f Anomalies of the Developing Dentition : a Clinical Guide to Diagnosis and Management By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Soxman, Jane A., author.Callnumber: OnlineISBN: 9783030031640 (electronic bk.) Full Article
f Anatomical chart company atlas of pathophysiology By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Atlas of pathophysiology.Callnumber: OnlineISBN: 9781496370921 Full Article
f Anaerobic utilization of hydrocarbons, oils, and lipids By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783319503912 (electronic bk.) Full Article
f An encyclopaedia of British bridges By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: McFetrich, David, author.Callnumber: OnlineISBN: 9781526752963 (electronic bk.) Full Article
f Agri-food industry strategies for healthy diets and sustainability : new challenges in nutrition and public health By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9780128172261 Full Article
f African edible insects as alternative source of food, oil, protein and bioactive components By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030329525 (electronic bk.) Full Article
f A handbook of nuclear applications in humans' lives By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Tabbakh, Farshid, author.Callnumber: OnlineISBN: 9781527544512 (electronic bk.) Full Article
f Notice of Construction - Kennedy Rd. and Ravenshoe Rd. By www.eastgwillimbury.ca Published On :: Sun, 03 May 2020 16:28:03 GMT Full Article
f Fill Management Plan PIC By www.eastgwillimbury.ca Published On :: Mon, 25 Nov 2019 19:55:10 GMT Full Article
f Notice of Construction - Woodbine Ave. By www.eastgwillimbury.ca Published On :: Fri, 24 Apr 2020 18:41:27 GMT Full Article
f Utah Signs SB 29 Drug Disposal Program Into Law, A Huge Step Forward... By www.prweb.com Published On :: Utah State Bill SB 29 requires environmentally friendly disposal of a lawfully possessed controlled substance. NarcX worked closely with Utah lawmakers to provide crucial guidance for the bill.(PRWeb April 08, 2020)Read the full story at https://www.prweb.com/releases/utah_signs_sb_29_drug_disposal_program_into_law_a_huge_step_forward_for_narcx/prweb17030392.htm Full Article
f InBios receives Emergency Use Authorization for its Smart Detect... By www.prweb.com Published On :: InBios International, Inc. announces the U.S. Food and Drug Administration (FDA) issued an emergency use authorization (EUA) for its diagnostic test that can be used immediately by CLIA...(PRWeb April 08, 2020)Read the full story at https://www.prweb.com/releases/inbios_receives_emergency_use_authorization_for_its_smart_detect_sars_cov_2_rrt_pcr_kit_for_detection_of_the_virus_causing_covid_19/prweb17036897.htm Full Article
f Domestic Gag Rule Reduces Contraceptive Access For Nearly 370,000... By www.prweb.com Published On :: According to data released by Power to Decide, an estimated 369,960 New Jersey women of reproductive age (13-44) in need of publicly funded contraception live in counties impacted by the...(PRWeb April 09, 2020)Read the full story at https://www.prweb.com/releases/domestic_gag_rule_reduces_contraceptive_access_for_nearly_370_000_women_living_in_new_jersey/prweb17040987.htm Full Article
f In Battle to Fight Coronavirus Pandemic, LeadingAge Nursing Home... By www.prweb.com Published On :: Aging Services Providers Dedicated to Fulfilling Their Critical Role in Public Health System(PRWeb April 18, 2020)Read the full story at https://www.prweb.com/releases/in_battle_to_fight_coronavirus_pandemic_leadingage_nursing_home_members_support_texas_action_to_gather_and_leverage_data/prweb17055806.htm Full Article
f New Partnerships Emerge for COVID-19 Relief: Dade County Farm Bureau... By www.prweb.com Published On :: Harvested produce crops feed Florida Department of Corrections’ (FDC) more than 87,000 inmates; action saves food costs while reducing COVID-19 related supply chain impacts.(PRWeb April 20, 2020)Read the full story at https://www.prweb.com/releases/new_partnerships_emerge_for_covid_19_relief_dade_county_farm_bureau_teams_with_state_leaders_to_launch_farm_to_inmate_program/prweb17052045.htm Full Article
f STRmix Now Being Used by Suffolk County Crime Lab, Contra Costa... By www.prweb.com Published On :: New organizations bring total number of U.S. forensic labs using STRmix to 55.(PRWeb April 23, 2020)Read the full story at https://www.prweb.com/releases/strmix_now_being_used_by_suffolk_county_crime_lab_contra_costa_sheriffs_office/prweb17057336.htm Full Article
f AgileAssets v7.5 Improves Flexibility, Field Productivity for Tunnel... By www.prweb.com Published On :: Web and mobile applications enhance efficiency and data accuracy using satellite maps and offline capabilities.(PRWeb April 23, 2020)Read the full story at https://www.prweb.com/releases/agileassets_v7_5_improves_flexibility_field_productivity_for_tunnel_inspections_asset_maintenance/prweb17071093.htm Full Article
f Gun Rights: California Gun Owners & Ammo Dealers Fire Back Against... By www.prweb.com Published On :: Ammunition Depot comments on Judge Roger T. Benitez ruling that Californians may again purchase ammo without a background check and order ammo online.(PRWeb April 24, 2020)Read the full story at https://www.prweb.com/releases/gun_rights_california_gun_owners_ammo_dealers_fire_back_against_proposition_63/prweb17075447.htm Full Article
f Suntuity AirWorks Offering FREE Assistance in Drone Acquisition... By www.prweb.com Published On :: The drones and programs will be fully paid for by the DOJ as part of the $850 million funding that has been allocated to help public safety departments fight the spread of COVID-19. This includes...(PRWeb April 30, 2020)Read the full story at https://www.prweb.com/releases/suntuity_airworks_offering_free_assistance_in_drone_acquisition_through_850mm_federal_grant_assistance_program_for_public_safety_agencies/prweb17090555.htm Full Article
