we

Method and system for identify, treatment and weaning from Internet and computer addiction

Self controlled method and system for identified, treatment and weaning from computer and Internet addiction. On one embodiment of the invention, the system analyzed user activity on the computer and while surfing the Internet, and presents results of his addictive level visually on user's interface. Supporting the whole information of addictive level to the user, give him the power to fight against the phenomena and prevent to increase it. The user can decide whether he wants treatment and act to have it by personal actions or by involvement of third parties such as parents, therapist, support group or even a specific social website. For weaning from the addiction the system can provide positive feedbacks, special treatment and even presents and prizes if the user reduced dramatically his addictive level.




we

Wearable CPR assist, training and testing device

A wearable cardiopulmonary resuscitation assist device or system including: a wearable article to be worn by a cardiopulmonary resuscitation performer or a patient, for assisting administration of cardiopulmonary resuscitation by the performer; at least one sensor for measuring at least one parameter to assist in cardiopulmonary resuscitation; at least one feedback component for conveying feedback information based on the parameter to the performer for assisting the performer in performing cardiopulmonary resuscitation; and a processing unit, the processing unit being configured to receive the at least one parameter from the at least one sensor and to send information based on the parameter to the at least one feedback component. Also a method for training or improving cardiopulmonary resuscitation procedures using the device.




we

Target device for determining received hits in a light based weapons simulation system

A target device is usable with a simulation system which includes a weapon simulator having a trigger, a chamber for firing a blank cartridge in response to the trigger, and a transmitter arranged to emit a light signal defining one or more activation codes of prescribed duration in response to the trigger. The target device includes a sensor array of photodiodes and a processor receiving output signals from the photodiodes. The processor determines that the sensor array has been hit by the weapon simulator in response to a first portion of one activation code being received by one of the photodiodes and at least one second portion of the same activation code being received by the same or a different one of the photodiodes when the first portion and the at least one second portion correspond to an entirety of one activation code within the respective prescribed duration.




we

Willpower watch (TM)—a wearable food consumption monitor

This invention is a wearable, automatic, and tamper-resistant device and method for monitoring and measuring food consumption and caloric intake. It can help people to manage their energy balance and weight. It can be embodied as: (a) one or more automatic-imaging members that are worn on a person from which these members collectively and automatically take pictures of the person's mouth and pictures of a reachable food source when the person eats; (b) a tamper-resisting mechanism which detects and responds if the operation of the one or more automatic-imaging members is impaired; and (c) an image-analyzing member which automatically analyzes pictures of the person's mouth and pictures of the reachable food source in order to estimate the types and quantities of food that are consumed by the person.




we

System and device for welding training

A system and device for welding training. In one example, a welding training system includes a display configured to show welding features related to a training welding operation. The system also includes a training workpiece having a substantially transparent weld joint configured to be placed adjacent to the display during the training welding operation. The system includes a processing device coupled to the display and configured to provide welding data relating to the training welding operation to the display. The system also includes a training torch comprising an optical sensor. The training torch is coupled to the processing device and configured to provide the processing device with data from the optical sensor corresponding to a position of the training torch relative to the training workpiece.




we

Communication device and power control method thereof

A communication device and a power control method thereof are provided. The power control method, performed by a communication device, includes: determining a power range of a transmit power of an uplink signal; determining a gain switch range based on the power range; when the transmit power of the uplink signal is within the gain switch range, determining a first gain mode for amplifying the uplink signal; and when the transmit power of the uplink signal is out of the gain switch range, determining a second gain mode for amplifying the uplink signal.




we

Weighted N-finger scaling and scrolling

In one example, a method includes receiving an indication of an input gesture detected at a presence-sensitive input device, where the input gesture includes one or more input points and each input point is detected at a respective location of the presence-sensitive input device. The method may also include determining a focal point of the input gesture, and determining a radius length. The method may also include determining a shape centered at the focal point and having a size determined based on the radius length. The method may also include responding to a change in a geometric property of the shape by scaling information included in a graphical user interface, where the scaling of the information being centered at the focal point.




