ide

Modeling COVID-19: A new video describing the types of models used

Below, Mac Hyman, Tulane University, talks about types of mathematical models--their strengths and weaknesses--the data that we currently have and what we really need, and what models can tell us about a possible second wave.

At the beginning of the video, he thanks the mathematics community for its work, and near the end says, "Our mathematical community is really playing a central role in helping to predict the spread, and help mitigate this epidemic, and prioritize our efforts. …Do not underestimate the power that mathematics can have in helping to mitigate this epidemic—-we have a role to play."

See the full set of videos on modeling COVID-19 and see media coverage of mathematics' role in modeling the pandemic.




ide

Classification and Identification of Lie Algebras

Libor Snobl, Czech Technical University, and Pavel Winternitz, Centre de Recherches Mathematiques, and Universite de Montreal - AMS | CRM, 2014, 306 pp., Hardcover, ISBN-13: 978-0-8218-4355-0, List: US$124, All AMS Members: US$99.20, CRMM/33

The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in...




ide

Some anti-epidemic measures eased

(To watch the full press conference with sign language interpretation, click here.)

 

Chief Executive Carrie Lam today said because Hong Kong has not reported a local COVID-19 case for over two weeks and imported cases are low, some anti-epidemic measures can be lifted.

 

During a press conference, Mrs Lam outlined that unlike some European countries, Hong Kong did not need to go into lockdown to contain the spread of the disease.

 

“Hong Kong has never gone into a stage of a complete city lockdown. In some of the European countries where they practise a city lockdown, residents are simply not allowed to leave their homes, except for some very essential purposes. But we have never adopted that practice.

 

“And in fact, many renowned experts are now trying to study our situation - why does Hong Kong succeed in keeping the confirmed cases at a low level without drastic measures like a complete city lockdown. And I do think that is a very interesting topic for further research.”

 

Mrs Lam noted that the Government had adopted the “suppress and lift” strategy under which restrictions are implemented and lifted in accordance with the infection situation.

 

“The strategy that Hong Kong has been adopting - and advocated by some of our experts - is what we call a ‘suppress and lift strategy’.

 

“So in light of the number of confirmed cases and likelihood of the spread of the disease in the community, we will have to suppress in order to make sure that there will be no surge in the number of confirmed cases as we have seen in some neighbouring regions.

 

“When the situation of the infection stabilises, that is the time for lifting, that is, loosening a bit so that society can operate more normally, especially for the businesses and for individuals’ behaviour.”

 

The Chief Executive said the Government still needed to monitor the COVID-19 situation closely, even though it was in the stage of lifting restrictions.

 

“We are now right in the stage of lifting because we have not had a local case for 16 days already and the number of imported cases is very, very low.

 

“We are now quite confident that the system of testing and holding that we have put in place for all arrivals from overseas would enable us to control the number of imported cases. So this is a time for lifting and this afternoon we have announced a number of lifting measures.

 

“If the situation continues to stay at the current level - no local cases, very few imported cases - then at the end of the 14-day period, that is May 22, of course that would be the time for more relaxation.”

 

Mrs Lam added that if a local case suddenly surfaced, Hong Kong may have to go back to some suppression measures, which was why the Government had to monitor the situation closely so it could take the necessary and pertinent response measures.




ide

Mathematician Emily Riehl earns President's Frontier Award

Emily Riehl, Johns Hopkins University, received the university's $250,000 President's Frontier Award, whose purpose is to nurture individuals at Johns Hopkins University who are breaking new ground and poised to become leaders in their field. Riehl studies category theory and says that "I just thought the proofs were the most beautiful of any of the other areas I've encountered. ... It was sort of love at first sight and I am lucky to be able to do what I love." The award is considered a "$250,000 investment in doing more of what she loves."

