ics Lie groups with all left-invariant semi-Riemannian metrics complete By www.ams.org Published On :: Thu, 31 Oct 2024 16:22 EDT Ahmed Elshafei, Ana Cristina Ferreira, Miguel Sánchez and Abdelghani Zeghib Trans. Amer. Math. Soc. 377 (), 5837-5862. Abstract, references and article information Full Article
ics UC Irvine Wins 2025 AMS Award for an Exemplary Program in a Mathematics Department By www.ams.org Published On :: Tue, 12 Nov 2024 00:00:00 EST The Math Community Educational Outreach (Math CEO) program at the University of California, Irvine (UCI) will receive the 2025 AMS Award for an Exemplary Program or Achievement in a Mathematics Department. Founded in 2014, UCI’s Math CEO is an after-school math enrichment program aimed at increasing the number of talented students in STEM from diverse backgrounds by fostering mathematical exploration, mentor development, and community engagement. Participants in the Math CEO program at University of California, Irvine Credit: Jennifer Tran, Math CEO outreach assistant From the citation The University of California, Irvine (UCI) Math CEO program is recognized for its exceptional contributions to the mathematics community and society at large. Established in 2014 by professors Alessandra Pantano and Li-Sheng Tseng, Math CEO targets students from Title I middle schools, providing them with a high-quality after-school math enrichment program. This program brings middle-school students to the UCI campus to work in small groups with undergraduate mentors, many of whom are also from historically marginalized groups, to engage in challenging mathematical tasks and encourage exploration. From September 2019 to June 2024, Math CEO engaged a total of 1,221 youth, with 48.6% identifying as female. The ethnic background of the participants was predominantly Latinx (93.5%), with smaller representations of Asian, white, and multiethnic students. In the same five-year period, Math CEO engaged 553 undergraduate mentors, 62.2% of whom were female. The mentors’ ethnic backgrounds were diverse, with significant representation of Asian (52%) and Latinx (30%) students. The undergraduate mentors, many of whom pursue careers in education, receive training in culturally responsive teaching practices and equity in education, significantly impacting their professional development. In a post-survey, 52.3% of the undergraduate mentors expressed interest in teaching or working in education and 45.9% were likely to pursue professions working with children or families. Recognizing the central role of families in supporting Latinx youth, Math CEO involves parents through bilingual workshops that enhance community awareness of college pathways and financial opportunities. Math CEO has been the foundation for numerous research projects in mathematics education, supported by NSF grants, leading to publications and program growth. The program’s success is evident in its expansion to high schools and other regions in Southern California, including a new branch at California State University, Dominguez Hills. Math CEO continues to make a substantial impact on underserved youth, demonstrating a model of systemic, reproducible change that can be implemented by others. Response of Alessandra Pantano, UCI Math CEO I am deeply honored to receive the AMS Award for an Exemplary Program in a Mathematics Department on behalf of the UCI Math CEO team. This wonderful award recognizes the work of many colleagues, graduate students, and undergraduate students in developing and delivering the UCI Math Community Educational Outreach (Math CEO) program. For over a decade, Math CEO has provided creative and culturally responsive math enrichment opportunities for hundreds of underprivileged middle-school students, many of which have since “graduated” to high school or even college. Leading this exceptional and dedicated team of volunteers has been the highest pride of my professional life. A special thanks to my partners-in-crime, Prof. Li-Sheng Tseng, codirector of Math CEO, and former graduate student Andres Forero Cuervo, academic coordinator for Math CEO: We could have never done this without you. I look forward to pushing this activity forward and continuing to dedicate my energy to help kids in our county find the way to express their potential – in math and in life! A big thanks to the colleagues who nominated us and to the AMS for recognizing our efforts. History of the program The UC Irvine Math Community Educational Outreach (Math CEO) program was founded in 2014 by math faculty Alessandra Pantano and Li-Sheng Tseng in collaboration with Santa Ana Unified math teacher Jasmina Matasovic. The founders shared a belief that low standardized test scores in underserved communities do not reflect students’ interest and potential to succeed in STEM. Math CEO runs free, weekly, after-school math enrichment sessions, welcoming all youth regardless of math achievement. Starting with only 25 students from one middle school, the program has grown and engaged nearly two thousand students in all, from multiple school districts in Southern California. About the award The annual AMS Award for an Exemplary Program or Achievement in a Mathematics Department was established in 2004 and first given in 2006. This award recognizes a department which has distinguished itself by undertaking an unusual or particularly effective program of value to the mathematics community, internally or in relation to the rest of society. Departments of mathematical sciences in North America that offer at least a bachelor’s degree in mathematical sciences are eligible. The award amount is currently $5,000. The award will be presented at the 2025 Joint Mathematics Meetings in Seattle. Learn more about the award and previous recipients. Contact: AMS Communications. ***** The American Mathematical Society is dedicated to advancing research and connecting the diverse global mathematical community through our publications, meetings and conferences, MathSciNet, professional services, advocacy, and awareness programs. Full Article
