pp

Jennifer Lopez Is Wearing the Hell Out of These $60 Sneakers—and You Can Buy Them at Zappos

The chic sneaks are part of Zappos' massive Cyber Monday sale.




pp

Jennifer Lopez Just Stepped Out in These Glittery Leggings (Again)—and We Found Them on Sale

They’re already going out of stock.




pp

Shoppers Swear These $30 Colorfulkoala Leggings Are the Ultimate Lululemon Dupes

And they’re available in 19 fun prints.




pp

Axonal ramifications of hippocampal Ca1 pyramidal cells

WD Knowles
Nov 1, 1981; 1:1236-1241
Articles




pp

Microglia Actively Remodel Adult Hippocampal Neurogenesis through the Phagocytosis Secretome

Irune Diaz-Aparicio
Feb 12, 2020; 40:1453-1482
Development Plasticity Repair




pp

Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry

Brian Zingg
Apr 15, 2020; 40:3250-3267
Systems/Circuits




pp

Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat

Jozsef Csicsvari
Jan 1, 1999; 19:274-287
Articles




pp

Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons

RJ Wenthold
Mar 15, 1996; 16:1982-1989
Articles




pp

Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model

Xiao-Jing Wang
Oct 15, 1996; 16:6402-6413
Articles




pp

Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation [published erratum appears in J Neurosci 1992 Aug;1

KM Harris
Jul 1, 1992; 12:2685-2705
Articles




pp

Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics

KM Harris
Aug 1, 1989; 9:2982-2997
Articles




pp

The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells

RU Muller
Jul 1, 1987; 7:1951-1968
Articles




pp

Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease

Randy L. Buckner
Feb 11, 2009; 29:1860-1873
Neurobiology of Disease




pp

Quantitative Ultrastructural Analysis of Hippocampal Excitatory Synapses

Thomas Schikorski
Aug 1, 1997; 17:5858-5867
Articles




pp

Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat

A Bragin
Jan 1, 1995; 15:47-60
Articles




pp

Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type

Guo-qiang Bi
Dec 15, 1998; 18:10464-10472
Articles




pp

The establishment of polarity by hippocampal neurons in culture

CG Dotti
Apr 1, 1988; 8:1454-1468
Articles




pp

Bigtech nel settore finanziario: opportunità e rischi

Italian version of BIS Press Release - Big tech in finance: opportunities and risks, 23 June 2019




pp

Rapport trimestriel BRI, mars 2018

French translation of the BIS Quarterly Review, March 2018




pp

Rapport trimestriel BRI, mars 2018 - La volatilité revient sur le devant de la scène après les tensions sur les marchés d'actions

French translation of the BIS press release about the BIS Quarterly Review, March 2018




pp

Rapport trimestriel BRI, juin 2018

French translation of the BIS Quarterly Review, June 2018




pp

Rapport économique annuel 2018

French translation of the Annual Economic Report 2018 of the BIS, June 2018 - Les responsables des politiques publiques peuvent prolonger la phase de croissance actuelle en engageant des réformes structurelles, en restaurant les marges de manœuvre monétaires et budgétaires pour faire face aux menaces futures et en encourageant une mise en œuvre rapide des réformes réglementaires, indique la Banque des Règlements Internationaux (BRI) dans son Rapport économique annuel.




pp

Les divergences s'accroissent sur les marchés : Rapport trimestriel de la BRI

French translation of the BIS press release about the BIS Quarterly Review, September 2018




pp

Rapport trimestriel BRI, septembre 2018

French translation of the BIS Quarterly Review, September 2018




pp

De nouveaux à-coups sur le chemin de la normalisation - Rapport trimestriel de la BRI

French translation of the BIS press release about the BIS Quarterly Review, December 2018




pp

Rapport trimestriel BRI, décembre 2018

French translation of the BIS Quarterly Review, December 2018




pp

Le Rapport trimestriel de la BRI analyse le repli et le rebond des marchés

French translation of the BIS press release about the BIS Quarterly Review, March 2019




pp

Rapport trimestriel BRI, mars 2019

French translation of the BIS Quarterly Review, March 2019




pp

Les Big Tech dans la finance : opportunités et risques

French version of BIS Press Release - Big tech in finance: opportunities and risks, 23 June 2019




pp

Rapport économique annuel de la BRI : Il est temps d'allumer tous les moteurs

French translation of the BIS press release on the presentation of the Annual Economic Report 2019, 30 June 2019. La politique monétaire ne peut plus être le principal moteur de la croissance économique, et d'autres leviers de politique publique doivent être actionnés pour faire en sorte que l'économie mondiale connaisse une dynamique durable ...