we

Display device having a power line arrangement for reducing voltage drop

A display device includes: a pixel area comprising pixels in rows and columns; main power lines at a first side of the pixel area and a second side of the pixel area facing the first side; first sub-power lines coupled to a first main power line of the main power lines formed at the first side and extending into the pixel area in a column direction; and second sub-power lines coupled to a second main power line of the main power lines formed at the second side and extending into the pixel area in the column direction, wherein the first sub-power lines and the second sub-power lines extend in different columns of pixels, and wherein a column of pixels of the pixels are alternatingly coupled to a neighboring sub-power line of the first sub-power lines and a neighboring sub-power line of the second sub-power lines.




we

Power supply apparatus and method to control the same

A power supply apparatus includes a converter to convert AC power into DC power, an SMPS to convert the DC power into DC powers desired by loads, a capacitor to interconnect the converter and the SMPS, a PTC element connected to the converter, a first switch connected in parallel with the PTC element, and a second switch connected in series with the first switch. The method includes turning on the second switch to start charging of the capacitor, turning on the first switch to charge the capacitor to a target voltage level, and turning off both the first switch and second switch if a voltage across the capacitor rises over the target voltage level, to discharge the voltage across the capacitor so as to lower the voltage across the capacitor to the target voltage level or lower.




we

Cavity filter with connecting structure connected between slider and driving device

A cavity filter includes a slider, a driving device, and an adapter. The slider is used to slide relative to and couple with a plurality of resonators located in the cavity filter to adjust a resonating frequency of the cavity filter. The driving device is used to drive the slider slide relative to the plurality of resonators and includes a shaft having a free end. The adapter is installed between the slider and the driving device and rotateably connected to the free end of the shaft with a gap configured between the free end and the adapter.




we

Electronic dobby-and-jacquard-loom weaving machine and weaving method

The present invention discloses an electronic-dobby-and-jacquard-loom weaving machine and a weaving method. The machine comprises a weaving body, a first warp beam, a second warp beam, a jacquard loom, a dobby loom, a harness frame, a plurality of first harness wires, a plurality of second harness wires, a plurality of harness cords, a plurality of return springs and at least one weft accumulator, wherein the weaving body and the jacquard loom are connected with a synchronous transmission mechanism between them; the synchronous transmission mechanism comprises a weaving spindle, a main motor encoder, a jacquard loom transmission shaft, a jacquard loom encoder, a gear box and a servo control system. The present invention improves the clarity of the fell (shed), widens the fell, keeps the fell clear stably, and realizes high-density jacquard weaving.




we

Weaving finishing device

A dynamic finishing device that is able to finish one side of a product independently of a second side of the product while the product is being woven is provided. The sides may be finished in a non-linear fashion by the dynamic finishing device. Additionally, one or more finishing devices can be dynamically positioned in an interior portion of the woven product as it is being woven. Once positioned, the finishing devices may create apertures, pockets, and/or tunnels in the woven product and finish the edges of these creations. Finishing in the interior portions of the woven product occurs in the direction of the warp and in the direction of the weft.




we

Structured fabric for use in a papermaking machine and the fibrous web produced thereon

A papermaking machine for the production of a fibrous web including a plurality of rollers and a structured fabric moving along the rollers. The structured fabric includes a plurality of weft yarns and a plurality of warp yarns woven with the plurality of weft yarns to produce a weave pattern, the plurality of warp yarns being a plurality of paired warp yarn sets. Each paired warp yarn set including a first warp yarn and a second warp yarn. Within the weave pattern the first warp yarn forms a float over at least four weft yarns and weaves with a single weft yarn immediately adjacent with the float. The second warp yarn having an inverse pattern to the first warp yarn, with the second warp yarn weaving with another single weft yarn that is not adjacent to the single weft yarn with which the first warp yarn is woven.




we

Multiple layer weaving

A weaving apparatus is provided herein for simultaneously weaving fine denier panels and coarse denier panels. The weaving apparatus includes a first warp beam that holds in tension a first number of small denier warp threads and a second warp beam that holds in tension a second number of large denier warp threads. The first number of small denier warp threads is greater than the second number of large denier warp threads.




we

Reinforcing tape, cloth produced by sewing said reinforcing tape, and web structure utilizing said reinforcing tape