ics Making the dead look better - Jamaican morticians get advanced skills in embalming and cosmetics By jamaica-star.com Published On :: Mon, 11 Nov 2024 05:01:27 -0500 For many Jamaicans, the deceased are more than just loved ones who have passed on; they are cherished family members who deserve to look as presentable as they did in life. In a culture where the appearance of the deceased is paramount, morticians... Full Article
ics SAS Notes for SAS®9 - 66562: Negative values appear for distinct counts in SAS Visual Analytics reports By Published On :: Wed, 2 Sep 2020 12:58:12 EST When using the distinct count function in SAS Visual Analytics reports, you might find that a negative value is displayed instead of the actual distinct count: imgalt="distinct_count" src="{fusion_66562_1_disti Full Article VISANLYTBNDL+SAS+Visual+Analytics
ics ARID4B is critical for mouse embryonic stem cell differentiation towards mesoderm and endoderm, linking epigenetics to pluripotency exit [Developmental Biology] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Distinct cell types emerge from embryonic stem cells through a precise and coordinated execution of gene expression programs during lineage commitment. This is established by the action of lineage specific transcription factors along with chromatin complexes. Numerous studies have focused on epigenetic factors that affect embryonic stem cells (ESC) self-renewal and pluripotency. However, the contribution of chromatin to lineage decisions at the exit from pluripotency has not been as extensively studied. Using a pooled epigenetic shRNA screen strategy, we identified chromatin-related factors critical for differentiation toward mesodermal and endodermal lineages. Here we reveal a critical role for the chromatin protein, ARID4B. Arid4b-deficient mESCs are similar to WT mESCs in the expression of pluripotency factors and their self-renewal. However, ARID4B loss results in defects in up-regulation of the meso/endodermal gene expression program. It was previously shown that Arid4b resides in a complex with SIN3A and HDACS 1 and 2. We identified a physical and functional interaction of ARID4B with HDAC1 rather than HDAC2, suggesting functionally distinct Sin3a subcomplexes might regulate cell fate decisions Finally, we observed that ARID4B deficiency leads to increased H3K27me3 and a reduced H3K27Ac level in key developmental gene loci, whereas a subset of genomic regions gain H3K27Ac marks. Our results demonstrate that epigenetic control through ARID4B plays a key role in the execution of lineage-specific gene expression programs at pluripotency exit. Full Article
ics Structural and biochemical characteristics of two Staphylococcus epidermidis RNase J paralogs RNase J1 and RNase J2 [Protein Structure and Folding] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 RNase J enzymes are metallohydrolases that are involved in RNA maturation and RNA recycling, govern gene expression in bacteria, and catalyze both exonuclease and endonuclease activity. The catalytic activity of RNase J is regulated by multiple mechanisms which include oligomerization, conformational changes to aid substrate recognition, and the metal cofactor at the active site. However, little is known of how RNase J paralogs differ in expression and activity. Here we describe structural and biochemical features of two Staphylococcus epidermidis RNase J paralogs, RNase J1 and RNase J2. RNase J1 is a homodimer with exonuclease activity aided by two metal cofactors at the active site. RNase J2, on the other hand, has endonuclease activity and one metal ion at the active site and is predominantly a monomer. We note that the expression levels of these enzymes vary across Staphylococcal strains. Together, these observations suggest that multiple interacting RNase J paralogs could provide a strategy for functional improvisation utilizing differences in intracellular concentration, quaternary structure, and distinct active site architecture despite overall structural similarity. Full Article
ics The cation diffusion facilitator protein MamM's cytoplasmic domain exhibits metal-type dependent binding modes and discriminates against Mn2+ [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Cation diffusion facilitator (CDF) proteins are a conserved family of divalent transition metal cation transporters. CDF proteins are usually composed of two domains: the transmembrane domain, in which the metal cations are transported through, and a regulatory cytoplasmic C-terminal domain (CTD). Each CDF protein transports either one specific metal or multiple metals from the cytoplasm, and it is not known whether the CTD takes an active regulatory role in metal recognition and discrimination during cation transport. Here, the model CDF protein MamM, an iron transporter from magnetotactic bacteria, was used to probe the role of the CTD in metal recognition and selectivity. Using a combination of biophysical and structural approaches, the binding of different metals to MamM CTD was characterized. Results reveal that different metals bind distinctively to MamM CTD in terms of their binding sites, thermodynamics, and binding-dependent conformations, both in crystal form and in solution, which suggests a varying level of functional discrimination between CDF domains. Furthermore, these results provide the first direct evidence that CDF CTDs play a role in metal selectivity. We demonstrate that MamM's CTD can discriminate against Mn2+, supporting its postulated role in preventing magnetite formation poisoning in magnetotactic bacteria via Mn2+ incorporation. Full Article