f New York State YMCAs are “Open For Good” By www.prweb.com Published On :: With New York is on PAUSE, the Alliance of New York State YMCAs will showcase how YMCAs are staying “Open For Good” to meet the needs of their community during the COVID-19 crisis on Giving Tuesday...(PRWeb May 02, 2020)Read the full story at https://www.prweb.com/releases/new_york_state_ymcas_are_open_for_good/prweb17088694.htm Full Article
f Viable Policy Pathways Expand Access to Renewable Energy for... By www.prweb.com Published On :: Newly launched REBA Institute shares research suggesting multiple policy pathways increase access, lower costs and drive decarbonization of the electricity sector.(PRWeb May 05, 2020)Read the full story at https://www.prweb.com/releases/viable_policy_pathways_expand_access_to_renewable_energy_for_commercial_industrial_sector/prweb17099869.htm Full Article
f Colorado Court Rules STRmix Is “Relevant and Reliable” Practice for... By www.prweb.com Published On :: Defendant’s Motion to Exclude Expert Testimony regarding evidence generated by STRmix denied.(PRWeb May 08, 2020)Read the full story at https://www.prweb.com/releases/colorado_court_rules_strmix_is_relevant_and_reliable_practice_for_interpreting_likelihood_ratios/prweb17101548.htm Full Article
f Penalized generalized empirical likelihood with a diverging number of general estimating equations for censored data By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Niansheng Tang, Xiaodong Yan, Xingqiu Zhao. Source: The Annals of Statistics, Volume 48, Number 1, 607--627.Abstract: This article considers simultaneous variable selection and parameter estimation as well as hypothesis testing in censored survival models where a parametric likelihood is not available. For the problem, we utilize certain growing dimensional general estimating equations and propose a penalized generalized empirical likelihood, where the general estimating equations are constructed based on the semiparametric efficiency bound of estimation with given moment conditions. The proposed penalized generalized empirical likelihood estimators enjoy the oracle properties, and the estimator of any fixed dimensional vector of nonzero parameters achieves the semiparametric efficiency bound asymptotically. Furthermore, we show that the penalized generalized empirical likelihood ratio test statistic has an asymptotic central chi-square distribution. The conditions of local and restricted global optimality of weighted penalized generalized empirical likelihood estimators are also discussed. We present a two-layer iterative algorithm for efficient implementation, and investigate its convergence property. The performance of the proposed methods is demonstrated by extensive simulation studies, and a real data example is provided for illustration. Full Article
f Almost sure uniqueness of a global minimum without convexity By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Gregory Cox. Source: The Annals of Statistics, Volume 48, Number 1, 584--606.Abstract: This paper establishes the argmin of a random objective function to be unique almost surely. This paper first formulates a general result that proves almost sure uniqueness without convexity of the objective function. The general result is then applied to a variety of applications in statistics. Four applications are discussed, including uniqueness of M-estimators, both classical likelihood and penalized likelihood estimators, and two applications of the argmin theorem, threshold regression and weak identification. Full Article
f Asymptotic genealogies of interacting particle systems with an application to sequential Monte Carlo By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Jere Koskela, Paul A. Jenkins, Adam M. Johansen, Dario Spanò. Source: The Annals of Statistics, Volume 48, Number 1, 560--583.Abstract: We study weighted particle systems in which new generations are resampled from current particles with probabilities proportional to their weights. This covers a broad class of sequential Monte Carlo (SMC) methods, widely-used in applied statistics and cognate disciplines. We consider the genealogical tree embedded into such particle systems, and identify conditions, as well as an appropriate time-scaling, under which they converge to the Kingman $n$-coalescent in the infinite system size limit in the sense of finite-dimensional distributions. Thus, the tractable $n$-coalescent can be used to predict the shape and size of SMC genealogies, as we illustrate by characterising the limiting mean and variance of the tree height. SMC genealogies are known to be connected to algorithm performance, so that our results are likely to have applications in the design of new methods as well. Our conditions for convergence are strong, but we show by simulation that they do not appear to be necessary. Full Article