Also see and hear this coverage: "Johns Hopkins Mathematician from B-N [Bloomington-Normal, IL] Breaks Barriers and Wins Research Grant, by Jolie Sherman, WGLT, February 27, 2020.




ide

Biosynthesis of depsipeptides with a 3-hydroxybenzoate moiety and selective anticancer activities involves a chorismatase [Metabolism]

Neoantimycins are anticancer compounds of 15-membered ring antimycin-type depsipeptides. They are biosynthesized by a hybrid multimodular protein complex of nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS), typically from the starting precursor 3-formamidosalicylate. Examining fermentation extracts of Streptomyces conglobatus, here we discovered four new neoantimycin analogs, unantimycins B–E, in which 3-formamidosalicylates are replaced by an unusual 3-hydroxybenzoate (3-HBA) moiety. Unantimycins B–E exhibited levels of anticancer activities similar to those of the chemotherapeutic drug cisplatin in human lung cancer, colorectal cancer, and melanoma cells. Notably, they mostly displayed no significant toxicity toward noncancerous cells, unlike the serious toxicities generally reported for antimycin-type natural products. Using site-directed mutagenesis and heterologous expression, we found that unantimycin productions are correlated with the activity of a chorismatase homolog, the nat-hyg5 gene, from a type I PKS gene cluster. Biochemical analysis confirmed that the catalytic activity of Nat-hyg5 generates 3-HBA from chorismate. Finally, we achieved selective production of unantimycins B and C by engineering a chassis host. On the basis of these findings, we propose that unantimycin biosynthesis is directed by the neoantimycin-producing NRPS–PKS complex and initiated with the starter unit of 3-HBA. The elucidation of the biosynthetic unantimycin pathway reported here paves the way to improve the yield of these compounds for evaluation in oncotherapeutic applications.




ide

Inhibition of the erythropoietin-producing receptor EPHB4 antagonizes androgen receptor overexpression and reduces enzalutamide resistance [Molecular Bases of Disease]

Prostate cancer (PCa) cells heavily rely on an active androgen receptor (AR) pathway for their survival. Enzalutamide (MDV3100) is a second-generation antiandrogenic drug that was approved by the Food and Drug Administration in 2012 to treat patients with castration-resistant prostate cancer (CRPC). However, emergence of resistance against this drug is inevitable, and it has been a major challenge to develop interventions that help manage enzalutamide-resistant CRPC. Erythropoietin-producing human hepatocellular (Eph) receptors are targeted by ephrin protein ligands and have a broad range of functions. Increasing evidence indicates that this signaling pathway plays an important role in tumorigenesis. Overexpression of EPH receptor B4 (EPHB4) has been observed in multiple types of cancer, being closely associated with proliferation, invasion, and metastasis of tumors. Here, using RNA-Seq analyses of clinical and preclinical samples, along with several biochemical and molecular methods, we report that enzalutamide-resistant PCa requires an active EPHB4 pathway that supports drug resistance of this tumor type. Using a small kinase inhibitor and RNAi-based gene silencing to disrupt EPHB4 activity, we found that these disruptions re-sensitize enzalutamide-resistant PCa to the drug both in vitro and in vivo. Mechanistically, we found that EPHB4 stimulates the AR by inducing proto-oncogene c-Myc (c-Myc) expression. Taken together, these results provide critical insight into the mechanism of enzalutamide resistance in PCa, potentially offering a therapeutic avenue for enhancing the efficacy of enzalutamide to better manage this common malignancy.




ide

Cell-specific expression of the transcriptional regulator RHAMM provides a timing mechanism that controls appropriate wound re-epithelialization [Glycobiology and Extracellular Matrices]

Prevention of aberrant cutaneous wound repair and appropriate regeneration of an intact and functional integument require the coordinated timing of fibroblast and keratinocyte migration. Here, we identified a mechanism whereby opposing cell-specific motogenic functions of a multifunctional intracellular and extracellular protein, the receptor for hyaluronan-mediated motility (RHAMM), coordinates fibroblast and keratinocyte migration speed and ensures appropriate timing of excisional wound closure. We found that, unlike in WT mice, in Rhamm-null mice, keratinocyte migration initiates prematurely in the excisional wounds, resulting in wounds that have re-surfaced before the formation of normal granulation tissue, leading to a defective epidermal architecture. We also noted aberrant keratinocyte and fibroblast migration in the Rhamm-null mice, indicating that RHAMM suppresses keratinocyte motility but increases fibroblast motility. This cell context–dependent effect resulted from cell-specific regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation and expression of a RHAMM target gene encoding matrix metalloprotease 9 (MMP-9). In fibroblasts, RHAMM promoted ERK1/2 activation and MMP-9 expression, whereas in keratinocytes, RHAMM suppressed these activities. In keratinocytes, loss of RHAMM function or expression promoted epidermal growth factor receptor–regulated MMP-9 expression via ERK1/2, which resulted in cleavage of the ectodomain of the RHAMM partner protein CD44 and thereby increased keratinocyte motility. These results identify RHAMM as a key factor that integrates the timing of wound repair by controlling cell migration.