ics Mapping the transition state for a binding reaction between ancient intrinsically disordered proteins [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Intrinsically disordered protein domains often have multiple binding partners. It is plausible that the strength of pairing with specific partners evolves from an initial low affinity to a higher affinity. However, little is known about the molecular changes in the binding mechanism that would facilitate such a transition. We previously showed that the interaction between two intrinsically disordered domains, NCBD and CID, likely emerged in an ancestral deuterostome organism as a low-affinity interaction that subsequently evolved into a higher-affinity interaction before the radiation of modern vertebrate groups. Here we map native contacts in the transition states of the low-affinity ancestral and high-affinity human NCBD/CID interactions. We show that the coupled binding and folding mechanism is overall similar but with a higher degree of native hydrophobic contact formation in the transition state of the ancestral complex and more heterogeneous transient interactions, including electrostatic pairings, and an increased disorder for the human complex. Adaptation to new binding partners may be facilitated by this ability to exploit multiple alternative transient interactions while retaining the overall binding and folding pathway. Full Article
ics Seeded fibrils of the germline variant of human {lambda}-III immunoglobulin light chain FOR005 have a similar core as patient fibrils with reduced stability [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Systemic antibody light chains (AL) amyloidosis is characterized by deposition of amyloid fibrils derived from a particular antibody light chain. Cardiac involvement is a major risk factor for mortality. Using MAS solid-state NMR, we studied the fibril structure of a recombinant light chain fragment corresponding to the fibril protein from patient FOR005, together with fibrils formed by protein sequence variants that are derived from the closest germline (GL) sequence. Both analyzed fibril structures were seeded with ex-vivo amyloid fibrils purified from the explanted heart of this patient. We find that residues 11-42 and 69-102 adopt β-sheet conformation in patient protein fibrils. We identify arginine-49 as a key residue that forms a salt bridge to aspartate-25 in the patient protein fibril structure. In the germline sequence, this residue is replaced by a glycine. Fibrils from the GL protein and from the patient protein harboring the single point mutation R49G can be both heterologously seeded using patient ex-vivo fibrils. Seeded R49G fibrils show an increased heterogeneity in the C-terminal residues 80-102, which is reflected by the disappearance of all resonances of these residues. By contrast, residues 11-42 and 69-77, which are visible in the MAS solid-state NMR spectra, show 13Cα chemical shifts that are highly like patient fibrils. The mutation R49G thus induces a conformational heterogeneity at the C terminus in the fibril state, whereas the overall fibril topology is retained. These findings imply that patient mutations in FOR005 can stabilize the fibril structure. Full Article
ics Determinants of replication protein A subunit interactions revealed using a phosphomimetic peptide [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Replication protein A (RPA) is a eukaryotic ssDNA-binding protein and contains three subunits: RPA70, RPA32, and RPA14. Phosphorylation of the N-terminal region of the RPA32 subunit plays an essential role in DNA metabolism in processes such as replication and damage response. Phosphorylated RPA32 (pRPA32) binds to RPA70 and possibly regulates the transient RPA70-Bloom syndrome helicase (BLM) interaction to inhibit DNA resection. However, the structural details and determinants of the phosphorylated RPA32–RPA70 interaction are still unknown. In this study, we provide molecular details of the interaction between RPA70 and a mimic of phosphorylated RPA32 (pmRPA32) using fluorescence polarization and NMR analysis. We show that the N-terminal domain of RPA70 (RPA70N) specifically participates in pmRPA32 binding, whereas the unphosphorylated RPA32 does not bind to RPA70N. Our NMR data revealed that RPA70N binds pmRPA32 using a basic cleft region. We also show that at least 6 negatively charged residues of pmRPA32 are required for RPA70N binding. By introducing alanine mutations into hydrophobic positions of pmRPA32, we found potential points of contact between RPA70N and the N-terminal half of pmRPA32. We used this information to guide docking simulations that suggest the orientation of pmRPA32 in complex with RPA70N. Our study demonstrates detailed features of the domain-domain interaction between RPA70 and RPA32 upon phosphorylation. This result provides insight into how phosphorylation tunes transient bindings between RPA and its partners in DNA resection. Full Article