f Markov equivalence of marginalized local independence graphs By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Søren Wengel Mogensen, Niels Richard Hansen. Source: The Annals of Statistics, Volume 48, Number 1, 539--559.Abstract: Symmetric independence relations are often studied using graphical representations. Ancestral graphs or acyclic directed mixed graphs with $m$-separation provide classes of symmetric graphical independence models that are closed under marginalization. Asymmetric independence relations appear naturally for multivariate stochastic processes, for instance, in terms of local independence. However, no class of graphs representing such asymmetric independence relations, which is also closed under marginalization, has been developed. We develop the theory of directed mixed graphs with $mu $-separation and show that this provides a graphical independence model class which is closed under marginalization and which generalizes previously considered graphical representations of local independence. Several graphs may encode the same set of independence relations and this means that in many cases only an equivalence class of graphs can be identified from observational data. For statistical applications, it is therefore pivotal to characterize graphs that induce the same independence relations. Our main result is that for directed mixed graphs with $mu $-separation each equivalence class contains a maximal element which can be constructed from the independence relations alone. Moreover, we introduce the directed mixed equivalence graph as the maximal graph with dashed and solid edges. This graph encodes all information about the edges that is identifiable from the independence relations, and furthermore it can be computed efficiently from the maximal graph. Full Article
f Averages of unlabeled networks: Geometric characterization and asymptotic behavior By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Eric D. Kolaczyk, Lizhen Lin, Steven Rosenberg, Jackson Walters, Jie Xu. Source: The Annals of Statistics, Volume 48, Number 1, 514--538.Abstract: It is becoming increasingly common to see large collections of network data objects, that is, data sets in which a network is viewed as a fundamental unit of observation. As a result, there is a pressing need to develop network-based analogues of even many of the most basic tools already standard for scalar and vector data. In this paper, our focus is on averages of unlabeled, undirected networks with edge weights. Specifically, we (i) characterize a certain notion of the space of all such networks, (ii) describe key topological and geometric properties of this space relevant to doing probability and statistics thereupon, and (iii) use these properties to establish the asymptotic behavior of a generalized notion of an empirical mean under sampling from a distribution supported on this space. Our results rely on a combination of tools from geometry, probability theory and statistical shape analysis. In particular, the lack of vertex labeling necessitates working with a quotient space modding out permutations of labels. This results in a nontrivial geometry for the space of unlabeled networks, which in turn is found to have important implications on the types of probabilistic and statistical results that may be obtained and the techniques needed to obtain them. Full Article
f Optimal prediction in the linearly transformed spiked model By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Edgar Dobriban, William Leeb, Amit Singer. Source: The Annals of Statistics, Volume 48, Number 1, 491--513.Abstract: We consider the linearly transformed spiked model , where the observations $Y_{i}$ are noisy linear transforms of unobserved signals of interest $X_{i}$: egin{equation*}Y_{i}=A_{i}X_{i}+varepsilon_{i},end{equation*} for $i=1,ldots ,n$. The transform matrices $A_{i}$ are also observed. We model the unobserved signals (or regression coefficients) $X_{i}$ as vectors lying on an unknown low-dimensional space. Given only $Y_{i}$ and $A_{i}$ how should we predict or recover their values? The naive approach of performing regression for each observation separately is inaccurate due to the large noise level. Instead, we develop optimal methods for predicting $X_{i}$ by “borrowing strength” across the different samples. Our linear empirical Bayes methods scale to large datasets and rely on weak moment assumptions. We show that this model has wide-ranging applications in signal processing, deconvolution, cryo-electron microscopy, and missing data with noise. For missing data, we show in simulations that our methods are more robust to noise and to unequal sampling than well-known matrix completion methods. Full Article
f Efficient estimation of linear functionals of principal components By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Vladimir Koltchinskii, Matthias Löffler, Richard Nickl. Source: The Annals of Statistics, Volume 48, Number 1, 464--490.Abstract: We study principal component analysis (PCA) for mean zero i.i.d. Gaussian observations $X_{1},dots,X_{n}$ in a separable Hilbert space $mathbb{H}$ with unknown covariance operator $Sigma $. The complexity of the problem is characterized by its effective rank $mathbf{r}(Sigma):=frac{operatorname{tr}(Sigma)}{|Sigma |}$, where $mathrm{tr}(Sigma)$ denotes the trace of $Sigma $ and $|Sigma|$ denotes its operator norm. We develop a method of bias reduction in the problem of estimation of linear functionals of eigenvectors of $Sigma $. Under the assumption that $mathbf{r}(Sigma)=o(n)$, we establish the asymptotic normality and asymptotic properties of the risk of the resulting estimators and prove matching minimax lower bounds, showing their semiparametric optimality. Full Article
f Uniformly valid confidence intervals post-model-selection By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST François Bachoc, David Preinerstorfer, Lukas Steinberger. Source: The Annals of Statistics, Volume 48, Number 1, 440--463.Abstract: We suggest general methods to construct asymptotically uniformly valid confidence intervals post-model-selection. The constructions are based on principles recently proposed by Berk et al. ( Ann. Statist. 41 (2013) 802–837). In particular, the candidate models used can be misspecified, the target of inference is model-specific, and coverage is guaranteed for any data-driven model selection procedure. After developing a general theory, we apply our methods to practically important situations where the candidate set of models, from which a working model is selected, consists of fixed design homoskedastic or heteroskedastic linear models, or of binary regression models with general link functions. In an extensive simulation study, we find that the proposed confidence intervals perform remarkably well, even when compared to existing methods that are tailored only for specific model selection procedures. Full Article
