ph

Two-Way Short Message Service (SMS) Communication May Increase Pre-Exposure Prophylaxis Continuation and Adherence Among Pregnant and Postpartum Women in Kenya

ABSTRACTIntroduction:We evaluated a 2-way short message service (SMS) communication platform to improve continuation of pre-exposure prophylaxis (PrEP) for HIV prevention among Kenyan women who initiated PrEP within routine maternal child health (MCH) and family planning clinics.Methods:We adapted an existing SMS platform (Mobile WACh [mWACh]) to send PrEP-tailored, theory-based SMS and allow clients to communicate with a remote nurse. Women who did not have HIV and who were initiating PrEP at 2 MCH/family planning clinics in Kisumu County, Kenya, from February to October 2018, were offered enrollment into the mWACh-PrEP program; SMS communication was free. We evaluated acceptability, satisfaction, and implementation metrics. In a pre/postevaluation, we compared PrEP continuation at 1-month postinitiation among women who initiated PrEP in the period before (n=166) versus after mWACh-PrEP implementation, adjusting for baseline differences.Results:Of the 334 women who were screened for enrollment into the mWACh-PrEP program; 193 (58%) were eligible and of those, 190 (98%) accepted enrollment. Reasons for ineligibility (n=141) included no phone access (29%) and shared SIM cards (25%). Median age was 25 years (interquartile range=22–30), and 91% were MCH clients. Compared to women who initiated PrEP in the month before mWACh-PrEP implementation, women who enrolled in mWACh-PrEP were more likely to return for their first PrEP follow-up visit (40% vs. 53%; adjusted risk ratio [aRR]=1.26; 95% confidence interval [CI]= 1.06, 1.50; P=.008) and more likely to continue PrEP (22% vs. 43%; aRR=1.75; 95% CI=1.21, 2.55; P=.003). Among those who returned, 99% reported successful receipt of SMS through the mWACh-PrEP system and 94% reported that mWACh-PrEP helped them understand PrEP better. Concerns about PrEP use, how it works, and side effects accounted for the majority (80%) of issues raised by participants using SMS.Conclusions:Two-way SMS expanded support for PrEP and opportunities for dialogue beyond the clinic and enabled women to ask and receive answers in real time regarding PrEP, which facilitated its continued use.




ph

Diagnostic Utility and Impact on Clinical Decision Making of Focused Assessment With Sonography for HIV-Associated Tuberculosis in Malawi: A Prospective Cohort Study

ABSTRACTBackground:The focused assessment with sonography for HIV-associated tuberculosis (TB) (FASH) ultrasound protocol has been increasingly used to help clinicians diagnose TB. We sought to quantify the diagnostic utility of FASH for TB among individuals with HIV in Malawi.Methods:Between March 2016 and August 2017, 210 adults with HIV who had 2 or more signs and symptoms that were concerning for TB (fever, cough, night sweats, weight loss) were enrolled from a public HIV clinic in Lilongwe, Malawi. The treating clinicians conducted a history, physical exam, FASH protocol, and additional TB evaluation (laboratory diagnostics and chest radiography) on all participants. The clinician made a final treatment decision based on all available information. At the 6-month follow-up visit, we categorized participants based on clinical outcomes and diagnostic tests as having probable/confirmed TB or unlikely TB; association of FASH with probable/confirmed TB was calculated using Fisher's exact tests. The impact of FASH on empiric TB treatment was determined by asking the clinicians prospectively about whether they would start treatment at 2 time points in the baseline visit: (1) after the initial history and physical exam; and (2) after history, physical exam, and FASH protocol.Results:A total of 181 participants underwent final analysis, of whom 56 were categorized as probable/confirmed TB and 125 were categorized as unlikely TB. The FASH protocol was positive in 71% (40/56) of participants with probable/confirmed TB compared to 24% (30/125) of participants with unlikely TB (odds ratio=7.9, 95% confidence interval=3.9,16.1; P<.001). Among those classified as confirmed/probable TB, FASH increased the likelihood of empiric TB treatment before obtaining any other diagnostic studies from 9% (5/56) to 46% (26/56) at the point-of-care. For those classified as unlikely TB, FASH increased the likelihood of empiric treatment from 2% to 4%.Conclusion:In the setting of HIV coinfection in Malawi, FASH can be a helpful tool that augments the clinician's ability to make a timely diagnosis of TB.




ph

Association of early disease progression and very poor survival in the GALLIUM study in follicular lymphoma: benefit of obinutuzumab in reducing the rate of early progression




ph

Relationship between factor VIII activity, bleeds and individual characteristics in severe hemophilia A patients