Provided are a lightweight, compact reinforcing tape capable of improving a tensile strength. A reinforcing tape for reinforcing a tensile strength of a cloth includes weft threads which constitute a weave structure of the reinforcing tape, and warp threads which constitute a weave structure of the reinforcing tape, wherein a part of the warp threads are made of a high-strength fiber.




we

Fabric for forming a paper web having an embossed surface

A fabric for forming a fibrous paper web having an embossed surface is provided that includes at least longitudinal and transverse threads interwoven with one another in a weave repeat defining a machine side and a paper side. Some of the longitudinal threads form embossing threads having projecting paper side floats on the paper side of the fabric passing over more than one transverse thread. The fabric includes at least a first woven fabric layer forming the paper side on its outside and having longitudinal and transverse first threads interwoven with one another and a second woven fabric layer forming the machine side on its outside and having longitudinal and transverse second threads interwoven with one another. At least some of the longitudinal second threads form embossing threads, which penetrate the first woven fabric layer for forming the paper side floats and connect the two woven fabric layers.




we

Gripper head for the insertion of weft threads on a gripper weaving machine

A gripper head for the insertion of weft threads on a gripper weaving machine as well as a gripper weaving machine with such a gripper head. The gripper head thread clamp for the weft thread is controlled in a contact-free manner and with high transfer reliability of the weft thread even in the machine center.




we

Manufacturing method of medical textiles woven from chitosan containing high wet modulus rayon fibre

An anti-“Methicillin-Resistant Staphylococcus Aureus (MRSA)” chitosan containing antibacterial High Wet Modulus (HWM) rayon fiber textile for medical usage is made of the steps as following: chitin flakes made from natural shrimp or crab shells are deacetylated to generate chitosan with a high deacetylation degree of 90% or more. Next chitosan is dissolved in acetic acid and regenerated by caustic soda to form a chitosan antibacterial nanoparticles slurry, then added to HWM viscose rayon process, and spinning to produce a chitosan containing antibacterial HWM rayon fiber. The antibacterial amino groups of chitosan and the hydroxyl groups of rayon cellulose combine together via hydrogen bonding. Therefore, the fiber becomes the anti-MRSA antibacterial HWM rayon fiber containing amino groups (—NH3+). Finally the resulting HWM rayon fiber is conducted via a yarn spinning or/and weaving process to procure a medical textile with chitosan content.




we

High strength ultra-high molecular weight polyethylene tape articles

Processes for the production of high strength polyethylene tape articles from high strength ultra-high molecular weight multi-filament yarns, and to the tape articles, fabrics, laminates and impact resistant materials made therefrom.




we

X weave of composite material and method of weaving thereof

An X weave of composite material has multiple latitudinal fibers, multiple longitudinal fibers, and a woven center. Each longitudinal fiber is layered on two of the latitudinal fibers and then is woven through and layered under two of the latitudinal fibers. The longitudinal fibers are each woven by shifting in relative alignment position from one of the latitudinal fibers sequentially and woven radially with respect to the woven center, such that the longitudinal fibers form an X woven structure. Therefore, the intensity of the X weave can be enhanced by the X woven structure.




we

Weaving machine having movable shed opening limiter device

A weaving machine for producing a woven fabric has a shedding device to form a loom shed of warp material, a weft insertion device for inserting a preferably tape-shaped or band-shaped weft material into the loom shed, a drawing-off device for drawing off the finished fabric in a drawing-off direction, fabric movement device for moving the fabric back and forth in the warp direction to bring the last inserted weft material into contact with the binding point or fabric edge. A shed limiter device limits the opening of the loom shed from above and below the warp, and is movable back and forth in the warp direction. The shed limiter device only loosely bounds the fabric and essentially without actively clamping or pinching or contacting the fabric and/or the last inserted weft material, at least while moving in the direction opposite the drawing-off direction.




we

Weaving method and loom for implementing this method

The loom includes a weaving area (18) into which weft threads are inserted into at least one upper channel and one lower channel, each of these weft threads being inserted between at least two warp threads by at least one weft insertion element: first element for focusing on one of these channels and determining the position of the warp threads relative to the weft thread, and second element for inserting at least one binding thread (16) above, between and below these channels. The loom includes at least one element for gripping the at least one binding thread and element for moving the at least one gripping element out of and into the weaving area (18) so as to place the at least one gripping element in contact with the at least one binding thread and to allow the drawing of the at least one binding thread.




