m

Apparatus and method for producing signals coded with amplitude shift keying

An apparatus for coding a signal by means of amplitude shift keying comprises a class E amplifier including a switching transistor, to whose gate is supplied a voltage having an operating frequency for operating the class E amplifier. For achieving an amplitude shift keying in the output signal of the class E amplifier, a circuit for switching the operating frequency of the voltage supplied to the gate of the switching transistor, or the resonance frequency of the class E amplifier, between a first value and a second value is provided and in order to switch a deviation degree between the operating frequency and the resonance frequency between a first value and a second value.




m

System and method for generating a radio frequency pulse-width modulated signal

In an embodiment, a method of producing a multi-level RF signal includes producing plurality of pulse-width modulated signals based on an input signal. The method further includes driving a corresponding plurality of parallel amplifiers with the plurality of pulse-width modulated signals by setting a parallel amplifier to have a first output impedance when a corresponding pulse-width modulated signal is in an active state and setting the parallel amplifier to have a second output impedance when the corresponding pulse-width is in an inactive state. The method also includes phase shifting the outputs of the plurality of parallel amplifiers, wherein phase shifting transforms the second output impedance into a third impedance that is higher than the second output impedance, and combining the phase shifted outputs.




m

Transmission device, reception device, transmission method and reception method for wireless communication system

A transmission device for transmitting a signal in a wireless communication system is provided. The transmission device includes: a serial-to-parallel converter configured to convert an input serial bit stream into a parallel bit stream having three bits; and a phase rotation symbol mapper configured to map the parallel bit stream to a symbol having phase rotation characteristics, wherein when the parallel bit stream includes first to third bits, the phase rotation symbol mapper maps the second and third bits to a complex variable and sequentially maps a real number part and an imaginary number part of the complex variable to the front part and the rear part of a symbol in this order or to the rear part and the front part of the symbol in this order.




m

Spread spectrum clocking method for wireless mobile platforms

According to some embodiments, a method and apparatus are provided to vary a clock signal frequency for a first time period between a lower limit of a range of problematic frequencies and a frequency lower than the lower limit, and vary the clock signal frequency for a second period of time between an upper limit of the range of problematic frequencies and a frequency greater than the upper limit.




m

Modulation apparatus for class D switching amplifier

A modulation apparatus for a class D switching amplifier is capable of reducing power consumption of an Electro-Migration Interface (EMI) of an output end and a gate driver end in a zero input signal. The modulation apparatus for a class D switching amplifier includes a control unit for detecting and outputting a control signal which is a common signal component of a first modulation signal modulated by using a first input signal and a second modulation signal modulated by using a second input signal; and is characterized by feedback of a first output signal, a second output signal and a common output signal outputted by using the first modulation signal, the second modulation signal and the control signal through an input of the modulation apparatus.




m

Communications system including jammer using continuous phase modulation (CPM) and associated methods

A communications system includes a target receiver having a passband and configured to receive an intended signal within the passband. The communications system also includes a jammer configured to jam the target receiver from receiving the intended signal. The jammer has at least one antenna, a jammer receiver coupled to the at least one antenna, a jammer transmitter coupled to the at least one antenna, and a controller configured to cooperate with the jammer receiver. The controller is configured to detect the intended signal and to generate an interfering signal comprising a continuous phase modulation (CPM) waveform having a constant envelope so that the interfering signal at least partially overlaps the passband of the target receiver.




m

Signaling and channel estimation for uplink transmit diversity

In a method of transmitting a data stream from a transmitter in a multiple-input-multiple-output (MIMO) wireless communication system, where the transmitter comprises a plurality of transmit antennas, a discrete Fourier transform (DFT) is applied to the data stream to generate a plurality of symbol sequences; symbols of a first symbol sequence from the plurality of symbol sequences are paired with symbols of a second symbol sequence from the plurality of symbol sequences to generate a plurality of symbol pairs, wherein the pairing results in an orphan symbol; a space-time block code (STBC) is applied to the symbol pairs to generate a plurality of sets of STBC symbols, each set of STBC symbols being associated with a corresponding one of the plurality of antennas; a cyclic delay diversity (CDD) operation is applied to the orphan symbol to generate a plurality of CDD symbols, each CDD symbol being associated with a corresponding one of the plurality of antennas; and each one of the antennas transmits the corresponding set of STBC symbols and the corresponding CDD symbol.