f Consistent selection of the number of change-points via sample-splitting By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Changliang Zou, Guanghui Wang, Runze Li. Source: The Annals of Statistics, Volume 48, Number 1, 413--439.Abstract: In multiple change-point analysis, one of the major challenges is to estimate the number of change-points. Most existing approaches attempt to minimize a Schwarz information criterion which balances a term quantifying model fit with a penalization term accounting for model complexity that increases with the number of change-points and limits overfitting. However, different penalization terms are required to adapt to different contexts of multiple change-point problems and the optimal penalization magnitude usually varies from the model and error distribution. We propose a data-driven selection criterion that is applicable to most kinds of popular change-point detection methods, including binary segmentation and optimal partitioning algorithms. The key idea is to select the number of change-points that minimizes the squared prediction error, which measures the fit of a specified model for a new sample. We develop a cross-validation estimation scheme based on an order-preserved sample-splitting strategy, and establish its asymptotic selection consistency under some mild conditions. Effectiveness of the proposed selection criterion is demonstrated on a variety of numerical experiments and real-data examples. Full Article
f Concentration and consistency results for canonical and curved exponential-family models of random graphs By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Michael Schweinberger, Jonathan Stewart. Source: The Annals of Statistics, Volume 48, Number 1, 374--396.Abstract: Statistical inference for exponential-family models of random graphs with dependent edges is challenging. We stress the importance of additional structure and show that additional structure facilitates statistical inference. A simple example of a random graph with additional structure is a random graph with neighborhoods and local dependence within neighborhoods. We develop the first concentration and consistency results for maximum likelihood and $M$-estimators of a wide range of canonical and curved exponential-family models of random graphs with local dependence. All results are nonasymptotic and applicable to random graphs with finite populations of nodes, although asymptotic consistency results can be obtained as well. In addition, we show that additional structure can facilitate subgraph-to-graph estimation, and present concentration results for subgraph-to-graph estimators. As an application, we consider popular curved exponential-family models of random graphs, with local dependence induced by transitivity and parameter vectors whose dimensions depend on the number of nodes. Full Article
f The multi-armed bandit problem: An efficient nonparametric solution By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Hock Peng Chan. Source: The Annals of Statistics, Volume 48, Number 1, 346--373.Abstract: Lai and Robbins ( Adv. in Appl. Math. 6 (1985) 4–22) and Lai ( Ann. Statist. 15 (1987) 1091–1114) provided efficient parametric solutions to the multi-armed bandit problem, showing that arm allocation via upper confidence bounds (UCB) achieves minimum regret. These bounds are constructed from the Kullback–Leibler information of the reward distributions, estimated from specified parametric families. In recent years, there has been renewed interest in the multi-armed bandit problem due to new applications in machine learning algorithms and data analytics. Nonparametric arm allocation procedures like $epsilon $-greedy, Boltzmann exploration and BESA were studied, and modified versions of the UCB procedure were also analyzed under nonparametric settings. However, unlike UCB these nonparametric procedures are not efficient under general parametric settings. In this paper, we propose efficient nonparametric procedures. Full Article
f Testing for principal component directions under weak identifiability By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Davy Paindaveine, Julien Remy, Thomas Verdebout. Source: The Annals of Statistics, Volume 48, Number 1, 324--345.Abstract: We consider the problem of testing, on the basis of a $p$-variate Gaussian random sample, the null hypothesis $mathcal{H}_{0}:oldsymbol{ heta}_{1}=oldsymbol{ heta}_{1}^{0}$ against the alternative $mathcal{H}_{1}:oldsymbol{ heta}_{1} eq oldsymbol{ heta}_{1}^{0}$, where $oldsymbol{ heta}_{1}$ is the “first” eigenvector of the underlying covariance matrix and $oldsymbol{ heta}_{1}^{0}$ is a fixed unit $p$-vector. In the classical setup where eigenvalues $lambda_{1}>lambda_{2}geq cdots geq lambda_{p}$ are fixed, the Anderson ( Ann. Math. Stat. 34 (1963) 122–148) likelihood ratio test (LRT) and the Hallin, Paindaveine and Verdebout ( Ann. Statist. 