host interactions. Full Article