m

Method and systems for high-precision pulse-width modulation

In various embodiments, systems and methods for generating high-precision pulse-width modulation include a delay-locked loop comprising multiple delay units having time-variable delays, control logic for selecting a subset S of the multiple delay units to thereby generate a time-invariant shift amount having a precision finer than that of a system clock and circuitry for applying the shift amount to rising and falling edges of a pulse-width modulation waveform to thereby generate a high-precision pulse-width modulation waveform.




m

Modulation method and control device having the same

A modulation method is provided. The modulation method includes the steps of receiving multiple sinusoidal signals, obtaining the maximum value of the sinusoidal signals, obtaining the median value of the sinusoidal signals, and obtaining the minimum value of the sinusoidal signals within a period to generate a difference between the maximum value and the minimum value, generating a difference according to an upper limit and a lower limit of a predetermined comparison value, and comparing the two differences to generate an optimized modulation signal.




m

Ultra-wide band frequency modulator

An ultra-wide band frequency modulator is disclosed. The frequency modulator includes a direct modulation phase lock loop that receives a small component. The frequency modulator also includes a delay module that produces a plurality of delay lines. The frequency modulator further includes an edge selector that receives a large component and the plurality of delay lines.




m

Method and device for digital modulation with low transition density

The present invention relates to a digital modulation method and a corresponding modulator. The modulator comprises a transcoder (110) followed by a FIFO register (120) and a 2-PSK modulator (130). The transcoder codes a binary word of fixed size into a code word of variable size using a transcoding table. The transcoding table codes at least one first binary word, leading to a first number of phase transitions at the output of the modulator, into a second word of size greater than that of the first word, leading to, at the output of the modulator, a second number of phase transitions less than the first number of phase transitions.




m

Digitally controlled wide range pulse width modulator

The present invention provides a digitally controlled, current starved, pulse width modulator (PWM). In the PWM of the present invention, the amount of current from the voltage source to the ring oscillator is controlled by the proposed header circuit. By changing the header current, the pulse width of the switching signal generated at the output of the ring oscillator is dynamically controlled, where the duty cycle can vary between 50% and 90%. A duty cycle to voltage converter is used to ensure the accuracy of the system under process, voltage, and temperature (PVT) variations. The proposed pulse width modulator is appropriate for dynamic voltage scaling systems due to the small on-chip area and high accuracy under process, voltage, and temperature variations.




m

Oscillators having arbitrary frequencies and related systems and methods

Systems and methods for operating with oscillators configured to produce an oscillating signal having an arbitrary frequency are described. The frequency of the oscillating signal may be shifted to remove its arbitrary nature by application of multiple tuning signals or values to the oscillator. Alternatively, the arbitrary frequency may be accommodated by adjusting operation one or more components of a circuit receiving the oscillating signal.




m

Memristor-based emulator for use in digital modulation

A memristor-based emulator including a memristor circuit for use in digital modulation that includes a first current feedback operational amplifier (CFOA) having multiple terminals in communication with a capacitor Cd and in further communication with a resistor Ri. A second CFOA having multiple terminals is in communication with the first CFOA and is adapted to be in further communication with a voltage vM to provide an input current iM for integration by a capacitor Ci. A nonlinear resistor is in communication with the second CFOA. A third CFOA having multiple terminals is in communication with the nonlinear resistor and is in further communication with the first CFOA and a resistor Rd. The third CFOA and the resistor Rd act as an inverting amplifier associated with the nonlinear resistor to increase a current gain to increase a difference between ON and OFF values of a resistance of a realized memristor.




m

Method for the phase modulation of a carrier signal transmitted from a transmitter to a contactless transponder, and device for implementing same

A method for phase modulation of a carrier signal from a transmitter to a contactless transponder in which data is coded as consecutive symbols, each corresponding to a predefined number of carrier cycles, and in which a symbol time is at least two cycles of the carrier signal includes, at the transmitter, spreading a phase jump of a symbol in relation to a preceding symbol over a first part of the symbol time. The establishment of the phase jump is completed in the first part of the symbol time. The periods of the cycles are constant during a second part of the symbol time.