38 (2010) 3245–3299) Le Cam optimal test for this problem are asymptotically equivalent under the null hypothesis, hence also under sequences of contiguous alternatives. We show that this equivalence does not survive asymptotic scenarios where $lambda_{n1}/lambda_{n2}=1+O(r_{n})$ with $r_{n}=O(1/sqrt{n})$. For such scenarios, the Le Cam optimal test still asymptotically meets the nominal level constraint, whereas the LRT severely overrejects the null hypothesis. Consequently, the former test should be favored over the latter one whenever the two largest sample eigenvalues are close to each other. By relying on the Le Cam’s asymptotic theory of statistical experiments, we study the non-null and optimality properties of the Le Cam optimal test in the aforementioned asymptotic scenarios and show that the null robustness of this test is not obtained at the expense of power. Our asymptotic investigation is extensive in the sense that it allows $r_{n}$ to converge to zero at an arbitrary rate. While we restrict to single-spiked spectra of the form $lambda_{n1}>lambda_{n2}=cdots =lambda_{np}$ to make our results as striking as possible, we extend our results to the more general elliptical case. Finally, we present an illustrative real data example. Full Article
f Bootstrap confidence regions based on M-estimators under nonstandard conditions By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Stephen M. S. Lee, Puyudi Yang. Source: The Annals of Statistics, Volume 48, Number 1, 274--299.Abstract: Suppose that a confidence region is desired for a subvector $ heta $ of a multidimensional parameter $xi =( heta ,psi )$, based on an M-estimator $hat{xi }_{n}=(hat{ heta }_{n},hat{psi }_{n})$ calculated from a random sample of size $n$. Under nonstandard conditions $hat{xi }_{n}$ often converges at a nonregular rate $r_{n}$, in which case consistent estimation of the distribution of $r_{n}(hat{ heta }_{n}- heta )$, a pivot commonly chosen for confidence region construction, is most conveniently effected by the $m$ out of $n$ bootstrap. The above choice of pivot has three drawbacks: (i) the shape of the region is either subjectively prescribed or controlled by a computationally intensive depth function; (ii) the region is not transformation equivariant; (iii) $hat{xi }_{n}$ may not be uniquely defined. To resolve the above difficulties, we propose a one-dimensional pivot derived from the criterion function, and prove that its distribution can be consistently estimated by the $m$ out of $n$ bootstrap, or by a modified version of the perturbation bootstrap. This leads to a new method for constructing confidence regions which are transformation equivariant and have shapes driven solely by the criterion function. A subsampling procedure is proposed for selecting $m$ in practice. Empirical performance of the new method is illustrated with examples drawn from different nonstandard M-estimation settings. Extension of our theory to row-wise independent triangular arrays is also explored. Full Article
f Statistical inference for model parameters in stochastic gradient descent By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Xi Chen, Jason D. Lee, Xin T. Tong, Yichen Zhang. Source: The Annals of Statistics, Volume 48, Number 1, 251--273.Abstract: The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing works focus on the convergence of the objective function or the error of the obtained solution, we investigate the problem of statistical inference of true model parameters based on SGD when the population loss function is strongly convex and satisfies certain smoothness conditions. Our main contributions are twofold. First, in the fixed dimension setup, we propose two consistent estimators of the asymptotic covariance of the average iterate from SGD: (1) a plug-in estimator, and (2) a batch-means estimator, which is computationally more efficient and only uses the iterates from SGD. Both proposed estimators allow us to construct asymptotically exact confidence intervals and hypothesis tests. Second, for high-dimensional linear regression, using a variant of the SGD algorithm, we construct a debiased estimator of each regression coefficient that is asymptotically normal. This gives a one-pass algorithm for computing both the sparse regression coefficients and confidence intervals, which is computationally attractive and applicable to online data. Full Article
f Spectral and matrix factorization methods for consistent community detection in multi-layer networks By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Subhadeep Paul, Yuguo Chen. Source: The Annals of Statistics, Volume 48, Number 1, 230--250.Abstract: We consider the problem of estimating a consensus community structure by combining information from multiple layers of a multi-layer network using methods based on the spectral clustering or a low-rank matrix factorization. As a general theme, these “intermediate fusion” methods involve obtaining a low column rank matrix by optimizing an objective function and then using the columns of the matrix for clustering. However, the theoretical properties of these methods remain largely unexplored. In the absence of statistical guarantees on the objective functions, it is difficult to determine if the algorithms optimizing the objectives will return good community structures. We investigate the consistency properties of the global optimizer of some of these objective functions under the multi-layer stochastic blockmodel. For this purpose, we derive several new asymptotic results showing consistency of the intermediate fusion techniques along with the spectral clustering of mean adjacency matrix under a high dimensional setup, where the number of nodes, the number of layers and the number of communities of the multi-layer graph grow. Our numerical study shows that the intermediate fusion techniques outperform late fusion methods, namely spectral clustering on aggregate spectral kernel and module allegiance matrix in sparse networks, while they outperform the spectral clustering of mean adjacency matrix in multi-layer networks that contain layers with both homophilic and heterophilic communities. Full Article