Pharmacokinetic-based prophylaxis of replacement factor VIII (FVIII) products has been encouraged in recent years, but the relationship between exposure (factor VIII activity) and response (bleeding frequency) remains unclear. The aim of this study was to characterize the relationship between FVIII dose, plasma FVIII activity, and bleeding patterns and individual characteristics in severe hemophilia A patients. Pooled pharmacokinetic and bleeding data during prophylactic treatment with BAY 81-8973 (octocog alfa) were obtained from the three LEOPOLD trials. The population pharmacokinetics of FVIII activity and longitudinal bleeding frequency, as well as bleeding severity, were described using non-linear mixed effects modeling in NONMEM. In total, 183 patients [median age 22 years (range, 1-61); weight 60 kg (11-124)] contributed with 1,535 plasma FVIII activity observations, 633 bleeds and 11 patient/study characteristics [median observation period 12 months (3.1-13.1)]. A parametric repeated time-to-categorical bleed model, guided by plasma FVIII activity from a 2-compartment population pharmacokinetic model, described the time to the occurrence of bleeds and their severity. Bleeding probability decreased with time of study, and a bleed was not found to affect the time of the next bleed. Several covariate effects were identified, including the bleeding history in the 12-month pre-study period increasing the bleeding hazard. However, unexplained inter-patient variability in the phenotypic bleeding pattern remained large (111%CV). Further studies to translate the model into a tool for dose individualization that considers the individual bleeding risk are required. Research was based on a post-hoc analysis of the LEOPOLD studies registered at clinicaltrials.gov identifiers: 01029340, 01233258 and 01311648.




ph

Genomic alterations in high-risk chronic lymphocytic leukemia frequently affect cell cycle key regulators and NOTCH1-regulated transcription

To identify genomic alterations contributing to the pathogenesis of high-risk chronic lymphocytic leukemia (CLL) beyond the well-established role of TP53 aberrations, we comprehensively analyzed 75 relapsed/refractory and 71 treatment-naïve high-risk cases from prospective clinical trials by single nucleotide polymorphism arrays and targeted next-generation sequencing. Increased genomic complexity was a hallmark of relapsed/refractory and treatment-naïve high-risk CLL. In relapsed/refractory cases previously exposed to the selective pressure of chemo(immuno)therapy, gain(8)(q24.21) and del(9)(p21.3) were particularly enriched. Both alterations affect key regulators of cell-cycle progression, namely MYC and CDKN2A/B. While homozygous CDKN2A/B loss has been directly associated with Richter transformation, we did not find this association for heterozygous loss of CDKN2A/B. Gains in 8q24.21 were either focal gains in a MYC enhancer region or large gains affecting the MYC locus, but only the latter type was highly enriched in relapsed/refractory CLL (17%). In addition to a high frequency of NOTCH1 mutations (23%), we found recurrent genetic alterations in SPEN (4% mutated), RBPJ (8% deleted) and SNW1 (8% deleted), all affecting a protein complex that represses transcription of NOTCH1 target genes. We investigated the functional impact of these alterations on HES1, DTX1 and MYC gene transcription and found derepression of these NOTCH1 target genes particularly with SPEN mutations. In summary, we provide new insights into the genomic architecture of high-risk CLL, define novel recurrent DNA copy number alterations and refine knowledge on del(9p), gain(8q) and alterations affecting NOTCH1 signaling. This study was registered at ClinicalTrials.gov with number NCT01392079.




ph

An increase in MYC copy number has a progressive negative prognostic impact in patients with diffuse large B-cell and high-grade lymphoma, who may benefit from intensified treatment regimens

MYC translocations, a hallmark of Burkitt lymphoma, occur in 5-15% of diffuse large B-cell lymphoma, and have a negative prognostic impact. Numerical aberrations of MYC have also been detected in these patients, but their incidence and prognostic role are still controversial. We analyzed the clinical impact of MYC increased copy number on 385 patients with diffuse large B-cell lymphoma screened at diagnosis for MYC, BCL2, and BCL6 rearrangements. We enumerated the number of MYC copies, defining as amplified those cases with an uncountable number of extra-copies. The prevalence of MYC translocation, increased copy number and amplification was 8.8%, 15%, and 1%, respectively. Patients with 3 or 4 gene copies, accounting for more than 60% of patients with MYC copy number changes, had a more favorable outcome compared to patients with >4 copies or translocation of MYC, and were not influenced by the type of treatment received as first-line. Stratification according to the number of MYC extra-copies showed a negative correlation between an increasing number of copies and survival. Patients with >7 copies or the amplification of MYC had the poorest prognosis. Patients with >4 copies of MYC showed a similar, trending towards worse prognosis compared to patients with MYC translocation. The survival of patients with >4 copies, translocation or amplification of MYC seemed to be superior if intensive treatments were used. Our study underlines the importance of fluorescence in situ hybridization testing at diagnosis of diffuse large B-cell lymphoma to detect the rather frequent and clinically significant numerical aberrations of MYC.