ide

Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol [Glycobiology and Extracellular Matrices]

β-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form β-cholesterylglucoside (β-GlcChol) in vitro. β-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate β-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (β-GalChol), in addition to β-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for β-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for β-GalChol formation. Liquid chromatography–tandem MS revealed that β-GlcChol and β-GalChol are present throughout development from embryo to adult in the mouse brain. We found that β-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of β-GalChol biosynthesis appeared to be during myelination. We also found that β-GlcChol and β-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form β-GalChol. This is the first report of the existence of β-GalChol in vertebrates and how β-GlcChol and β-GalChol are formed in the brain.




ide

Correction: A dual druggable genome-wide siRNA and compound library screening approach identifies modulators of parkin recruitment to mitochondria. [Additions and Corrections]

VOLUME 295 (2020) PAGES 3285–3300An incorrect graph was used in Fig. 5C. This error has now been corrected. Additionally, some of the statistics reported in the legend and text referring to Fig. 5C were incorrect. The F statistics for Fig. 5C should state Fken(3,16) = 7.454, p < 0.01; FCCCP(1,16) = 102.9, p < 0.0001; Finteraction(3,16) = 7.480, p < 0.01. This correction does not affect the results or conclusions of this work.jbc;295/17/5835/F5F1F5Figure 5C.




ide

X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms [Molecular Biophysics]

Cytochrome c oxidase (CcO) reduces O2 to water, coupled with a proton-pumping process. The structure of the O2-reduction site of CcO contains two reducing equivalents, Fea32+ and CuB1+, and suggests that a peroxide-bound state (Fea33+–O−–O−–CuB2+) rather than an O2-bound state (Fea32+–O2) is the initial catalytic intermediate. Unexpectedly, however, resonance Raman spectroscopy results have shown that the initial intermediate is Fea32+–O2, whereas Fea33+–O−–O−–CuB2+ is undetectable. Based on X-ray structures of static noncatalytic CcO forms and mutation analyses for bovine CcO, a proton-pumping mechanism has been proposed. It involves a proton-conducting pathway (the H-pathway) comprising a tandem hydrogen-bond network and a water channel located between the N- and P-side surfaces. However, a system for unidirectional proton-transport has not been experimentally identified. Here, an essentially identical X-ray structure for the two catalytic intermediates (P and F) of bovine CcO was determined at 1.8 Å resolution. A 1.70 Å Fe–O distance of the ferryl center could best be described as Fea34+ = O2−, not as Fea34+–OH−. The distance suggests an ∼800-cm−1 Raman stretching band. We found an interstitial water molecule that could trigger a rapid proton-coupled electron transfer from tyrosine-OH to the slowly forming Fea33+–O−–O−–CuB2+ state, preventing its detection, consistent with the unexpected Raman results. The H-pathway structures of both intermediates indicated that during proton-pumping from the hydrogen-bond network to the P-side, a transmembrane helix closes the water channel connecting the N-side with the hydrogen-bond network, facilitating unidirectional proton-pumping during the P-to-F transition.




ide

An enzyme-based protocol for cell-free synthesis of nature-identical capsular oligosaccharides from Actinobacillus pleuropneumoniae serotype 1 [Enzymology]

Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-β(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers.




ide

Determination of globotriaosylceramide analogs in the organs of a mouse model of Fabry disease [Lipids]