f Adaptive risk bounds in univariate total variation denoising and trend filtering By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Adityanand Guntuboyina, Donovan Lieu, Sabyasachi Chatterjee, Bodhisattva Sen. Source: The Annals of Statistics, Volume 48, Number 1, 205--229.Abstract: We study trend filtering, a relatively recent method for univariate nonparametric regression. For a given integer $rgeq1$, the $r$th order trend filtering estimator is defined as the minimizer of the sum of squared errors when we constrain (or penalize) the sum of the absolute $r$th order discrete derivatives of the fitted function at the design points. For $r=1$, the estimator reduces to total variation regularization which has received much attention in the statistics and image processing literature. In this paper, we study the performance of the trend filtering estimator for every $rgeq1$, both in the constrained and penalized forms. Our main results show that in the strong sparsity setting when the underlying function is a (discrete) spline with few “knots,” the risk (under the global squared error loss) of the trend filtering estimator (with an appropriate choice of the tuning parameter) achieves the parametric $n^{-1}$-rate, up to a logarithmic (multiplicative) factor. Our results therefore provide support for the use of trend filtering, for every $rgeq1$, in the strong sparsity setting. Full Article
f Optimal rates for community estimation in the weighted stochastic block model By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Min Xu, Varun Jog, Po-Ling Loh. Source: The Annals of Statistics, Volume 48, Number 1, 183--204.Abstract: Community identification in a network is an important problem in fields such as social science, neuroscience and genetics. Over the past decade, stochastic block models (SBMs) have emerged as a popular statistical framework for this problem. However, SBMs have an important limitation in that they are suited only for networks with unweighted edges; in various scientific applications, disregarding the edge weights may result in a loss of valuable information. We study a weighted generalization of the SBM, in which observations are collected in the form of a weighted adjacency matrix and the weight of each edge is generated independently from an unknown probability density determined by the community membership of its endpoints. We characterize the optimal rate of misclustering error of the weighted SBM in terms of the Renyi divergence of order 1/2 between the weight distributions of within-community and between-community edges, substantially generalizing existing results for unweighted SBMs. Furthermore, we present a computationally tractable algorithm based on discretization that achieves the optimal error rate. Our method is adaptive in the sense that the algorithm, without assuming knowledge of the weight densities, performs as well as the best algorithm that knows the weight densities. Full Article
f New $G$-formula for the sequential causal effect and blip effect of treatment in sequential causal inference By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Xiaoqin Wang, Li Yin. Source: The Annals of Statistics, Volume 48, Number 1, 138--160.Abstract: In sequential causal inference, two types of causal effects are of practical interest, namely, the causal effect of the treatment regime (called the sequential causal effect) and the blip effect of treatment on the potential outcome after the last treatment. The well-known $G$-formula expresses these causal effects in terms of the standard parameters. In this article, we obtain a new $G$-formula that expresses these causal effects in terms of the point observable effects of treatments similar to treatment in the framework of single-point causal inference. Based on the new $G$-formula, we estimate these causal effects by maximum likelihood via point observable effects with methods extended from single-point causal inference. We are able to increase precision of the estimation without introducing biases by an unsaturated model imposing constraints on the point observable effects. We are also able to reduce the number of point observable effects in the estimation by treatment assignment conditions. Full Article
f Rerandomization in $2^{K}$ factorial experiments By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Xinran Li, Peng Ding, Donald B. Rubin. Source: The Annals of Statistics, Volume 48, Number 1, 43--63.Abstract: With many pretreatment covariates and treatment factors, the classical factorial experiment often fails to balance covariates across multiple factorial effects simultaneously. Therefore, it is intuitive to restrict the randomization of the treatment factors to satisfy certain covariate balance criteria, possibly conforming to the tiers of factorial effects and covariates based on their relative importances. This is rerandomization in factorial experiments. We study the asymptotic properties of this experimental design under the randomization inference framework without imposing any distributional or modeling assumptions of the covariates and outcomes. We derive the joint asymptotic sampling distribution of the usual estimators of the factorial effects, and show that it is symmetric, unimodal and more “concentrated” at the true factorial effects under rerandomization than under the classical factorial experiment. We quantify this advantage of rerandomization using the notions of “central convex unimodality” and “peakedness” of the joint asymptotic sampling distribution. We also construct conservative large-sample confidence sets for the factorial effects. Full Article