we

Blind of united blind by weaving

The present invention provides a textile blind united by weaving, which is formed as a single body by weaving slat textiles along a width between a front textile and a back textile in parallel with each other, wherein the slat textiles are arranged along the height of the front and back textiles to make the textile blind easily block lights.




we

Group of reflection optic sensors in a weft feeder for weaving looms

Group of optic sensors (S) in a weft feeder, in particular for weaving looms, comprising one or more pairs of emitting sensors (E) and receiving sensors (R) arranged on a portion of the weft feeder (C) which extends laterally to the drum (T) of the weft feeder whereon the coils of the weft thread are wound, so as to form optic radiation going-paths from each of said emitting sensors (E) to a reflecting surface (9) provided on said drum (T) and optic radiation back-paths, from said reflecting surface (9) to corresponding receiving sensors (R), for detecting the presence/absence of a thread which crosses said paths. The optic sensors (E, R) are of the SMT type and are wired on a printed-circuit board (8) with an optic axis parallel to the plane of said board (8). A first group of total-reflection mirrors (V), one for each pair of emitting/receiving sensors (E, R), is inclined so as to deviate the optic radiation from the plane of the board (8) to a plane perpendicular to or inclined with respect to the same. A second group of partial-reflection mirrors (H), one for each pair of emitting/receiving sensors (E, R), is inclined so as to deviate the optic radiation in the same plane as board 8.




we

Connecting rod for a weaving loom and weaving loom comprising this connecting rod

The connecting rod (6) for two articulations with parallel axes and for transmitting the rocking movements of an output lever of a shedding device to a heald frame belonging to a weaving loom, having a first connecting tip connecting to a first articulation and secured to a longitudinal bar, a second connecting tip (62) connecting to a second articulation and including members for clamping the bar that are accessible from one side of the connecting rod, and members (64) for separating the tips along a longitudinal axis (X6) of the connecting rod. The separating member having a bearing member (640) on an inclined surface (612; 630) whereof the normal is comprised in a plane (P6) perpendicular to the axes of the articulations and is inclined relative to the longitudinal axis (X6) of the connecting rod, while the bearing member (640) can be moved in a direction perpendicular to a plane (P34) containing the axes (X3, X4) of the articulations.




we

Method for transferring energy between at least two energy storage cells in a controllable energy store

In a method for transferring energy between at least two energy storage cells in a controllable energy store that serves to control and to supply electrical energy to an n-phase electric machine, which energy store has n power supply arms which each have at least two series-connected energy storage modules which each include at least one electrical energy storage cell with an associated controllable coupling unit, and are connected to one respective phase of the electric machine, in a charging phase, all coupling units of those energy storage modules which are to be used as an energy source are controlled in such a way that the respectively associated energy storage cells are connected into the respective power supply arm.




we

Assembled battery charging method, charging control circuit, and power supply system

A method for charging an assembled battery including series circuits connected in parallel, each of the series circuits including series-connected lead storage batteries, using a single charger is provided. The method includes: a first step of obtaining a first index value, corresponding to a resistance value of a first series circuit with a correlative relationship, the first series circuit having a lowest resistance value; a second step of obtaining a second index value corresponding to a resistance value of a second series circuit with a correlative relationship, the second series circuit having a highest resistance value; a third step of performing normal charging, in which the assembled battery is charged with a first amount of charge corresponding to the first index value; and a fourth step of performing refresh charging, in which the assembled battery is charged with a second amount of charge corresponding to the second index value.




we

Direct feeding apparatus for impedance matching of wireless power transmission device, and transmitter and receiver using the same

A direct feeding apparatus for impedance matching of a wireless power transmission device includes a helical type resonator, and a feeding unit configured to directly feed power to a region having a relatively small current value as compared to a center of a conductive line of the resonator.