Fabry disease is a heritable lipid disorder caused by the low activity of α-galactosidase A and characterized by the systemic accumulation of globotriaosylceramide (Gb3). Recent studies have reported a structural heterogeneity of Gb3 in Fabry disease, including Gb3 isoforms with different fatty acids and Gb3 analogs with modifications on the sphingosine moiety. However, Gb3 assays are often performed only on the selected Gb3 isoforms. To precisely determine the total Gb3 concentration, here we established two methods for determining both Gb3 isoforms and analogs. One was the deacylation method, involving Gb3 treatment with sphingolipid ceramide N-deacylase, followed by an assay of the deacylated products, globotriaosylsphingosine (lyso-Gb3) and its analogs, by ultra-performance LC coupled to tandem MS (UPLC-MS/MS). The other method was a direct assay established in the present study for 37 Gb3 isoforms and analogs/isoforms by UPLC-MS/MS. Gb3s from the organs of symptomatic animals of a Fabry disease mouse model were mainly Gb3 isoforms and two Gb3 analogs, such as Gb3(+18) containing the lyso-Gb3(+18) moiety and Gb3(−2) containing the lyso-Gb3(−2) moiety. The total concentrations and Gb3 analog distributions determined by the two methods were comparable. Gb3(+18) levels were high in the kidneys (24% of total Gb3) and the liver (13%), and we observed Gb3(−2) in the heart (10%) and the kidneys (5%). These results indicate organ-specific expression of Gb3 analogs, insights that may lead to a deeper understanding of the pathophysiology of Fabry disease.




ide

CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects [DNA and Chromosomes]

Cas12a (Cpf1) is an RNA-guided endonuclease in the bacterial type V-A CRISPR-Cas anti-phage immune system that can be repurposed for genome editing. Cas12a can bind and cut dsDNA targets with high specificity in vivo, making it an ideal candidate for expanding the arsenal of enzymes used in precise genome editing. However, this reported high specificity contradicts Cas12a's natural role as an immune effector against rapidly evolving phages. Here, we employed high-throughput in vitro cleavage assays to determine and compare the native cleavage specificities and activities of three different natural Cas12a orthologs (FnCas12a, LbCas12a, and AsCas12a). Surprisingly, we observed pervasive sequence-specific nicking of randomized target libraries, with strong nicking of DNA sequences containing up to four mismatches in the Cas12a-targeted DNA-RNA hybrid sequences. We also found that these nicking and cleavage activities depend on mismatch type and position and vary with Cas12a ortholog and CRISPR RNA sequence. Our analysis further revealed robust nonspecific nicking of dsDNA when Cas12a is activated by binding to a target DNA. Together, our findings reveal that Cas12a has multiple nicking activities against dsDNA substrates and that these activities vary among different Cas12a orthologs.




ide

NF-{kappa}B mediates lipopolysaccharide-induced alternative pre-mRNA splicing of MyD88 in mouse macrophages [Signal Transduction]

Although a robust inflammatory response is needed to combat infection, this response must ultimately be terminated to prevent chronic inflammation. One mechanism that terminates inflammatory signaling is the production of alternative mRNA splice forms in the Toll-like receptor (TLR) signaling pathway. Whereas most genes in the TLR pathway encode positive mediators of inflammatory signaling, several, including that encoding the MyD88 signaling adaptor, also produce alternative spliced mRNA isoforms that encode dominant-negative inhibitors of the response. Production of these negatively acting alternatively spliced isoforms is induced by stimulation with the TLR4 agonist lipopolysaccharide (LPS); thus, this alternative pre-mRNA splicing represents a negative feedback loop that terminates TLR signaling and prevents chronic inflammation. In the current study, we investigated the mechanisms regulating the LPS-induced alternative pre-mRNA splicing of the MyD88 transcript in murine macrophages. We found that 1) the induction of the alternatively spliced MyD88 form is due to alternative pre-mRNA splicing and not caused by another RNA regulatory mechanism, 2) MyD88 splicing is regulated by both the MyD88- and TRIF-dependent arms of the TLR signaling pathway, 3) MyD88 splicing is regulated by the NF-κB transcription factor, and 4) NF-κB likely regulates MyD88 alternative pre-mRNA splicing per se rather than regulating splicing indirectly by altering MyD88 transcription. We conclude that alternative splicing of MyD88 may provide a sensitive mechanism that ensures robust termination of inflammation for tissue repair and restoration of normal tissue homeostasis once an infection is controlled.