m

PWM signal generating circuit, printer, and PWM signal generating method

A PWM signal generating circuit, printer, and PWM signal generating method are described. The PWM signal generating circuit includes: a single counter configured to count values expressed in N bits; and at least one arithmetic device configured to generate a PWM signal, each of the at least one arithmetic device including a pulse width data storage unit for storing N-bit pulse width data representing a pulse width of the PWM signal to be generated, and an adder for calculating a carry value from a most significant bit obtained when adding the count value and the pulse width data. A signal having a level corresponding to the carry value is output at every change in the count value so that the PWM signal having the pulse width of the pulse width data is generated.




m

ASK modulator and transmitter having the same

A modulator which has a first terminal to receive a carrier signal, a second terminal to receive a first control signal to control a frequency band of the carrier signal and a third terminal to receive a second control signal to control a modulation depth of the carrier signal.




m

Arc chute assembly and method of manufacturing same

An arc chute assembly includes a housing having a first wall, a second wall, and a pair of side walls coupled to the first wall. The walls configured to form an arc area. The housing further having a divider wall coupled to the first wall between the side walls. The divider wall configured to form a first sub-arc area, a second sub-arc area, and an arc plate area. The first sub-arc area and the second sub-arc area are configured to be in flow communication with the arc plate area. The arc chute assembly further comprises a support coupled to the first wall and the side walls, and an arc plate coupled to the support. The arc plate having a body extending between the side walls and over the divider wall.




m

Electromagnetic actuator with magnetic latching and switching device comprising one such actuator

An electromagnetic actuator comprising a core moving between a latched position and an open position, a permanent magnet, a coil designed to generate a first magnetic control flux to move the core from an open position to a latched position, and a second magnetic control flux designed to facilitate movement of the moving core from the latched position to the open position. The permanent magnet is positioned on the moving core so as to be at least partly outside the fixed magnetic circuit in which the first magnetic control flux flows in the open position, and to be at least partly inside the fixed magnetic circuit used for flow of a magnetic polarization flux of the magnet in the latched position.




m

Passive arc management system with a flue chamber

In an electrical distribution cabinet a mechanism providing quick, reliable, passive arc blast control has a flue chamber surrounding the likely arc site such as an electrical connection point. The flue chamber provides a flue channel which lengthens the arc and attenuates the current and temperature until the arc is extinguished. Preferably, the flue chamber and channel are formed of opposable open-faced polyhedral structures, one fitting inside the other. The mechanism is particularly suited for draw-out circuit breaker connections in a switch gear cabinet.




m

Driver for switch in gas insulated switchgear and gas insulated switchgear having the same

A driver for a switch in a GIS (Gas Insulation Switchgear) includes a motor, a shaft connected with a moving contact of the switch, a gear connected with one terminal of the shaft and configured to transfer power of the motor to cause the shaft to reciprocate the moving contact through the shaft, a cam spline combined with the shaft and spaced apart from the gear, and a micro-switch connected with the cam spline and configured to control an operation of the motor.




m

Vacuum interrupter

The present disclosure relates to a vacuum interrupter capable of easily installing a central arc shielding plate in alignment without biasing in a radial direction. The vacuum interrupter includes a protruding guide unit protruding from a stationary electrode seal cup in a perpendicular direction to guide the installation of the central arc shielding plate such that the central arc shielding plate can be aligned in a radial direction.




m

Power transmission device for vacuum interrupter and vacuum breaker having the same

Disclosed are a power transmission device for a vacuum interrupter, and a vacuum breaker having the same. The device includes: a driving link coupled to an adjuster; a driven link coupled to a movable electrode of a vacuum interrupter; connection links configured to connect the driving link and the driven link with each other, and coupled to the driving link and the driven link such that an interval between the driving link and the driven link is varied; cams coupled to the connection links in a perpendicular direction; and cam guides having guide recesses for slidably coupling the cams, and configured to guide the interval between the driving link and the driven link to be changed.