pp

Happy Donovan - :lumpen:






pp

Academy comments on government support for entrepreneurs




pp

New Engineering X Pandemic Preparedness programme to support global innovation and knowledge sharing




pp

UK Rejects Apple-Google Contact Tracing Approach

The UK's plans to launch a smartphone application to track potential COVID-19 infections won't include Apple and Google. The country's National Health Service has designed its own mobile software to do contact tracing of people exposed to the coronavirus. The NHS reportedly found that its own tech works "sufficiently well." The NHS chose a centralized model for its data collection and storage.




pp

Merchants Now Can List Products on Google Shopping for Free

Merchants soon will be able to sell products on Google Shopping at no charge. Previously, they had to pay per click, but the cost was not fixed. There was no minimum, but they had to set a maximum for ad spend and Google would stop displaying their ads once the maximum was reached. Starting next week, search results on the Google Shopping tab will consist primarily of free product listings.




pp

Donations Dropped 11% at Nation's Biggest Charities Last Year




pp

RFK in the Land of Apartheid: A Ripple of Hope




pp

Shipping Information





pp

Interneuron NMDA Receptor Ablation Induces Hippocampus-Prefrontal Cortex Functional Hypoconnectivity after Adolescence in a Mouse Model of Schizophrenia

Although the etiology of schizophrenia is still unknown, it is accepted to be a neurodevelopmental disorder that results from the interaction of genetic vulnerabilities and environmental insults. Although schizophrenia's pathophysiology is still unclear, postmortem studies point toward a dysfunction of cortical interneurons as a central element. It has been suggested that alterations in parvalbumin-positive interneurons in schizophrenia are the consequence of a deficient signaling through NMDARs. Animal studies demonstrated that early postnatal ablation of the NMDAR in corticolimbic interneurons induces neurobiochemical, physiological, behavioral, and epidemiological phenotypes related to schizophrenia. Notably, the behavioral abnormalities emerge only after animals complete their maturation during adolescence and are absent if the NMDAR is deleted during adulthood. This suggests that interneuron dysfunction must interact with development to impact on behavior. Here, we assess in vivo how an early NMDAR ablation in corticolimbic interneurons impacts on mPFC and ventral hippocampus functional connectivity before and after adolescence. In juvenile male mice, NMDAR ablation results in several pathophysiological traits, including increased cortical activity and decreased entrainment to local gamma and distal hippocampal theta rhythms. In addition, adult male KO mice showed reduced ventral hippocampus-mPFC-evoked potentials and an augmented low-frequency stimulation LTD of the pathway, suggesting that there is a functional disconnection between both structures in adult KO mice. Our results demonstrate that early genetic abnormalities in interneurons can interact with postnatal development during adolescence, triggering pathophysiological mechanisms related to schizophrenia that exceed those caused by NMDAR interneuron hypofunction alone.

SIGNIFICANCE STATEMENT NMDAR hypofunction in cortical interneurons has been linked to schizophrenia pathophysiology. How a dysfunction of GABAergic cortical interneurons interacts with maturation during adolescence has not been clarified yet. Here, we demonstrate in vivo that early postnatal ablation of the NMDAR in corticolimbic interneurons results in an overactive but desynchronized PFC before adolescence. Final postnatal maturation during this stage outspreads the impact of the genetic manipulation toward a functional disconnection of the ventral hippocampal-prefrontal pathway, probably as a consequence of an exacerbated propensity toward hippocampal-evoked depotentiation plasticity. Our results demonstrate a complex interaction between genetic and developmental factors affecting cortical interneurons and PFC function.




pp

Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry

Revealing the organization and function of neural circuits is greatly facilitated by viral tools that spread transsynaptically. Adeno-associated virus (AAV) exhibits anterograde transneuronal transport, however, the synaptic specificity of this spread and its broad application within a diverse set of circuits remains to be explored. Here, using anatomic, functional, and molecular approaches, we provide evidence for the preferential transport of AAV1 to postsynaptically connected neurons and reveal its spread is strongly dependent on synaptic transmitter release. In addition to glutamatergic pathways, AAV1 also spreads through GABAergic synapses to both excitatory and inhibitory cell types. We observed little or no transport, however, through neuromodulatory projections (e.g., serotonergic, cholinergic, and noradrenergic). In addition, we found that AAV1 can be transported through long-distance descending projections from various brain regions to effectively transduce spinal cord neurons. Combined with newly designed intersectional and sparse labeling strategies, AAV1 can be applied within a wide variety of pathways to categorize neurons according to their input sources, morphology, and molecular identities. These properties make AAV1 a promising anterograde transsynaptic tool for establishing a comprehensive cell-atlas of the brain, although its capacity for retrograde transport currently limits its use to unidirectional circuits.