ide

Impact of 1,N6-ethenoadenosine, a damaged ribonucleotide in DNA, on translesion synthesis and repair [Enzymology]

Incorporation of ribonucleotides into DNA can severely diminish genome integrity. However, how ribonucleotides instigate DNA damage is poorly understood. In DNA, they can promote replication stress and genomic instability and have been implicated in several diseases. We report here the impact of the ribonucleotide rATP and of its naturally occurring damaged analog 1,N6-ethenoadenosine (1,N6-ϵrA) on translesion synthesis (TLS), mediated by human DNA polymerase η (hpol η), and on RNase H2–mediated incision. Mass spectral analysis revealed that 1,N6-ϵrA in DNA generates extensive frameshifts during TLS, which can lead to genomic instability. Moreover, steady-state kinetic analysis of the TLS process indicated that deoxypurines (i.e. dATP and dGTP) are inserted predominantly opposite 1,N6-ϵrA. We also show that hpol η acts as a reverse transcriptase in the presence of damaged ribonucleotide 1,N6-ϵrA but has poor RNA primer extension activities. Steady-state kinetic analysis of reverse transcription and RNA primer extension showed that hpol η favors the addition of dATP and dGTP opposite 1,N6-ϵrA. We also found that RNase H2 recognizes 1,N6-ϵrA but has limited incision activity across from this lesion, which can lead to the persistence of this detrimental DNA adduct. We conclude that the damaged and unrepaired ribonucleotide 1,N6-ϵrA in DNA exhibits mutagenic potential and can also alter the reading frame in an mRNA transcript because 1,N6-ϵrA is incompletely incised by RNase H2.




ide

DHHC7-mediated palmitoylation of the accessory protein barttin critically regulates the functions of ClC-K chloride channels [Cell Biology]

Barttin is the accessory subunit of the human ClC-K chloride channels, which are expressed in both the kidney and inner ear. Barttin promotes trafficking of the complex it forms with ClC-K to the plasma membrane and is involved in activating this channel. Barttin undergoes post-translational palmitoylation that is essential for its functions, but the enzyme(s) catalyzing this post-translational modification is unknown. Here, we identified zinc finger DHHC-type containing 7 (DHHC7) protein as an important barttin palmitoyl acyltransferase, whose depletion affected barttin palmitoylation and ClC-K-barttin channel activation. We investigated the functional role of barttin palmitoylation in vivo in Zdhhc7−/− mice. Although palmitoylation of barttin in kidneys of Zdhhc7−/− animals was significantly decreased, it did not pathologically alter kidney structure and functions under physiological conditions. However, when Zdhhc7−/− mice were fed a low-salt diet, they developed hyponatremia and mild metabolic alkalosis, symptoms characteristic of human Bartter syndrome (BS) type IV. Of note, we also observed decreased palmitoylation of the disease-causing R8L barttin variant associated with human BS type IV. Our results indicate that dysregulated DHHC7-mediated barttin palmitoylation appears to play an important role in chloride channel dysfunction in certain BS variants, suggesting that targeting DHHC7 activity may offer a potential therapeutic strategy for reducing hypertension.




ide

Genetic evidence for reconfiguration of DNA polymerase {theta} active site for error-free translesion synthesis in human cells [DNA and Chromosomes]

The action mechanisms revealed by the biochemical and structural analyses of replicative and translesion synthesis (TLS) DNA polymerases (Pols) are retained in their cellular roles. In this regard, DNA polymerase θ differs from other Pols in that whereas purified Polθ misincorporates an A opposite 1,N6-ethenodeoxyadenosine (ϵdA) using an abasic-like mode, Polθ performs predominantly error-free TLS in human cells. To test the hypothesis that Polθ adopts a different mechanism for replicating through ϵdA in human cells than in the purified Pol, here we analyze the effects of mutations in the two highly conserved tyrosine residues, Tyr-2387 and Tyr-2391, in the Polθ active site. Our findings that these residues are indispensable for TLS by the purified Pol but are not required in human cells, as well as other findings, provide strong evidence that the Polθ active site is reconfigured in human cells to stabilize ϵdA in the syn conformation for Hoogsteen base pairing with the correct nucleotide. The evidence that a DNA polymerase can configure its active site entirely differently in human cells than in the purified Pol establishes a new paradigm for DNA polymerase function.