ph

CXCR4 upregulation is an indicator of sensitivity to B-cell receptor/PI3K blockade and a potential resistance mechanism in B-cell receptor-dependent diffuse large B-cell lymphomas

B-cell receptor (BCR) signaling pathway components represent promising treatment targets in multiple B-cell malignancies including diffuse large B-cell lymphoma (DLBCL). In in vitro and in vivo model systems, a subset of DLBCLs depend upon BCR survival signals and respond to proximal BCR/phosphoinositide 3 kinase (PI3K) blockade. However, single-agent BCR pathway inhibitors have had more limited activity in patients with DLBCL, underscoring the need for indicators of sensitivity to BCR blockade and insights into potential resistance mechanisms. Here, we report highly significant transcriptional upregulation of C-X-C chemokine receptor 4 (CXCR4) in BCR-dependent DLBCL cell lines and primary tumors following chemical spleen tyrosine kinase (SYK) inhibition, molecular SYK depletion or chemical PI3K blockade. SYK or PI3K inhibition also selectively upregulated cell surface CXCR4 protein expression in BCR-dependent DLBCLs. CXCR4 expression was directly modulated by fork-head box O1 via the PI3K/protein kinase B/forkhead box O1 signaling axis. Following chemical SYK inhibition, all BCR-dependent DLBCLs exhibited significantly increased stromal cell-derived factor-1α (SDF-1α) induced chemotaxis, consistent with the role of CXCR4 signaling in B-cell migration. Select PI3K isoform inhibitors also augmented SDF-1α induced chemotaxis. These data define CXCR4 upregulation as an indicator of sensitivity to BCR/PI3K blockade and identify CXCR4 signaling as a potential resistance mechanism in BCR-dependent DLBCLs.




ph

Identification of a miR-146b-Fas ligand axis in the development of neutropenia in T large granular lymphocyte leukemia

Tlarge granular lymphocyte leukemia (T-LGLL) is characterized by the expansion of several large granular lymphocyte clones, among which a subset of large granular lymphocytes showing constitutively activated STAT3, a specific CD8+/CD4 phenotype and the presence of neutropenia has been identified. Although STAT3 is an inducer of transcription of a large number of oncogenes, so far its relationship with miRNAs has not been evaluated in T-LGLL patients. Here, we investigated whether STAT3 could carry out its pathogenetic role in T-LGLL through an altered expression of miRNAs. The expression level of 756 mature miRNA was assessed on purified T large granular lymphocytes (T-LGLs) by using a TaqMan Human microRNA Array. Hierarchical Clustering Analysis of miRNA array data shows that the global miRNome clusters with CD8 T-LGLs. Remarkably, CD8 T-LGLs exhibit a selective and STAT3-dependent repression of miR-146b expression, that significantly correlated with the absolute neutrophil counts and inversely correlated with the expression of Fas ligand (FasL), that is regarded as the most relevant factor in the pathogenesis of neutropenia. Experimental evidence demonstrates that the STAT3-dependent reduction of miR-146b expression in CD8 T-LGLs occurs as a consequence of miR-146b promoter hypermethylation and results in the disruption of the HuR-mediated post-transcriptional machinery controlling FasL mRNA stabilization. Restoring miR-146b expression in CD8 T-LGLs lead to a reduction of HuR protein and, in turn, of FasL mRNA expression, thus providing mechanistic insights for the existence of a STAT3-miR146b-FasL axis and neutropenia in T-LGLL.




ph

An intronic deletion in megakaryoblastic leukemia 1 is associated with hyperproliferation of B cells in triplets with Hodgkin lymphoma

Megakaryoblastic leukemia 1 (MKL1) is a coactivator of serum response factor and together they regulate transcription of actin cytoskeleton genes. MKL1 is associated with hematologic malignancies and immunodeficiency, but its role in B cells is unexplored. Here we examined B cells from monozygotic triplets with an intronic deletion in MKL1, two of whom had been previously treated for Hodgkin lymphoma (HL). To investigate MKL1 and B-cell responses in the pathogenesis of HL, we generated Epstein-Barr virus-transformed lymphoblastoid cell lines from the triplets and two controls. While cells from the patients with treated HL had a phenotype close to that of the healthy controls, cells from the undiagnosed triplet had increased MKL1 mRNA, increased MKL1 protein, and elevated expression of MKL1-dependent genes. This profile was associated with elevated actin content, increased cell spreading, decreased expression of CD11a integrin molecules, and delayed aggregation. Moreover, cells from the undiagnosed triplet proliferated faster, displayed a higher proportion of cells with hyperploidy, and formed large tumors in vivo. This phenotype was reversible by inhibiting MKL1 activity. Interestingly, cells from the triplet treated for HL in 1985 contained two subpopulations: one with high expression of CD11a that behaved like control cells and the other with low expression of CD11a that formed large tumors in vivo similar to cells from the undiagnosed triplet. This implies that pre-malignant cells had re-emerged a long time after treatment. Together, these data suggest that dysregulated MKL1 activity participates in B-cell transformation and the pathogenesis of HL.