m

Locomotive positive power bus contactor method of assembly

A method of manufacturing a power contactor from an existing contactor having a magnetic amplifier that comprises a blowout coil and a ferromagnetic core, and an arc chute for extinguishing an arc generated by opening the existing contactor under a current load is disclosed. The method includes removing a bolt assembly from the existing contactor and at least one side plate from the existing contactor. The method also includes removing the ferromagnetic core from the existing contactor.




m

Medium-voltage switchgear assembly

The invention relates to a medium voltage switchgear assembly which comprises at least one disconnector and whose drive unit is disposed inside or outside a gas chamber according to the generic part of claim 1. In order to further develop a switchgear assembly of the generic type so as to render the same more compact and more functional, the disconnector is embodied as a three-position vacuum chamber switch.




m

Contact bridge with blow magnets

The present invention relates to contactors for unidirectional DC operation with permanent magnetic arc extinguishing. In addition to the blow magnets, the contactors are equipped with compensatory permanent magnets for compensating the magnetic field in the vicinity of the contact bridge in order to prevent contact levitation, i.e., an uncontrolled opening of the contacts that is due to a magnetic force generated by a strong current flowing through the contact bridge. To this end, the compensatory permanent magnets are arranged in the vicinity of the contact bridge and polarized in the opposite direction of the blow magnets. The magnetic field of the compensatory magnets and the current flowing through the contact bridge are generating a magnetic force that acts on the contact bridge and tends to keep the electrical contacts closed.




m

Arc runner assembly and circuit interrupter

An arc runner assembly for use in a circuit interrupter provides a pair of arc runners that are situated at opposite sides of a stationary contact of the circuit interrupter. If used in a DC application, the arc runner assembly is configured to communicate a positive DC arc along one of the arc runners in a first direction away from the stationary contact and is further configured to communicate a negative DC arc along the other arc runner in another direction away from the stationary contact. The arc runner assembly additionally includes a support that is electrically engaged with a conductor of the circuit interrupter on a surface opposite that on which the stationary contact is disposed. The improved arc runner assembly advantageously facilitates extinction of electrical arc and extinguishes both positive and negative DC arcs in a DC application.




m

Tap changer and vacuum interrupter for such a tap changer

The invention relates to a tap changer for the interruption-free switchover between winding taps of a tap-changing transformer. Furthermore, the present invention relates to a novel vacuum interrupter which is particularly suitable for such a tap changer. The tap changer according to the invention is based on the general concept of combining in each case one main contact (V1) and one mechanical switching means (U1), connected in series therewith, of a first load branch and an additional resistive contact (V3) of a second load branch in only a single vacuum interrupter (1) with a common housing (5). The vacuum interrupter (1) according to the invention is furthermore based on the general inventive concept of replacing the functionalities of two required vacuum interrupters in accordance with the prior art and an additional mechanical switching means with a single vacuum interrupter (1) according to the invention by virtue of combining the design of a vacuum interrupter (1) with a plurality of moveable contact systems (I, II, III), which are arranged in separate vacuum interrupter chambers (2, 3, 4) which are sealed with respect to one another.




m

Medium and high-voltage electric switch with return on closure and an insertion device for inserting a resistance

An electric switch for application to high- and very high-voltage circuit breakers and switches comprising a flexible toroidal helical spring (8) placed in a groove of a control rod (1) carrying a movable resistance-insertion contact (2), and springs (4) placed about the movable resistance-insertion contact to cause the springs to be compressed until a certain value is reached, at which value the movable resistance-insertion contact causes the flexible toroidal helical spring (8) to deform under pressure enabling the movable resistance-insertion contact (2) to be withdrawn. Among other uses, the switch is suitable for use in a resistance-inserting device that does not need additional mechanical moving parts. For application to high- and very high-voltage circuit breakers and switches.




m

Circuit interrupter employing a linear transducer to monitor contact erosion

A circuit interrupter includes, a first contact and a second contact, the second contact being moveable relative to the first contact, a drive assembly structured to move the second contact relative to the first contact, and an erosion monitoring device including a linear transducer coupled to a portion of the drive assembly. The liner transducer is structured to generate an output signal representative of an amount of linear displacement of the portion of the drive assembly, wherein the erosion monitoring device is structured to monitor a degree of erosion of at least one of the first contact and the second contact based on the output signal.