ide

HKEAA submits 2019 Territory-wide System Assessment Report




ide

One-stop Life Planning Information Website provided by Education Bureau




ide

Units under EDB continue to provide basic public services




ide

EDB to provide subsidies to schools and students to fight against epidemic




ide

SED on DSE and anti-epidemic measures




ide

Masks provided for HKDSE candidates




ide

Continuous learning and development in time of epidemic




ide

EDB progressively disburses anti-epidemic subsidies and support grants to schools




ide

Integration and Application of Knowledge, Experience and Resources Supporting Students with Special Educational Needs in the Epidemic




ide

EDB provides more relief grants to affected sectors




ide

Could a polio vaccine stop the coronavirus pandemic? (video)

(American Chemical Society) The COVID-19 pandemic has scientists considering a few less-conventional options while vaccines against SARS-CoV-2 are being developed. One option might be the oral polio vaccine. We chatted with one of the researchers proposing the idea -- Robert Gallo, M.D. -- to understand why a vaccine that hasn't been used in the U.S. for two decades might provide short-term protection against this new coronavirus: https://youtu.be/Wqw4aX4c33c.




ide

New guidelines for treating the sickest COVID-19 patients

(University of Houston) A new set of recommendations for health care workers on the front lines, to help them make decisions on how to treat the most critical COVID-19 patients, those with severe lung or heart failure, has been published.




ide

SAS Notes for SAS®9 - 32202: Dual-monitor setup might cause problems in SAS Enterprise Guide

Problems might occur when using SAS Enterprise Guide with dual monitors. For example, it might appear there is a performance problem with the query builder or other task, or it might appear that code or a task is hung, or




ide

New Research from Columbia Business School Shows Radical Changes in Household Spending Habits During COVID-19 Epidemic

Tuesday, April 28, 2020 - 14:30

Study provides first real-time view into household consumption during outbreak in U.S., showing an initial sharp increase in key categories, followed by a sharp decrease in overall spending

 




ide

New Research: Crisis of Confidence over COVID-19 Could Delay Economic Recovery for a Decade

Wednesday, April 29, 2020 - 11:45

Working Paper from Columbia Business School Quantifies Impact of “Belief Scarring” on Economic Recovery, Finds Crisis Could Result in over 180% loss of annual GDP




ide

Cool Met Stuff, composition of air, main gases, climate change, global warming, carbon dioxide concentration, fraction, atmosphere

Do you know which main gases are contained in the composition of air? Under climate change and global warming, carbon dioxide ...




ide

Online Video Course, Public Course, Weather Observation

The "Online Video Course on Weather Observation" will explain concisely the basic weather observation methods and techniques, such...




ide

Simulations forecast nationwide increase in human exposure to extreme climate events

(DOE/Oak Ridge National Laboratory) Using ORNL's now-decommissioned Titan supercomputer, a team of researchers estimated the combined consequences of many different extreme climate events at the county level, a unique approach that provided unprecedented regional and national climate projections that identified the areas most likely to face climate-related challenges.




ide

Considering how many firms can meet pollutant standards can spur green tech development

(Carnegie Mellon University) A new study developed a model of regulation in which the probability of a stricter standard being enacted increased with the proportion of firms in an industry that could meet the standard. The study found that regulations that consider the proportion of firms that can meet the new standard can motivate the development of a new green technology more effectively than regulations that do not consider this factor.




ide

Inside Jakk Media's Unusual Brand Marketing Strategy

Tuesday, September 10, 2019 - 21:00




ide

NJIT physics team provides novel swab design, free of charge, to augment COVID-19 testing