SIGNIFICANCE STATEMENT The discovery of anterograde transneuronal spread of AAV1 generates great promise for its application as a unique tool for manipulating input-defined cell populations and mapping their outputs. However, several outstanding questions remain for anterograde transsynaptic approaches in the field: (1) whether AAV1 spreads exclusively or specifically to synaptically connected neurons, and (2) how broad its application could be in various types of neural circuits in the brain. This study provides several lines of evidence in terms of anatomy, functional innervation, and underlying mechanisms, to strongly support that AAV1 anterograde transneuronal spread is highly synapse specific. In addition, several potentially important applications of transsynaptic AAV1 in probing neural circuits are described.




pp

Ventral Hippocampal Input to the Prelimbic Cortex Dissociates the Context from the Cue Association in Trace Fear Memory

The PFC, through its high degree of interconnectivity with cortical and subcortical brain areas, mediates cognitive and emotional processes in support of adaptive behaviors. This includes the formation of fear memories when the anticipation of threat demands learning about temporal or contextual cues, as in trace fear conditioning. In this variant of fear learning, the association of a cue and shock across an empty trace interval of several seconds requires sustained cue-elicited firing in the prelimbic cortex (PL). However, it is unknown how and when distinct PL afferents contribute to different associative components of memory. Among the prominent inputs to PL, the hippocampus shares with PL a role in both working memory and contextual processing. Here we tested the necessity of direct hippocampal input to the PL for the acquisition of trace-cued fear memory and the simultaneously acquired contextual fear association. Optogenetic silencing of ventral hippocampal (VH) terminals in the PL of adult male Long-Evans rats selectively during paired trials revealed that direct communication between the VH and PL during training is necessary for contextual fear memory, but not for trace-cued fear acquisition. The pattern of the contextual memory deficit and the disruption of local PL firing during optogenetic silencing of VH-PL suggest that the VH continuously updates the PL with the current contextual state of the animal, which, when disrupted during memory acquisition, is detrimental to the subsequent rapid retrieval of aversive contextual associations.

SIGNIFICANCE STATEMENT Learning to anticipate threat from available contextual and discrete cues is crucial for survival. The prelimbic cortex is required for forming fear memories when temporal or contextual complexity is involved, as in trace fear conditioning. However, the respective contribution of distinct prelimbic afferents to the temporal and contextual components of memory is not known. We report that direct input from the ventral hippocampus enables the formation of the contextual, but not trace-cued, fear memory necessary for the subsequent rapid expression of a fear response. This finding dissociates the contextual and working-memory contributions of prelimbic cortex to the formation of a fear memory and demonstrates the crucial role for hippocampal input in contextual fear learning.




pp

The Firing of Theta State-Related Septal Cholinergic Neurons Disrupt Hippocampal Ripple Oscillations via Muscarinic Receptors

The septo-hippocampal cholinergic system is critical for hippocampal learning and memory. However, a quantitative description of the in vivo firing patterns and physiological function of medial septal (MS) cholinergic neurons is still missing. In this study, we combined optogenetics with multichannel in vivo recording and recorded MS cholinergic neuron firings in freely behaving male mice for 5.5–72 h. We found that their firing activities were highly correlated with hippocampal theta states. MS cholinergic neurons were highly active during theta-dominant epochs, such as active exploration and rapid eye movement sleep, but almost silent during non-theta epochs, such as slow-wave sleep (SWS). Interestingly, optogenetic activation of these MS cholinergic neurons during SWS suppressed CA1 ripple oscillations. This suppression could be rescued by muscarinic M2 or M4 receptor antagonists. These results suggest the following important physiological function of MS cholinergic neurons: maintaining high hippocampal acetylcholine level by persistent firing during theta epochs, consequently suppressing ripples and allowing theta oscillations to dominate.