we

Electric power tool

An electric power tool is included in a plurality of types of electric power tools. The plurality of types of electric power tools comprise a plurality of types of battery packs having different rated output voltages and a plurality of types of tool bodies, the housings of which are equipped with an attached part on which each of the battery packs is mounted in a freely removable manner. The attached part possessed by the plurality of types of tool bodies equipped with motors having different voltage characteristics is formed so as to be able to mount an arbitrary one of the plurality of types of battery packs having different rated output voltages. This makes it possible to widen the range of available battery packs and enhance convenience.




we

Portable solar power supply

A portable solar power supply includes a solar-powered charger including a solar cell; a circuit board including a power management unit, a buck-boost converter unit, a charging control unit, a data management unit, an on/off switch, a set of indicators, a power inlet, a power outlet, a first connector, a wireless communications member, a line transmission member, a data storage member, an RFID member, an SD card member, a USB port, a Micro USB port, and a solar charging member; and holes; and a rechargeable battery including at least one electrochemical cell each shaped to partially contain the solar-powered charger and including a second connector, a third connector, snapping members, and slots. The second connector is capable of connecting to the first connector or the third connector, and the snapping members are capable of being retained in the holes or the slots.




we

Battery power delivery module

A system and method for digital management and control of power conversion from battery cells. The system utilizes a power management and conversion module that uses a CPU to maintain a high power conversion efficiency over a wide range of loads and to manage charge and discharge operation of the battery cells. The power management and conversion module includes the CPU, a current sense unit, a charge/discharge unit, a DC-to-DC conversion unit, a battery protection unit, a fuel gauge and an internal DC regulation unit. Through intelligent power conversion and charge/discharge operations, a given battery type is given the ability to emulate other battery types by conversion of the output voltage of the battery and adaptation of the charging scheme to suit the battery.




we

System and method for protecting a power consuming circuit

A system for protecting a power consuming circuit, the system comprising two terminals for receiving power and two terminals for providing received power. Between one of the receiving terminals and a providing terminal, a transistor is provided which is controlled by a Zener diode and to break the connection between one of the receiving terminals and a providing terminal, if a voltage over the providing terminals or the receiving terminals exceeds the breakdown voltage of the Zener diode.




we

Electric power supply system and electric power supply method

An electric power supply system includes a connecting device that connects a secondary battery provided in a vehicle to a building, and a control apparatus that i) identifies the type of the vehicle that is connected to the connecting device, the type of the secondary battery, or the type of electric power that is distinguishable by the charging source of the electric power stored in the secondary battery, ii) determines a preset electric power supply method based on the identification results, and iii) controls a supply of electric power from the secondary battery to the building based on the determined electric power supply method.




we

System and method for managing load distribution across a power grid

A method for scheduling a charge of a plug-in electric vehicle (PEV) includes receiving, by a load management system, PEV information from a PEV plugged into an electric vehicle supply equipment (EVSE); transformer information from a transformer management system, the transformer information relating to a transformer associated with the EVSE; determining, by the charging information based on the PEV information and transformer information; providing the charging information to the PEV.




we

Discharge device and discharge method for the active discharge of a capacitor for use in the electric-power system of an electric-drive vehicle

A discharge device actively discharges a main capacitor in an electric-power system of an electric-drive vehicle and comprises a discharge branch of a circuit connected in parallel to the capacitor and including a discharge transistor biased to “conduction” mode when the capacitor must be discharged. A control device is connected to a “gate/base” terminal of and controls the transistor, biasing the transistor to the mode when the capacitor is required to fee discharged. A control transistor maintains the discharge transistor in a “non-conductive” state when the control transistor is in the mode. The control transistor is in the state for the discharge transistor to be in the mode. A safety capacitor is interposed between the terminal and a power supply and charges when the discharge transistor is in the mode, causing a progressive decrease of current at the terminal, until the discharge transistor is biased to the state.




we

Available charging/discharging current calculation method and power supply device

A method includes steps of dividing resistance R into a physical and chemical resistances Ro and Rp, obtaining corrected open-circuit voltages Vo corresponding to setting currents Ia to Ix, acquiring predicted reaching voltages Va to Vx corresponding to the setting currents Ia to Ix, and creating a current-voltage curve. The corrected open-circuit voltages Vo are obtained to predict available maximum currents I—target in a particular time t2. The predicted reaching voltages Va to Vx are acquired based on corrected physical and chemical resistances Ro and Rp, and the corrected open-circuit voltages Vo. The current-voltage curve is creased based on the setting currents Ia to Ix and the predicted reaching voltages Va to Vx to acquire upper and lower limit voltages Vmax and Vmin, and upper and lower limit currents Imax and Imin at a temperature whereby assigning these limit currents to available maximum currents I—target in charging and discharging operations, respectively.