ics Structural transitions in Orb2 prion-like domain relevant for functional aggregation in memory consolidation [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 The recent structural elucidation of ex vivo Drosophila Orb2 fibrils revealed a novel amyloid formed by interdigitated Gln and His residue side chains belonging to the prion-like domain. However, atomic-level details on the conformational transitions associated with memory consolidation remain unknown. Here, we have characterized the nascent conformation and dynamics of the prion-like domain (PLD) of Orb2A using a nonconventional liquid-state NMR spectroscopy strategy based on 13C detection to afford an essentially complete set of 13Cα, 13Cβ, 1Hα, and backbone 13CO and 15N assignments. At pH 4, where His residues are protonated, the PLD is disordered and flexible, except for a partially populated α-helix spanning residues 55–60, and binds RNA oligos, but not divalent cations. At pH 7, in contrast, His residues are predominantly neutral, and the Q/H segments adopt minor populations of helical structure, show decreased mobility and start to self-associate. At pH 7, the His residues do not bind RNA or Ca2+, but do bind Zn2+, which promotes further association. These findings represent a remarkable case of structural plasticity, based on which an updated model for Orb2A functional amyloidogenesis is suggested. Full Article
ics Formal Representation for Young People Enhances Politics for All By www.chathamhouse.org Published On :: Thu, 10 Sep 2020 11:38:51 +0000 10 September 2020 Ben Horton Communications Manager, Communications and Publishing @BenRHorton LinkedIn Michel Alimasi Member, Common Futures Conversations, Italy Gift Jedida Member, Common Futures Conversations, Kenya Sanne Thijssen Member, Common Futures Conversations, Netherlands Mondher Tounsi Member, Common Futures Conversations, Tunisia Despite grassroots associations, community organizing and online groups offering pathways for political engagement, the room for youth representation in international politics remains narrow, with many young people still left feeling they are passive participants in policymaking. CFC Youth Participation EC_10092020.png Youth protests at Parliament square against a new exam rating system which has been introduced in British education system - London, England on August 16, 2020. Photo by Dominika Zarzycka/NurPhoto via Getty Images. According to UN Youth, people aged 15-24 make up one-sixth of the world’s population but, in roughly one-third of countries, the eligibility for parliamentarians begins at 25 years old and only 1.6% of parliamentarians are in their twenties. Young people are largely being excluded and overlooked, both as political candidates and even as participants in political processes, giving them limited political control over their own futures. If politics continues to be regarded as a space for older, more politically experienced individuals from particular backgrounds, young people will continue to be left systematically marginalized, and overall disengagement with politics within societies will continue to grow. Global leaders may increasingly point out the importance of youth representation in national and international fora, but the reality is their real policymaking impact still comes mainly from self-organized and informal activities.And yet, despite this continued exclusion, huge numbers of young people are interested in political and civic engagement, and they have been driven to create new spaces. Youth networks, movements, and constituencies have emerged which provide the opportunity for younger voices to express political stances, and thus enhance the diversity and inclusivity of political debate. From the global Extinction Rebellion protests, to the student-led Rhodes Must Fall movement in South Africa and the UK, there are numerous examples of the power of informal youth networks and movements pushing for change. In certain cases, such as Sudan’s political revolution in 2019, we can see how direct action by young people creates major impact, but unfortunately these successes are few as most informal initiatives remain overlooked and undervalued. Putting youth representation into governmentCreating diverse representation requires the linking of vital informal networks to formal political processes. In response to a recent Common Futures Conversations challenge, one mechanism with the potential to achieve this aim that emerged is creating dedicated youth representatives within government departments, so that qualified young people with relevant expertise are formally appointed to act as the link between government and informal youth movements. These individuals should be hired as employees rather than volunteers and take up the responsibilities of a government employee, supported by a large network of youth-led movements and initiatives as well as a smaller, voluntary advisory board of young people. This network then acts as a sounding board for the representative, gathering the opinions in their local communities and bringing forward crucial concerns so the youth representatives can confidently feed into policymaking processes with a clear sense of the substance of youth opinion. Alongside the network, a voluntary board of young people could provide additional support to the representatives when required to consult a broader range of youth organizations.Both in the youth network and the board, a key priority is to involve different movements and initiatives reflecting diversities such as geographic spread, people who are marginalized due to ethnicity, gender or sexuality, educational and professional backgrounds, and other factors. Implementing such a structure would ensure more diversity in youth representation, something which is missing in many existing youth participation and formal political structures. Representation needs to move away from only highly-educated youth living in cities to ensure more influence for those young people usually left on the sidelines. Youth involvement in politics leads to better civic