SIGNIFICANCE STATEMENT The major source of acetylcholine in the hippocampus comes from the medial septum. Early experiments found that lesions to the MS result in the disappearance of hippocampal theta oscillation, which leads to speculation that the septo-hippocampal cholinergic projection contributing to theta oscillation. In this article, by long-term recording of MS cholinergic neurons, we found that they show a theta state-related firing pattern. However, optogenetically activating these neurons shows little effect on theta rhythm in the hippocampus. Instead, we found that activating MS cholinergic neurons during slow-wave sleep could suppress hippocampal ripple oscillations. This suppression is mediated by muscarinic M2 and M4 receptors.




pp

Somatostatin-Expressing Interneurons in the Auditory Cortex Mediate Sustained Suppression by Spectral Surround

Sensory systems integrate multiple stimulus features to generate coherent percepts. Spectral surround suppression, the phenomenon by which sound-evoked responses of auditory neurons are suppressed by stimuli outside their receptive field, is an example of this integration taking place in the auditory system. While this form of global integration is commonly observed in auditory cortical neurons, and potentially used by the nervous system to separate signals from noise, the mechanisms that underlie this suppression of activity are not well understood. We evaluated the contributions to spectral surround suppression of the two most common inhibitory cell types in the cortex, parvalbumin-expressing (PV+) and somatostatin-expressing (SOM+) interneurons, in mice of both sexes. We found that inactivating SOM+ cells, but not PV+ cells, significantly reduces sustained spectral surround suppression in excitatory cells, indicating a dominant causal role for SOM+ cells in the integration of information across multiple frequencies. The similarity of these results to those from other sensory cortices provides evidence of common mechanisms across the cerebral cortex for generating global percepts from separate features.

SIGNIFICANCE STATEMENT To generate coherent percepts, sensory systems integrate simultaneously occurring features of a stimulus, yet the mechanisms by which this integration occurs are not fully understood. Our results show that neurochemically distinct neuronal subtypes in the primary auditory cortex have different contributions to the integration of different frequency components of an acoustic stimulus. Together with findings from other sensory cortices, our results provide evidence of a common mechanism for cortical computations used for global integration of stimulus features.




pp

Ependymal Vps35 Promotes Ependymal Cell Differentiation and Survival, Suppresses Microglial Activation, and Prevents Neonatal Hydrocephalus

Hydrocephalus is a pathologic condition associated with various brain diseases, including Alzheimer's disease (AD). Dysfunctional ependymal cells (EpCs) are believed to contribute to the development of hydrocephalus. It is thus of interest to investigate EpCs' development and function. Here, we report that vacuolar protein sorting-associated protein 35 (VPS35) is critical for EpC differentiation, ciliogenesis, and survival, and thus preventing neonatal hydrocephalus. VPS35 is abundantly expressed in EpCs. Mice with conditional knock-out (cKO) of Vps35 in embryonic (Vps35GFAP-Cre and Vps35Emx1-Cre) or postnatal (Vps35Foxj1-CreER) EpC progenitors exhibit enlarged lateral ventricles (LVs) and hydrocephalus-like pathology. Further studies reveal marked reductions in EpCs and their cilia in both Vps35GFAP-Cre and Vps35Foxj1-CreER mutant mice. The reduced EpCs appear to be due to impairments in EpC differentiation and survival. Additionally, both Vps35GFAP-Cre and Vps35Foxj1-CreER neonatal pups exhibit increased cell proliferation and death largely in a region close to LV-EpCs. Many microglia close to the mutant LV-EpC region become activated. Depletion of the microglia by PLX3397, an antagonist of colony-stimulating factor 1 receptor (CSF1R), restores LV-EpCs and diminishes the pathology of neonatal hydrocephalus in Vps35Foxj1-CreER mice. Taken together, these observations suggest unrecognized functions of Vps35 in EpC differentiation, ciliogenesis, and survival in neonatal LV, and reveal pathologic roles of locally activated microglia in EpC homeostasis and hydrocephalus development.

SIGNIFICANCE STATEMENT This study reports critical functions of vacuolar protein sorting-associated protein 35 (VPS35) not only in promoting ependymal cell (EpC) differentiation, ciliogenesis, and survival, but also in preventing local microglial activation. The dysfunctional EpCs and activated microglia are likely to induce hydrocephalus.




pp

MECP2 Duplication Causes Aberrant GABA Pathways, Circuits and Behaviors in Transgenic Monkeys: Neural Mappings to Patients with Autism