m

Sealed solenoid magnetically operated high voltage electric power switch

A sealed solenoid, magnetically operated electric power switch is suitable for use as capacitor, line and load switch operating at transmission and distribution voltages that includes no dynamically moving seals through the sealed container housing the contactor portion of the switch. The sealed solenoid switch includes a magnetically operated drive system with an actuator that magnetically couples across the container wall to avoid the use of a moving or sliding seal as part of the drive system. The sealed solenoid switch may also include a ballast resistor and resistor contact located inside the sealed container to avoid another seal as part of the ballast system. A magnetic latch holds the switch in a closed position, and a spring holds the switch in the closed position, to avoid the need for an energizing current to maintain the switch in either position.




m

Vacuum circuit breaker

In a vacuum circuit breaker corresponding to three-phase, which is configured by linearly arranging three pressure tanks respectively corresponding to one-phase, in which insulation gas is encapsulated, and a vacuum valve is installed, each pressure tank has a nearly longitudinal shape or a nearly square shape, viewed from a plane surface, and the vacuum valve is arranged in each of the pressure tanks in a state where a drive direction of the movable conductor is aligned with an upper lower direction, and the movable conductor is positioned lower than the vacuum valve, and keeps a sufficient insulation distance with respect to the movable-side connection conductor, and is neared to a position in one of diagonal directions or longitudinal directions of the pressure tank having a nearly square shape or nearly ellipsoidal shape, and moreover, the operation mechanism is arranged and configured at a position, which is lower than the vacuum valve.




m

High voltage relay non mercury

The high voltage relay consists of a main body (1). One set of electrical contacts (2a, 2b) upper and lower respectively. High voltage connections to connect the voltage being switched (3a, 3b) are electrically connected to the upper and lower contacts respectively. Several size options for the electrical contacts will allow for a wide range of currents. A cylinder (4) driven by a fluid (e.g. Air, Nitrogen, Hydraulic fluid) moves the electrical contacts together during the ON state of the device. During the OFF state of the device the cylinder moves the electrical contacts apart to isolate the switch voltage. The greater the High Voltage being switched the greater the distance the electrical contacts must be moved apart in the OFF state. The cylinder is supplied the fluid power from a small solenoid (5) on the device. This solenoid has control voltage connections to actuate the device.




m

Arc chamber for a circuit breaker and circuit breaker having an arc chamber

An arc chamber for a circuit breaker has first and second mounting bodies. The mounting bodies are disposed at the ends of an electrically insulating insulation section of the arc chamber. The insulation section is formed of at least two shell-shaped partial sections. The partial sections are curved concavely relative to a longitudinal axis of the arc chamber. A gap is formed between the edges of the bodies of the partial sections.




m

Arc mitigation assembly and method of assembly to avoid ground strike

A circuit protection device is provided for use with a circuit that includes at least one pair of conductors. The protection device is configured to generate an arc. The protection device includes at least a pair of electrode assemblies electrically coupled to the at least one pair of conductors and a conductor base to support the pair of electrode assemblies. The protection device includes a cover coupled to the conductor base and defining at least one isolation chamber, wherein the electrode assemblies are disposed within the isolation chamber. The protection device includes a containment shield moveably coupled to the cover. The containment shield defines a containment chamber configured to contain charged particles produced by the arc. The containment shield is operative to move relative to the cover in response to a change in pressure produced by the arc within the containment chamber. An isolation assembly is coupled to at least one of the cover and the containment shield and configured to prevent the cover from contacting the containment shield.




m

Sector gear and gas-insulated switchgear having the same

Provided is a sector gear including: a drive gear having a drive part that forms a part of a circle and has a plurality of teeth and a non-drive part that forms a remaining part of the circle and provides a non-contact angle of at least approximately 90 degrees; first and second movers forming a disconnector and a grounded breaking switch, respectively; and first and second driven gears engaged with the drive gear and respectively engaged with the first and second movers and configured to make the first mover or the second mover operate in conjunction with the drive part of the drive gear according to a direction of rotation of the drive gear, wherein an intermediate angle between the first and second movers is between approximately 90-135 degrees. The present invention can reduce the size of the gas-insulated switchgear having the sector gear.