engagement overall. It improves the influence and access of young people, and supports governments becoming more inclusive and responsive to the plurality of voices they are representing. It also has the potential of encouraging millions more people to become properly engaged with politics. In order to gain support from parliamentarians and policymakers, it is crucial to highlight these benefits and demonstrate how the support of young people helps shift the political landscape for the better. All the necessary parties already exist in most countries, so all that is required is to drive a collective initiative and for both governments and the youth to take responsibility for making it work.As the former president of Ireland Mary Robinson said during a recent Chatham House Centenary event: ‘We need to make space for young people so we can hear their voices, their imagination, their commitment to question and speak truth to power. We need young people to feel that they are part of the solution.’ Building formal structures is a necessary step to achieving this vision, as it provides practical solutions to realize a more diverse, inclusive and meaningful participation of the youth in politics, and also creates more representative and responsive governments. Full Article
ics Enhancing the role of women in peacebuilding and politics in Ethiopia By www.chathamhouse.org Published On :: Thu, 16 Jun 2022 16:47:14 +0000 Enhancing the role of women in peacebuilding and politics in Ethiopia 29 June 2022 — 1:00PM TO 2:30PM Anonymous (not verified) 16 June 2022 Online Panellists discuss the priorities for promoting the agency of women in politics and peacebuilding in Ethiopia and approaches for combatting gender-based discrimination and violence. The war in northern Ethiopia and conflicts elsewhere have disproportionately affected women and girls – including through the infliction of physical and sexual violence, the heightened impacts of displacement and disruptions to education, and the co-option of women’s experiences in narratives by aggressors of conflict. Hard-won political gains in women’s rights have been undermined and deep-rooted gender inequalities exacerbated. Despite this, women remain central actors in politics, as well as in conflict resolution and mediation efforts. However, more needs to be done to promote the security and inclusion of women in finding sustainable solutions for Ethiopia’s long-term recovery and to institutionalize reforms for gender equity and development. At this public event, panellists will discuss the priorities for improving women’s participation and equality in public decision-making in Ethiopia and how to strengthen the implementation of legislation on women’s rights. They will also discuss what societal shifts and approaches are needed to combat gender-based discrimination and violence and to promote the agency of women in peacebuilding. This webinar is part of a series of events and outputs on Ethiopia’s political transition. This event will also be broadcast live on the Chatham House Africa Programme’s Facebook page. Full Article
ics Theranostics for Meningioma on the Rise: New EANM/EANO/RANO/SNMMI Guidelines Pave the Way to Improved Patient Outcomes Using Radiolabeled Somatostatin Receptor Ligands By jnm.snmjournals.org Published On :: 2024-10-10T08:33:38-07:00 Full Article
ics Performance Characteristics of a New Generation 148-cm Axial Field-of-View uMI Panorama GS PET/CT System with Extended NEMA NU 2-2018 and EARL Standards By jnm.snmjournals.org Published On :: 2024-11-07T04:28:32-08:00 Visual Abstract Full Article
ics Citrus Vascular Proteomics Highlights the Role of Peroxidases and Serine Proteases during Huanglongbing Disease Progression By www.mcponline.org Published On :: 2020-12-01 Jessica Y. FrancoDec 1, 2020; 19:1936-1951Research Full Article
ics Interspecies differences in proteome turnover kinetics are correlated with lifespans and energetic demands By www.mcponline.org Published On :: 2020-12-28 Kyle SwovickDec 28, 2020; 0:RA120.002301v1-mcp.RA120.002301Research Full Article
ics A Mouse Brain-based Multi-omics Integrative Approach Reveals Potential Blood Biomarkers for Ischemic Stroke By www.mcponline.org Published On :: 2020-12-01 Alba SimatsDec 1, 2020; 19:1921-1935Research Full Article
ics The role of Data-Independent Acquisition for Glycoproteomics By www.mcponline.org Published On :: 2020-12-28 Zilu YeDec 28, 2020; 0:R120.002204v1-mcp.R120.002204Review Full Article
ics Temporal Quantitative Proteomics of mGluR-induced Protein Translation and Phosphorylation in Neurons By www.mcponline.org Published On :: 2020-12-01 Charlotte A. G. H. van GelderDec 1, 2020; 19:1952-1967Research Full Article
ics CMMB (Carboxylate Modified Magnetic Bead) -based isopropanol gradient peptide fractionation (CIF) enables rapid and robust off-line peptide mixture fractionation in bottom-up proteomics By www.mcponline.org Published On :: 2020-12-22 Weixian DengDec 22, 2020; 0:RA120.002411v1-mcp.RA120.002411Research Full Article
ics A proteomics-based assessment of inflammation signatures in endotoxemia By www.mcponline.org Published On :: 2020-12-07 Sean A BurnapDec 7, 2020; 0:RA120.002305v1-mcp.RA120.002305Research Full Article
ics A potential role for the Gsdf-eEF1{alpha} complex in inhibiting germ cell proliferation: A protein-interaction analysis in medaka (Oryzias latipes) from a proteomics perspective By www.mcponline.org Published On :: 2020-12-08 Xinting ZhangDec 8, 2020; 0:RA120.002306v1-mcp.RA120.002306Research Full Article
ics Quantitative proteomics reveal neuron projection development genes ARF4, KIF5B and RAB8A associated with Hirschsprung disease By www.mcponline.org Published On :: 2020-11-17 Qin ZhangNov 17, 2020; 0:RA120.002325v1-mcp.RA120.002325Research Full Article