MECP2 gain-of-function and loss-of-function in genetically engineered monkeys recapitulates typical phenotypes in patients with autism, yet where MECP2 mutation affects the monkey brain and whether/how it relates to autism pathology remain unknown. Here we report a combination of gene–circuit–behavior analyses including MECP2 coexpression network, locomotive and cognitive behaviors, and EEG and fMRI findings in 5 MECP2 overexpressed monkeys (Macaca fascicularis; 3 females) and 20 wild-type monkeys (Macaca fascicularis; 11 females). Whole-genome expression analysis revealed MECP2 coexpressed genes significantly enriched in GABA-related signaling pathways, whereby reduced β-synchronization within fronto-parieto-occipital networks was associated with abnormal locomotive behaviors. Meanwhile, MECP2-induced hyperconnectivity in prefrontal and cingulate networks accounted for regressive deficits in reversal learning tasks. Furthermore, we stratified a cohort of 49 patients with autism and 72 healthy controls of 1112 subjects using functional connectivity patterns, and identified dysconnectivity profiles similar to those in monkeys. By establishing a circuit-based construct link between genetically defined models and stratified patients, these results pave new avenues to deconstruct clinical heterogeneity and advance accurate diagnosis in psychiatric disorders.

SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a complex disorder with co-occurring symptoms caused by multiple genetic variations and brain circuit abnormalities. To dissect the gene–circuit–behavior causal chain underlying ASD, animal models are established by manipulating causative genes such as MECP2. However, it is unknown whether such models have captured any circuit-level pathology in ASD patients, as demonstrated by human brain imaging studies. Here, we use transgenic macaques to examine the causal effect of MECP2 overexpression on gene coexpression, brain circuits, and behaviors. For the first time, we demonstrate that the circuit abnormalities linked to MECP2 and autism-like traits in the monkeys can be mapped to a homogeneous ASD subgroup, thereby offering a new strategy to deconstruct clinical heterogeneity in ASD.




pp

M-Current Inhibition in Hippocampal Excitatory Neurons Triggers Intrinsic and Synaptic Homeostatic Responses at Different Temporal Scales

Persistent alterations in neuronal activity elicit homeostatic plastic changes in synaptic transmission and/or intrinsic excitability. However, it is unknown whether these homeostatic processes operate in concert or at different temporal scales to maintain network activity around a set-point value. Here we show that chronic neuronal hyperactivity, induced by M-channel inhibition, triggered intrinsic and synaptic homeostatic plasticity at different timescales in cultured hippocampal pyramidal neurons from mice of either sex. Homeostatic changes of intrinsic excitability occurred at a fast timescale (1–4 h) and depended on ongoing spiking activity. This fast intrinsic adaptation included plastic changes in the threshold current and a distal relocation of FGF14, a protein physically bridging Nav1.6 and Kv7.2 channels along the axon initial segment. In contrast, synaptic adaptations occurred at a slower timescale (~2 d) and involved decreases in miniature EPSC amplitude. To examine how these temporally distinct homeostatic responses influenced hippocampal network activity, we quantified the rate of spontaneous spiking measured by multielectrode arrays at extended timescales. M-Channel blockade triggered slow homeostatic renormalization of the mean firing rate (MFR), concomitantly accompanied by a slow synaptic adaptation. Thus, the fast intrinsic adaptation of excitatory neurons is not sufficient to account for the homeostatic normalization of the MFR. In striking contrast, homeostatic adaptations of intrinsic excitability and spontaneous MFR failed in hippocampal GABAergic inhibitory neurons, which remained hyperexcitable following chronic M-channel blockage. Our results indicate that a single perturbation such as M-channel inhibition triggers multiple homeostatic mechanisms that operate at different timescales to maintain network mean firing rate.

SIGNIFICANCE STATEMENT Persistent alterations in synaptic input elicit homeostatic plastic changes in neuronal activity. Here we show that chronic neuronal hyperexcitability, induced by M-type potassium channel inhibition, triggered intrinsic and synaptic homeostatic plasticity at different timescales in hippocampal excitatory neurons. The data indicate that the fast adaptation of intrinsic excitability depends on ongoing spiking activity but is not sufficient to provide homeostasis of the mean firing rate. Our results show that a single perturbation such as M-channel inhibition can trigger multiple homeostatic processes that operate at different timescales to maintain network mean firing rate.




pp

Help families in the Philippines rebuild their lives – Donate Now!!!

FAO is working to help typhoon-affected farmers to ensure the next harvests in 2014 – You can help as well. Philippine farmers need urgent assistance  to avoid a double tragedy befalling rural survivors of Typhoon Haiyan. The typhoon hit just as farmers were beginning a new planting season, and FAO estimates that over one million farmers have been affected and hundreds of [...]