m

Variable venting and damping arc mitigation assemblies and methods of assembly

Equipment protection systems, arc containment devices, and methods of assembling arc containment devices are disclosed. In one example, an electrical isolation structure includes a conductor base, a cover coupled to the conductor base and defining an isolation chamber, a containment shield disposed on the conductor base within the isolation chamber, and a biasing assembly positioned between the cover and the containment shield. The containment shield defines a containment chamber configured to enclose the plurality of electrode assemblies. The containment shield is configured to at least partially contain the arc products within the containment chamber. The biasing assembly is configured to permit the containment shield to move away from the conductor base to thereby define a gap between the conductor base and the containment shield to enable at least some of the arc gases to vent from the containment chamber.




m

Direct overmolding

Disclosed is a curable composition comprising an epoxy resin and a filler composition, a cured product obtained by curing said curable composition as well as the use of the cured products as electrically insulating construction material for electrical or electronic components.




m

High current vacuum interrupter with sectional electrode and multi heat pipes

An electrode assembly for a circuit breaker is provided. The electrode assembly includes a conductive assembly and a heat transfer assembly. The conductive assembly includes a stem portion and a contact portion. The heat transfer assembly includes a number of elongated bodies, a first heat transfer surface, and a second heat transfer surface. The first heat transfer surface is disposed on the conductive assembly. Each heat transfer assembly body includes a second heat transfer surface. Each heat transfer assembly body is coupled to the conductive assembly with the first heat transfer surface coupled to a number of second heat transfer surfaces.




m

Arc chamber for bi-directional DC

A circuit breaker including a pair of separable contacts and an arc chamber is provided. The separable contacts include a fixed contact having an upper surface. The arc chamber includes magnetic members disposed on either side of the separable contacts. The magnetic members have a lower surface below the fixed contact upper surface.




m

Flexible shunt for vacuum circuit breaker

A flexible shunt for a vacuum circuit breaker can have a reduced straight length and improved flexibility even with an increased thickness within a predetermined accommodation space of a main circuit part. The flexible shunt comprises a pair of conductive plates, each including a clamp connecting portion configured as a flat conductive member, the clamp connecting portion being connected the clamp, a terminal side connecting portion configured as a flat conductive member, the terminal side connecting portion being connected to the terminal side, and a flexible curved portion configured to connect the clamp connecting portion to the terminal side connecting portion, the flexible curved portion being formed to be projected outwardly.




m

Gas-insulated circuit breaker with nominal contact shielding arrangement

A gas-insulated type circuit breaker including a housing defining a gas volume for a dielectric insulation gas; a first arcing contact member and a second arcing contact member, wherein the first arcing contact member and the second arcing contact member are movable relative to each other along an axis; a first nominal contact member and a second nominal contact member, wherein the first nominal contact member and the second nominal contact member are movable relative to each other along the axis; and a first nominal contact shielding arrangement including an inner shield member and an outer shield member, wherein the inner shield member and the outer shield member are arranged coaxially about the axis. The first nominal contact member is arranged co-axially between the inner shield member and the outer shield member, and is movable relative to the inner shield member and to the outer shield member.




m

Arc runners suitable for DC molded case circuit breakers and related methods

Circuit breakers include an arc chamber and an arc chute comprising a plurality of arc plates in the arc chamber. The circuit breakers also include a line conductor assembly with at least one arc runner attached to a line conductor in the arc chamber. The arc runner can extend below but adjacent to a bottom arc plate to thereby guide a respective arc into the arc chute.




m

Switch having two sets of contact elements

An exemplary medium or high voltage switch has a first set of contact elements and a second set of contact elements. Each contact element includes an insulating carrier carrying conducting elements. In the closed state of the switch, the conducting elements align to form one or more current paths between terminals of the switch along an axial direction. For opening the switch, the contact elements are mutually displaced by means of one or two drives along a direction perpendicular to the axial direction. The switching arrangement is arranged in a fluid-tight housing in a gas of elevated pressure or in a liquid. The switch has a high voltage withstand capability and fast switching times.