we

Automatic start/stop device for engine-driven power generator

Starting and stopping an engine is automatically controlled based on a load without using a relay. An inverter engine-driven power generator has an alternator, a rectifying circuit, a DC/DC converter, and an inverter circuit. A load detection circuit is connected to an output of the inverter circuit in parallel. A load detection line of the load detection circuit is connected to an output line of the inverter circuit in parallel via resistors. A power supply formed of a battery is connected to the load detection line. A decision circuit outputs a load detection signal when a current having a preset value or more flows through the load detection line. A drive/stop CPU starts the engine in response to the load detection. The resistors are set at a resistance value which does not influence a load to which a generator output is supplied.




we

Automatic start and stop of a portable engine driven power source

The present embodiments provide a control system and method that is able to automatically start and/or stop a portable engine-driven power source. For example, in one embodiment, a system includes an engine-driven power source having an engine, a compressor driven by the engine, a sensor configured to generate a first signal indicative of a demand for air pressure from the compressor and a second signal indicative of no demand for air pressure from the compressor. The engine-driven power source also includes a controller configured to stop the engine in response to the second signal.




we

Control system of wind power generator, wind farm, and method for controlling wind power generator

A wind power generator generates power through a rotation of a rotor and is interconnected, and operated with its power generation output previously limited in order to be able to further supply the power to a power system in response to a decrease in system frequency. Thus, a concentrated control system derives a required restricted amount corresponding to a power generation output required to respond to the decrease in system frequency, derives a value by subtracting an amount corresponding to a latent power generation output with which the power generation output can be increased, from the required restricted amount, and sets a restricted amount of the power generation output in each wind power generator to perform the operation with the power generation output previously limited to respond to the decrease in system frequency, based on the above value.




we

Wind energy plant with dynamic power distribution between the pitch system and supplementary electrical load

A wind energy plant comprising a rotor having blades and a generator driven by said rotor for generating electric energy. The pitch of the blades can be adjusted and a pitch system for adjusting the pitch angle of the blades is provided, which is supplied by a hub power source. An additional electric load is provided on the hub. A pitch power control device is provided which dynamically distributes the power of the hub power source between the pitch system and the additional electric load and further acts on the pitch system such that its power consumption during high-load operation is reduced. Thus, the power consumption of the pitch system during high-load operation can be reduced and additional power provided for operating the additional load. Even large additional loads, such as a blade heater, can be operated in this way, without having to boost the hub power source.




we

Mixed mode power generation architecture

An electric power generation system (EPGS) employs both a wild-source generator and a variable and/or constant frequency generator. The wild-source generator is coupled to receive mechanical power from a low-pressure spool on an aircraft engine and to generate in response a wild-source output for consumption by voltage and frequency-tolerant loads. The variable and/or constant frequency generator is coupled to receive mechanical power from a high-pressure spool on the aircraft engine and to generate in response a variable and/or constant frequency output for consumption by voltage and frequency-intolerant loads.




we

Multiple voltage generator and voltage regulation methodology for power dense integrated power systems

An integrated power system suitable for simultaneously powering marine propulsion and service loads. The system includes: (a) at least one generator configured with at least first and second armature windings configured to output respective first and second alternating current power signals of different voltages, the at least two armature windings positioned within the same stator slots so that they magnetically couple; (b) at least first and second rectifier circuits coupled to said generator to convert said first and second alternating current power signals into first and second direct current power signals; and (c) a first load to which said first direct current power signal is coupled and a second load to which said second direct current power signal is coupled.




we

On-demand electric power system

An on-demand electric power system for providing on-demand electric power in remote locations. The on-demand electric power system generally includes a protective housing, an engine-generator within the protective housing, a control switch electrically positioned between the engine-generator and an electric load, and a control unit in communication with the engine-generator and the control switch to control operation of the engine-generator along with electrical power to the electric load. The control unit detects when electrical power is required by an electric load and then first starts the engine-generator. After a period of time, the control unit then closes the control switch to provide electrical power to the electric load.