f The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Emmanuel J. Candès, Pragya Sur. Source: The Annals of Statistics, Volume 48, Number 1, 27--42.Abstract: This paper rigorously establishes that the existence of the maximum likelihood estimate (MLE) in high-dimensional logistic regression models with Gaussian covariates undergoes a sharp “phase transition.” We introduce an explicit boundary curve $h_{mathrm{MLE}}$, parameterized by two scalars measuring the overall magnitude of the unknown sequence of regression coefficients, with the following property: in the limit of large sample sizes $n$ and number of features $p$ proportioned in such a way that $p/n ightarrow kappa $, we show that if the problem is sufficiently high dimensional in the sense that $kappa >h_{mathrm{MLE}}$, then the MLE does not exist with probability one. Conversely, if $kappa <h_{mathrm{MLE}}$, the MLE asymptotically exists with probability one. Full Article
f Two-step semiparametric empirical likelihood inference By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Francesco Bravo, Juan Carlos Escanciano, Ingrid Van Keilegom. Source: The Annals of Statistics, Volume 48, Number 1, 1--26.Abstract: In both parametric and certain nonparametric statistical models, the empirical likelihood ratio satisfies a nonparametric version of Wilks’ theorem. For many semiparametric models, however, the commonly used two-step (plug-in) empirical likelihood ratio is not asymptotically distribution-free, that is, its asymptotic distribution contains unknown quantities, and hence Wilks’ theorem breaks down. This article suggests a general approach to restore Wilks’ phenomenon in two-step semiparametric empirical likelihood inferences. The main insight consists in using as the moment function in the estimating equation the influence function of the plug-in sample moment. The proposed method is general; it leads to a chi-squared limiting distribution with known degrees of freedom; it is efficient; it does not require undersmoothing; and it is less sensitive to the first-step than alternative methods, which is particularly appealing for high-dimensional settings. Several examples and simulation studies illustrate the general applicability of the procedure and its excellent finite sample performance relative to competing methods. Full Article
f Detecting relevant changes in the mean of nonstationary processes—A mass excess approach By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Holger Dette, Weichi Wu. Source: The Annals of Statistics, Volume 47, Number 6, 3578--3608.Abstract: This paper considers the problem of testing if a sequence of means $(mu_{t})_{t=1,ldots ,n}$ of a nonstationary time series $(X_{t})_{t=1,ldots ,n}$ is stable in the sense that the difference of the means $mu_{1}$ and $mu_{t}$ between the initial time $t=1$ and any other time is smaller than a given threshold, that is $|mu_{1}-mu_{t}|leq c$ for all $t=1,ldots ,n$. A test for hypotheses of this type is developed using a bias corrected monotone rearranged local linear estimator and asymptotic normality of the corresponding test statistic is established. As the asymptotic variance depends on the location of the roots of the equation $|mu_{1}-mu_{t}|=c$ a new bootstrap procedure is proposed to obtain critical values and its consistency is established. As a consequence we are able to quantitatively describe relevant deviations of a nonstationary sequence from its initial value. The results are illustrated by means of a simulation study and by analyzing data examples. Full Article
f Intrinsic Riemannian functional data analysis By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Zhenhua Lin, Fang Yao. Source: The Annals of Statistics, Volume 47, Number 6, 3533--3577.Abstract: In this work we develop a novel and foundational framework for analyzing general Riemannian functional data, in particular a new development of tensor Hilbert spaces along curves on a manifold. Such spaces enable us to derive Karhunen–Loève expansion for Riemannian random processes. This framework also features an approach to compare objects from different tensor Hilbert spaces, which paves the way for asymptotic analysis in Riemannian functional data analysis. Built upon intrinsic geometric concepts such as vector field, Levi-Civita connection and parallel transport on Riemannian manifolds, the developed framework applies to not only Euclidean submanifolds but also manifolds without a natural ambient space. As applications of this framework, we develop intrinsic Riemannian functional principal component analysis (iRFPCA) and intrinsic Riemannian functional linear regression (iRFLR) that are distinct from their traditional and ambient counterparts. We also provide estimation procedures for iRFPCA and iRFLR, and investigate their asymptotic properties within the intrinsic geometry. Numerical performance is illustrated by simulated and real examples. Full Article
f Tracy–Widom limit for Kendall’s tau By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Zhigang Bao. Source: The Annals of Statistics, Volume 47, Number 6, 3504--3532.Abstract: In this paper, we study a high-dimensional random matrix model from nonparametric statistics called the Kendall rank correlation matrix, which is a natural multivariate extension of the Kendall rank correlation coefficient. We establish the Tracy–Widom law for its largest eigenvalue. It is the first Tracy–Widom law for a nonparametric random matrix model, and also the first Tracy–Widom law for a high-dimensional U-statistic. Full Article