(New Jersey Institute of Technology) A team of NJIT physicists has developed a novel test swab that can be 3D printed using inexpensive, widely available materials and speedily assembled in a range of fabrication settings. To augment the nation's testing capabilities, the inventors are making the swab's design publicly available, free of licensing fees, during the COVID-19 emergency.




ide

Which operations can restart first? New guide could help hospitals decide

(Michigan Medicine - University of Michigan) Now, as hospitals across the country start to return to doing non-emergency operations that keep their beds full and their books balanced, they need to think carefully about what resources each of those procedures will need as the pandemic continues. A new guide could help them prioritize and plan. Created by poring over seven years' worth of data from 17 common operations in dozens of hospitals, it's available for free for any hospital to use.




ide

Computational techniques explore 'the dark side of amyloid aggregation in the brain'

(University of Massachusetts Amherst) As physicians and families know too well, though Alzheimer's disease has been intensely studied for decades, too much is still not known about molecular processes in the brain that cause it. Now researchers at the University of Massachusetts Amherst say new insights from analytic theory and molecular simulation techniques offer a better understanding of amyloid fibril growth and brain pathology.




ide

SFU epidemiologist awarded Genome B.C. grant to develop COVID-19 statistical tool

(Simon Fraser University) SFU professor Caroline Colijn’s research and data modelling to map the spread of COVID-19 in British Columbia has helped her procure funding from Genome B.C., a non-profit research organization that leads genomics innovation on Canada’s West Coast.




ide

Coronavirus drugs: Where are we, and what's next? (video)

(American Chemical Society) Antiviral drugs could help us fight the new coronavirus, but currently, we don't have a highly potent, effective antiviral that cures COVID-19. Why not? We called a few virologists to find out: https://youtu.be/AIpeZDR9i3E.




ide

DDT, other banned pesticides found in Detroit-area black women: BU study

(Boston University School of Medicine) A new Boston University School of Public Health (BUSPH) study published in the journal Environmental Research finds detectable levels of DDE (what DDT becomes when metabolized in the body) and other banned organochlorine pesticides (OCPs) in the blood of over 60 percent of a cohort of black women of reproductive age in the Detroit area, with higher levels in women who smoked cigarettes daily, drank more alcohol, and drank more water.




ide

Evidence of Late Pleistocene human colonization of isolated islands beyond Wallace's Line

(Max Planck Institute for the Science of Human History) What makes our species unique compared to other hominins? High profile genetic, fossil and material culture discoveries present scientists working in the Late Pleistocene with an ever-more complex picture of interactions between early hominin populations. One distinctive characteristic of Homo sapiens, however, appears to be its global distribution. Exploring how Homo sapiens colonized most of the world's continents in a relatively short period could reveal the exceptional capacities of humans relative to other hominins.




ide

Fossil reveals evidence of 200-million-year-old 'squid' attack

(University of Plymouth) Researchers say a fossil found on the Jurassic coast of southern England in the 19th century demonstrates the world's oldest known example of a squid-like creature attacking its prey.




ide

Biden holds remote campaign events with supporters

The presumptive Democratic presidential nominee Joe Biden campaigns virtually in his Delaware home; Fox News correspondent Peter Doocy reports.





ide

Fresno residents adjust to first day of mandatory face masks

You can now add Fresno to the growing list of cities that are now requiring people to wear face masks in public places.





ide

J-IDEA launches coronavirus pandemic hospital planning tool

Imperial's disease outbreak centre J-IDEA has launched a pandemic hospital planning tool to help cope with extreme surges in demand from coronavirus.




ide

Online platform enables scientists worldwide to collaborate on COVID-19 projects

Alumni inspired by the scientific response to the SARS outbreak are developing a platform to help researchers collaborate on global challenges.




ide

nTIDE April 2020 jobs report: COVID recession hits workers with disabilities harder

(Kessler Foundation) Andrew Houtenville, Ph.D., research director of the University of New Hampshire's Institute on Disability: 'Unlike the Great Recession and the Great Depression, many workers in the COVID Recession may be 'on temporary layoff' (aka furloughed) and may be recalled, rather than losing their jobs completely. To further investigate this issue, we plan to release a Special nTIDE Report on May 15.'