we

Pressure powered impeller system and related method of use

This invention is directed to a system that generates a sufficient level of electricity through access to a municipal water supply line to run a furnace during below freezing temperatures. The system includes an inlet that draws water from a water supply line. A first conduit, in communication with the inlet, transports the water into a DC generator that includes an impeller to generate electricity. Water is then routed through a second conduit which then returns the water to the water supply line through an outlet. A solenoid valve may be positioned between the inlet and first conduit which remains closed when the electric grid runs normally but will open during a power outage to supply water to the DC generator. A lithium battery stores power created by the DC generator, which may include a voltage regulator and inverter to convert to DC.




we

Magnetic controlled power generator

A magnetic controlled power generator provides a magnetic controlled loading device, power generator and flywheel device to form two independent modules which are easily assembled and disassembled for easy manufacture and maintenance. Besides, the magnetic controlled power generator has simple installation and lightweight components to generate a radial displacement for magnetic flux control, achieving continuous adjustment of the load resistance, thereby having the effect of reducing the cost and weight.




we

Overvoltage limiter in an aircraft electrical power generation system

A generator includes a permanent magnet generator, an exciter and a main generator mounted for rotation on a shaft. The main generator is configured to produce a voltage output. A generator control unit includes a circuit configured to provide current from the permanent magnet generator to the exciter. A switch is provided in the circuit and is configured to change between open and closed conditions. The switch is configured to flow current in the circuit in the closed condition and interrupt current flow in the open condition. An overvoltage limit controller is programmed to determine an amount of overvoltage of the output voltage exceeding a desired voltage. Either a fixed reference threshold is used or a reference threshold voltage is calculated based upon the duration in over voltage condition, and the switch is modulated between the open and closed conditions according to error between the actual output voltage and the reference threshold voltage to limit the output voltage to the desired reference threshold voltage.




we

Power supply system for motor vehicle provided with control device of voltage applied to field coil of generator

A power supply system for a motor vehicle includes a generator that includes a rotor having a field coil and a stator having an armature coil; a rectifier that rectifies AC power generated in the armature coil; an excitation control circuit that takes control of a voltage applied to the field coil; a capacitor that is connected to the DC side of the rectifier, and receives and transfers the rectified power; a battery connected to an electric load of the motor vehicle; a DC-DC converter that is connected between the capacitor and the battery and capable of converting unidirectionally or bidirectionally an input DC voltage into any DC voltage; and a selection switch which connects the capacitor or the battery to the excitation control circuit as a power supply source.




we

Power control method and device

The present invention discloses a method and an apparatus for power control. An apparatus for power control in accordance with an embodiment of the present invention can include: a voltage comparing part configured to compute an error voltage by using a measured voltage measured at the generator and a reference voltage that is designated; a control module configured to compute a first reactive power value for power control of the generator by being inputted with the error voltage; and a driving module configured to compute a reference reactive power value by using the first reactive power value and a second reactive power value computed using an active power value of the power converter and configured to control the power converter in correspondence with the computed reference reactive power value.




we

Method and system for automatically adapting end user power usage

A system, method and apparatus for automatically adapting power grid usage by controlling internal and/or external power-related assets of one or more users in response to power regulation and/or frequency regulation functions in a manner beneficial to both the power grid itself and the users of the power grid.




we

Wireless power feeder and wireless power receiver

A wireless power feeder 116 feeds power from a feeding coil L2 in the ground to a receiving coil L3 incorporated in an EV by wireless using a magnetic field resonance phenomenon between the feeding coil L2 and receiving coil L3. A plurality of feeding coils L2a to L2d are buried in the ground. Receivers 112a to 112d are buried in corresponding respectively with the feeding coils L2a to L2d. The plurality of receivers 112 each receive a position signal transmitted from a transmitter 110 of the EV. A feeding coil circuit 120 supplies AC power to the feeding coil L2 corresponding to the receiver 112 that has received the position signal to allow the feeding coil L2 to feed power to the receiving coil L3 by wireless.