f Joint convergence of sample autocovariance matrices when $p/n o 0$ with application By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Monika Bhattacharjee, Arup Bose. Source: The Annals of Statistics, Volume 47, Number 6, 3470--3503.Abstract: Consider a high-dimensional linear time series model where the dimension $p$ and the sample size $n$ grow in such a way that $p/n o 0$. Let $hat{Gamma }_{u}$ be the $u$th order sample autocovariance matrix. We first show that the LSD of any symmetric polynomial in ${hat{Gamma }_{u},hat{Gamma }_{u}^{*},ugeq 0}$ exists under independence and moment assumptions on the driving sequence together with weak assumptions on the coefficient matrices. This LSD result, with some additional effort, implies the asymptotic normality of the trace of any polynomial in ${hat{Gamma }_{u},hat{Gamma }_{u}^{*},ugeq 0}$. We also study similar results for several independent MA processes. We show applications of the above results to statistical inference problems such as in estimation of the unknown order of a high-dimensional MA process and in graphical and significance tests for hypotheses on coefficient matrices of one or several such independent processes. Full Article
f Bootstrapping and sample splitting for high-dimensional, assumption-lean inference By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Alessandro Rinaldo, Larry Wasserman, Max G’Sell. Source: The Annals of Statistics, Volume 47, Number 6, 3438--3469.Abstract: Several new methods have been recently proposed for performing valid inference after model selection. An older method is sample splitting: use part of the data for model selection and the rest for inference. In this paper, we revisit sample splitting combined with the bootstrap (or the Normal approximation). We show that this leads to a simple, assumption-lean approach to inference and we establish results on the accuracy of the method. In fact, we find new bounds on the accuracy of the bootstrap and the Normal approximation for general nonlinear parameters with increasing dimension which we then use to assess the accuracy of regression inference. We define new parameters that measure variable importance and that can be inferred with greater accuracy than the usual regression coefficients. Finally, we elucidate an inference-prediction trade-off: splitting increases the accuracy and robustness of inference but can decrease the accuracy of the predictions. Full Article
f Minimax posterior convergence rates and model selection consistency in high-dimensional DAG models based on sparse Cholesky factors By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Kyoungjae Lee, Jaeyong Lee, Lizhen Lin. Source: The Annals of Statistics, Volume 47, Number 6, 3413--3437.Abstract: In this paper we study the high-dimensional sparse directed acyclic graph (DAG) models under the empirical sparse Cholesky prior. Among our results, strong model selection consistency or graph selection consistency is obtained under more general conditions than those in the existing literature. Compared to Cao, Khare and Ghosh [ Ann. Statist. (2019) 47 319–348], the required conditions are weakened in terms of the dimensionality, sparsity and lower bound of the nonzero elements in the Cholesky factor. Furthermore, our result does not require the irrepresentable condition, which is necessary for Lasso-type methods. We also derive the posterior convergence rates for precision matrices and Cholesky factors with respect to various matrix norms. The obtained posterior convergence rates are the fastest among those of the existing Bayesian approaches. In particular, we prove that our posterior convergence rates for Cholesky factors are the minimax or at least nearly minimax depending on the relative size of true sparseness for the entire dimension. The simulation study confirms that the proposed method outperforms the competing methods. Full Article
f On testing for high-dimensional white noise By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Zeng Li, Clifford Lam, Jianfeng Yao, Qiwei Yao. Source: The Annals of Statistics, Volume 47, Number 6, 3382--3412.Abstract: Testing for white noise is a classical yet important problem in statistics, especially for diagnostic checks in time series modeling and linear regression. For high-dimensional time series in the sense that the dimension $p$ is large in relation to the sample size $T$, the popular omnibus tests including the multivariate Hosking and Li–McLeod tests are extremely conservative, leading to substantial power loss. To develop more relevant tests for high-dimensional cases, we propose a portmanteau-type test statistic which is the sum of squared singular values of the first $q$ lagged sample autocovariance matrices. It, therefore, encapsulates all the serial correlations (up to the time lag $q$) within and across all component series. Using the tools from random matrix theory and assuming both $p$ and $T$ diverge to infinity, we derive the asymptotic normality of the test statistic under both the null and a specific VMA(1) alternative hypothesis. As the actual implementation of the test requires the knowledge of three characteristic constants of the population cross-sectional covariance matrix and the value of the fourth moment of the standardized innovations, nontrivial estimations are proposed for these parameters and their integration leads to a practically usable test. Extensive simulation confirms the excellent finite-sample performance of the new test with accurate size and satisfactory power for a large range of finite $(p,T)$ combinations, therefore, ensuring wide applicability in practice. In particular, the new tests are consistently superior to the traditional Hosking and Li–McLeod tests. Full Article