ics A proteomic approach to understand the clinical significance of acute myeloid leukemia-derived extracellular vesicles reflecting essential characteristics of leukemia By www.mcponline.org Published On :: 2020-11-30 Ka-Won KangNov 30, 2020; 0:RA120.002169v1-mcp.RA120.002169Research Full Article
ics Prediction and validation of mouse meiosis-essential genes based on spermatogenesis proteome dynamics By www.mcponline.org Published On :: 2020-11-30 Kailun FangNov 30, 2020; 0:RA120.002081v1-mcp.RA120.002081Research Full Article
ics Peptidomics-driven strategy reveals peptides and predicted proteases associated with oral cancer prognosis By www.mcponline.org Published On :: 2020-11-11 Leandro Xavier NevesNov 11, 2020; 0:RA120.002227v1-mcp.RA120.002227Research Full Article
ics ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis By www.mcponline.org Published On :: 2020-12-01 Johannes GrissDec 1, 2020; 19:2115-2124Technological Innovation and Resources Full Article
ics Protein modification characteristics of the malaria parasite Plasmodium falciparum and the infected erythrocytes By www.mcponline.org Published On :: 2020-11-04 Jianhua WangNov 4, 2020; 0:RA120.002375v1-mcp.RA120.002375Research Full Article
ics ProAlanase is an Effective Alternative to Trypsin for Proteomics Applications and Disulfide Bond Mapping By www.mcponline.org Published On :: 2020-12-01 Diana SamodovaDec 1, 2020; 19:2139-2156Technological Innovation and Resources Full Article
ics Pluripotency of embryonic stem cells lacking clathrin-mediated endocytosis cannot be rescued by restoring cellular stiffness [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young's modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young's modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate. Full Article
ics Site-specific contacts enable distinct modes of TRPV1 regulation by the potassium channel Kv{beta}1 subunit [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-11T00:06:21-08:00 Transient receptor potential vanilloid 1 (TRPV1) channel is a multimodal receptor that is responsible for nociceptive, thermal, and mechanical sensations. However, which biomolecular partners specifically interact with TRPV1 remains to be elucidated. Here, we used cDNA library screening of genes from mouse dorsal root ganglia combined with patch-clamp electrophysiology to identify the voltage-gated potassium channel auxiliary subunit Kvβ1 physically interacting with TRPV1 channel and regulating its function. The interaction was validated in situ using endogenous dorsal root ganglia neurons, as well as a recombinant expression model in HEK 293T cells. The presence of Kvβ1 enhanced the expression stability of TRPV1 channels on the plasma membrane and the nociceptive current density. Surprisingly, Kvβ1 interaction also shifted the temperature threshold for TRPV1 thermal activation. Using site-specific mapping, we further revealed that Kvβ1 interacted with the membrane-distal domain and membrane-proximal domain of TRPV1 to regulate its membrane expression and temperature-activation threshold, respectively. Our data therefore suggest that Kvβ1 is a key element in the TRPV1 signaling complex and exerts dual regulatory effects in a site-specific manner. Full Article
ics PDE5 inhibition rescues mitochondrial dysfunction and angiogenic responses induced by Akt3 inhibition by promotion of PRC expression [Bioenergetics] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses. Full Article
ics A kinetic dissection of the fast and superprocessive kinesin-3 KIF1A reveals a predominant one-head-bound state during its chemomechanical cycle [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A's activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state. Full Article
ics When Taxol met tubulin [Classics] By www.jbc.org Published On :: 2020-10-09T00:05:42-07:00 When the drug Taxol® was approved by the United States Food and Drug Administration in 1993, it was a game changer for cancer patients. The compound, which arrests cell division by preventing the disassembly of tubulin microfibers, has been used over the past three decades to treat millions of cases of breast, lung, and ovarian cancer as well as Kaposi's sarcoma. In 1990, Bristol Myers Squibb applied to trademark the name Taxol, which was approved in 1992, changing the drug's generic name to paclitaxel.At the time that Taxol was entering clinical trials in the late 1970s, it also proved to be a valuable tool for cytoskeletal research. Tubulin had been discovered in the late 1960s, but it was still unclear how the soluble protein dimer polymerized (Fig. 1) to form the long, complex structures of the cytoskeleton.jbc;295/41/13994/F1F1F1Figure 1.Strands of tubulin, a protein in the cell's skeleton, photographed using a high-resolution microscopy technique. Image made by Pakorn Kanchanawong (National University of Singapore) and Clare Waterman (NHLBI, National Institutes of Health).“Back then, people were just discovering the most basic functions of tubulin and how it polymerized, and then they found a drug that affected this,” said Velia Fowler, a cell biologist at the University of Delaware and former Associate Editor at the Journal of Biological Chemistry.The drug and its cytoskeletal activity intersected in the 1981 JBC paper “Taxol-induced polymerization of purified tubulin” (1), the subject of this JBC Classic. In the single-author paper, Nirbhay Kumar, then a postdoctoral fellow at the National... Full Article