m

Arc extinguishing apparatus for ring main unit

An arc extinguishing apparatus for a ring main unit includes: a housing; a plurality of fixed contactor assemblies fixed to be protruded toward the center in the housing and formed by inserting a permanent magnet for arc extinguishing by a magnetic force between a pair of main circuit fixed contacts; a plurality of earthing fixed contactors fixed to be protruded toward the center in the housing and installed to be spaced apart from the fixed contactor assemblies at a predetermined angle; a 3-phases common rotational shaft installed to be rotatable at the center of the housing; and a rotatable movable contactor assembly having a plurality of puffer guide plate sections having openings with a narrow opening width to accelerate the velocity of flow of insulating gas to extinguish arc by blowing it, and rotatable to a circuit closing position, an earthing position, and a circuit opening position.




m

Electrode assembly for vacuum interrupter

An electrode assembly for a vacuum interrupter is configured such that supporting members can support most of a contact electrode plate and a supporting electrode plate in an axial direction with coil conductors interposed therebetween. Accordingly, an impact generated between electrode assemblies upon a closing operation of the vacuum interrupter may be evenly distributed onto the supporting members, which may result in preventing each of the electrode plates and the coil conductors from being deformed. Also, the supporting members are inserted into the electrode plates and the coil conductors, thereby effectively preventing a current from flowing via the supporting members. In addition, the supporting member may be wide and large so as to simplify an assembly operation and reduce an assembly time.




m

Suspension packaging system and method

A product is mounted on a support pad and suspended on the pad by wrapping a stretch wrapping film around the combination of the pad and product. The borders of the pad extend beyond the borders of the product so the package containing the product can be stood on edge, but the edge of the product is spaced away from the surface on which the package is stood. The borders of the pad also include notches on the top and bottom of the pad that receive the stretch wrapping film away from the borders of the pad and closer to the product. Thus the product, secured to the pad, is suspended away from that surface. Multiple packages can be packed into a shipping container and the loaded container can be lifted and transported by a lift truck with lifting forks received in passageways formed in the container by notches in the bottom edges of the support pads. The pads and containers are made of die-cut corrugated fiberboard material although other material could be used.




m

Packaging system for portable electronic devices with removable faceplates

A removable faceplate for a portable electronic device is provided. The faceplate permits a user to change the physical appearance of a surface of the device while retaining access to the mechanisms for controlling the function of the device. Preferably, the removable faceplate and electronic device are configured with a means for association and dissociation that can be activated without the use of a tool and the means is not visible when the faceplate is attached. Additionally, an improved packaging system is provided to enable a vendor or manufacturer to package faceplates with the devices that they will cover and to allow substitution of faceplates in the packaging without disturbing the packaging of the electronic device itself. Further, there is a method for distribution of the packaging system.




m

Food container stacking device and system

A food container stacking device comprising: a horizontal member, with a first longitudinal side, a second longitudinal side, a top surface, and a bottom surface, a first corner, second corner, third corner, and fourth corner; the food container stacking device configured to lay on the top surface of a first food container, and further configure to support a second food container on the top surface, thereby allowing for the stacking of the first and second food containers. A food container stacking system, comprising: a first food container; a first food container stacking device configured to lay on the top surface of the first food container, the first food container stacking device comprising: a horizontal member, with a first longitudinal sinusoidal shaped side, a second longitudinal sinusoidal shaped side, a top surface, and a bottom surface, a first corner, second corner, third corner, and fourth corner; a first pin removeably attachable to the first hole, and extending from the bottom surface; a second pin removeably attachable to the second hole, and extending from the bottom surface; a third pin removeably attachable to the third hole, and extending from the bottom surface; a fourth pin removeably attachable to the fourth hole, and extending from the bottom surface, where the first and second pins are configured to lay outside of the perimeter of the first food container, and where the third and fourth pins are configured to lay outside of the perimeter of the first food container, on an opposite side of the first food container.




m

Container assembly and foldable container system

Container assemblies can include a first container and a second container, where the second container extends into and is supported by the first container. The first container and the second container can each include a flange around the periphery of an access opening. The flange of the second container is configured to provide support for the second container via engagement with the flange of the first container. In some instances, the second container can extend into and be supported by the first container through engagement of the flange of the second container with the flange of the first container such that a side panel of the first container is not in contact with a corresponding side panel of the second container. The container assembly can also include a lid for retaining the second container in the first container and/or for sealing to the first container and/or the second container.