ics Gene Networks and Pathways for Plasma Lipid Traits via Multi-tissue Multi-omics Systems Analysis By www.jlr.org Published On :: 2020-12-23 Montgomery BlencoweDec 23, 2020; 0:jlr.RA120000713v1-jlr.RA120000713Research Articles Full Article
ics Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux By www.jlr.org Published On :: 2020-11-17 Oktawia NilssonNov 17, 2020; 0:jlr.RA120000920v1-jlr.RA120000920Research Articles Full Article
ics Insights on the kinetics and dynamics of the furin-cleaved form of PCSK9 By www.jlr.org Published On :: 2020-11-17 Carlota OleagaNov 17, 2020; 0:jlr.RA120000964v1-jlr.RA120000964Research Articles Full Article
ics Mass spectrometry characterization of light chain fragmentation sites in cardiac AL amyloidosis: insights into the timing of proteolysis [Genomics and Proteomics] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils. Full Article
ics Problem Notes for SAS®9 - 58465: SAS Life Science Analytics Framework 4.6 - Group membership removal fails with an exception for Process Flows that exist in the Recycle Bin By Published On :: Wed, 26 Aug 2020 16:27:10 EST In SAS Life Science Analytics Framework 4.6, group membership removal fails with an exception if a user is set as assignee, a candidate, or a notification recipient in a user task for a Process Flow . The Process Full Article LSAFOFR+SAS+Life+Science+Analytics+Frame
ics Problem Notes for SAS®9 - 61815: SAS Episode Analytics 3.1 - Audit table is required in order to capture user interactions with the user interface By Published On :: Wed, 26 Aug 2020 16:09:53 EST SAS Episode Analytics 3.1 requires the ability to capture user interactions with the user interface for auditing purposes. To support the required functionality a new table has been add Full Article AVAECROFR+SAS+Episode+Analytics
ics Problem Notes for SAS®9 - 66535: You might intermittently see the error "RangeError: Maximum call stack exceeded..." when viewing a SAS Visual Analytics report By Published On :: Wed, 26 Aug 2020 15:06:43 EST When viewing a SAS Visual Analytics report, you might intermittently see an error that includes content similar to the following: Error Message: Full Article VISANLYTBNDL+SAS+Visual+Analytics
ics Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux [Research Articles] By www.jlr.org Published On :: 2020-11-17T08:30:36-08:00 Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) is essential for the transportation of cholesterol between peripheral tissues and the liver. However, specific mutations in Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) are responsible for a late-onset systemic amyloidosis, the pathological accumulation of protein fibrils in tissues and organs. Carriers of these mutations do not exhibit increased cardiovascular disease risk despite displaying reduced levels of ApoA-I/ HDL-cholesterol. To explain this paradox, we show that the HDL particle profile of patients carrying either L75P or L174S ApoA-I amyloidogenic variants a higher relative abundance of the 8.4 nm vs 9.6 nm particles, and that serum from patients, as well as reconstituted 8.4 and 9.6 nm HDL particles (rHDL), possess increased capacity to catalyze cholesterol efflux from macrophages. Synchrotron radiation circular dichroism and hydrogen-deuterium exchange revealed that the variants in 8.4 nm rHDL have altered secondary structure composition and display a more flexible binding to lipids compared to their native counterpart. The reduced HDL-cholesterol levels of patients carrying ApoA-I amyloidogenic variants are thus balanced by higher proportion of small, dense HDL particles and better cholesterol efflux due to altered, region-specific protein structure dynamics. Full Article
ics Insights on the kinetics and dynamics of the furin-cleaved form of PCSK9 [Research Articles] By www.jlr.org Published On :: 2020-11-17T08:30:36-08:00 Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates cholesterol metabolism by inducing the degradation of hepatic low-density lipoprotein receptor (LDLR). Plasma PCSK9 has two main molecular forms: a 62-kDa mature form (PCSK9_62) and a 55-kDa, furin-cleaved form (PCSK9_55). PCSK9_55 is considered less active than PCSK9_62 in degrading LDLR. We aimed to identify the site of PCSK9_55 formation (intra- vs. extracellular) and to further characterize the LDLR-degradative function of PCSK9_55 relative to PCSK9_62. Co-expressing PCSK9_62 with furin in cell culture induced formation of PCSK9_55, most of which was found in the extracellular space. Under the same conditions we found that: i) adding a cell-permeable furin inhibitor preferentially decreased the formation of PCSK9_55 extracellularly; ii) using pulse-chase, we observed the formation of PCSK9_55 exclusively extracellularly in a time-dependent manner. A recombinant form of PCSK9_55 was efficiently produced but displayed impaired secretion that resulted in its intracellular trapping. However, the non-secreted PCSK9_55 was able to induce degradation of LDLR, though with 50% lower efficiency compared with PCSK9_62. Collectively, our data show that PCSK9_55 is generated in the extracellular space, and that intracellular PCSK9_55 is not secreted but retains the ability to degrade the LDLR through an intracellular pathway. Full Article
ics Gene Networks and Pathways for Plasma Lipid Traits via Multi-tissue Multi-omics Systems Analysis [Research Articles] By www.jlr.org Published On :: 2020-12-23T12:30:45-08:00 Genome-wide association studies (GWAS) have implicated ~380 genetic loci for plasma lipid regulation. However, these loci only explain 17-27% of the trait variance and a comprehensive understanding of the molecular mechanisms has not been achieved. In this study, we utilized an integrative genomics approach leveraging diverse genomic data from human populations to investigate whether genetic variants associated with various plasma lipid traits, namely total cholesterol (TC), high and low density lipoprotein cholesterol (HDL and LDL), and triglycerides (TG), from GWAS were concentrated on specific parts of tissue-specific gene regulatory networks. In addition to the expected lipid metabolism pathways, gene subnetworks involved in ‘interferon signaling’, ‘autoimmune/immune activation’, ‘visual transduction’, and ‘protein catabolism’ were significantly associated with all lipid traits. Additionally, we detected trait-specific subnetworks, including cadherin-associated subnetworks for LDL, glutathione metabolism for HDL, valine, leucine and isoleucine biosynthesis for TC, and insulin signaling and complement pathways for TG. Finally, utilizing gene-gene relations revealed by tissue-specific gene regulatory networks, we detected both known (e.g. APOH, APOA4, and ABCA1) and novel (e.g. F2 in adipose tissue) key regulator genes in these lipid-associated subnetworks. Knockdown of the F2 gene (Coagulation Factor II, Thrombin) in 3T3-L1 and C3H10T1/2 adipocytes reduced gene expression of Abcb11, Apoa5, Apof, Fabp1, Lipc, and Cd36, reduced intracellular adipocyte lipid content, and increased extracellular lipid content, supporting a link between adipose thrombin and lipid regulation. Our results shed light on the complex mechanisms underlying lipid metabolism and highlight potential novel targets for lipid regulation and lipid-associated diseases. Full Article
ics Thiazide diuretics seem to protect against fracture By www.bmj.com Published On :: Tuesday, November 22, 2016 - 11:26 Full Article
ics UK clinics may be able to offer mitochrondrial donation next spring By www.bmj.com Published On :: Thursday, December 1, 2016 - 15:46 Full Article
ics Proteomics of Galapagos Marine Iguanas Links Function of Femoral Gland Proteins to the Immune System [Research] By www.mcponline.org Published On :: 2020-09-01T00:05:24-07:00 Communication between individuals via molecules, termed chemosignaling, is widespread among animal and plant species. However, we lack knowledge on the specific functions of the substances involved for most systems. The femoral gland is an organ that secretes a waxy substance involved in chemical communication in lizards. Although the lipids and volatile substances secreted by the femoral glands have been investigated in several biochemical studies, the protein composition and functions of secretions remain completely unknown. Applying a proteomic approach, we provide the first attempt to comprehensively characterize the protein composition of femoral gland secretions from the Galápagos marine iguana. Using samples from several organs, the marine iguana proteome was assembled by next-generation sequencing and MS, resulting in 7513 proteins. Of these, 4305 proteins were present in the femoral gland, including keratins, small serum proteins, and fatty acid-binding proteins. Surprisingly, no proteins with discernible roles in partner recognition or inter-species communication could be identified. However, we did find several proteins with direct associations to the innate immune system, including lysozyme C, antileukoproteinase (ALP), pulmonary surfactant protein (SFTPD), and galectin (LGALS1) suggesting that the femoral glands function as an important barrier to infection. Furthermore, we report several novel anti-microbial peptides from the femoral glands that show similar action against Escherichia coli and Bacillus subtilis such as oncocin, a peptide known for its effectiveness against Gram-negative pathogens. This proteomics data set is a valuable resource for future functional protein analysis and demonstrates that femoral gland secretions also perform functions of the innate immune system. Full Article
ics Data, Reagents, Assays and Merits of Proteomics for SARS-CoV-2 Research and Testing [Research] By www.mcponline.org Published On :: 2020-09-01T00:05:24-07:00 As the COVID-19 pandemic continues to spread, thousands of scientists around the globe have changed research direction to understand better how the virus works and to find out how it may be tackled. The number of manuscripts on preprint servers is soaring and peer-reviewed publications using MS-based proteomics are beginning to emerge. To facilitate proteomic research on SARS-CoV-2, the virus that causes COVID-19, this report presents deep-scale proteomes (10,000 proteins; >130,000 peptides) of common cell line models, notably Vero E6, Calu-3, Caco-2, and ACE2-A549 that characterize their protein expression profiles including viral entry factors such as ACE2 or TMPRSS2. Using the 9 kDa protein SRP9 and the breast cancer oncogene BRCA1 as examples, we show how the proteome expression data can be used to refine the annotation of protein-coding regions of the African green monkey and the Vero cell line genomes. Monitoring changes of the proteome on viral infection revealed widespread expression changes including transcriptional regulators, protease inhibitors, and proteins involved in innate immunity. Based on a library of 98 stable-isotope labeled synthetic peptides representing 11 SARS-CoV-2 proteins, we developed PRM (parallel reaction monitoring) assays for nano-flow and micro-flow LC–MS/MS. We assessed the merits of these PRM assays using supernatants of virus-infected Vero E6 cells and challenged the assays by analyzing two diagnostic cohorts of 24 (+30) SARS-CoV-2 positive and 28 (+9) negative cases. In light of the results obtained and including recent publications or manuscripts on preprint servers, we critically discuss the merits of MS-based proteomics for SARS-CoV-2 research and testing. Full Article