ph

Impact of cytogenetic abnormalities on outcomes of adult Philadelphia-negative acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation: a study by the Acute Leukemia Working Committee of the Center for International Blood and

Cytogenetic risk stratification at diagnosis has long been one of the most useful tools to assess prognosis in acute lymphoblastic leukemia (ALL). To examine the prognostic impact of cytogenetic abnormalities on outcomes after allogeneic hematopoietic cell transplantation, we studied 1731 adults with Philadelphia-negative ALL in complete remission who underwent myeloablative or reduced intensity/non-myeloablative conditioning transplant from unrelated or matched sibling donors reported to the Center for International Blood and Marrow Transplant Research. A total of 632 patients had abnormal conventional metaphase cytogenetics. The leukemia-free survival and overall survival rates at 5 years after transplantation in patients with abnormal cytogenetics were 40% and 42%, respectively, which were similar to those in patients with a normal karyotype. Of the previously established cytogenetic risk classifications, modified Medical Research Council-Eastern Cooperative Oncology Group score was the only independent prognosticator of leukemia-free survival (P=0.03). In the multivariable analysis, monosomy 7 predicted post-transplant relapse [hazard ratio (HR)=2.11; 95% confidence interval (95% CI): 1.04-4.27] and treatment failure (HR=1.97; 95% CI: 1.20-3.24). Complex karyotype was prognostic for relapse (HR=1.69; 95% CI: 1.06-2.69), whereas t(8;14) predicted treatment failure (HR=2.85; 95% CI: 1.35-6.02) and overall mortality (HR=3.03; 95% CI: 1.44-6.41). This large study suggested a novel transplant-specific cytogenetic scheme with adverse [monosomy 7, complex karyotype, del(7q), t(8;14), t(11;19), del(11q), tetraploidy/near triploidy], intermediate (normal karyotype and all other abnormalities), and favorable (high hyperdiploidy) risks to prognosticate leukemia-free survival (P=0.02). Although some previously established high-risk Philadelphia-negative cytogenetic abnormalities in ALL can be overcome by transplantation, monosomy 7, complex karyotype, and t(8;14) continue to pose significant risks and yield inferior outcomes.




ph

Dissecting molecular mechanisms of resistance to NOTCH1-targeted therapy in T-cell acute lymphoblastic leukemia xenografts

Despite substantial progress in treatment of T-cell acute lymphoblastic leukemia (T-ALL), mortality remains relatively high, mainly due to primary or acquired resistance to chemotherapy. Further improvements in survival demand better understanding of T-ALL biology and development of new therapeutic strategies. The Notch pathway has been involved in the pathogenesis of this disease and various therapeutic strategies are currently under development, including selective targeting of NOTCH receptors by inhibitory antibodies. We previously demonstrated that the NOTCH1-specific neutralizing antibody OMP52M51 prolongs survival in TALL patient-derived xenografts bearing NOTCH1/FBW7 mutations. However, acquired resistance to OMP52M51 eventually developed and we used patient-derived xenografts models to investigate this phenomenon. Multi-level molecular characterization of T-ALL cells resistant to NOTCH1 blockade and serial transplantation experiments uncovered heterogeneous types of resistance, not previously reported with other Notch inhibitors. In one model, resistance appeared after 156 days of treatment, it was stable and associated with loss of Notch inhibition, reduced mutational load and acquired NOTCH1 mutations potentially affecting the stability of the heterodimerization domain. Conversely, in another model resistance developed after only 43 days of treatment despite persistent down-regulation of Notch signaling and it was accompanied by modulation of lipid metabolism and reduced surface expression of NOTCH1. Our findings shed light on heterogeneous mechanisms adopted by the tumor to evade NOTCH1 blockade and support clinical implementation of antibody-based target therapy for Notch-addicted tumors.




ph

Phosphorylation of BECLIN-1 by BCR-ABL suppresses autophagy in chronic myeloid leukemia

Autophagy is a genetically regulated process of adaptation to metabolic stress and was recently shown to be involved in the treatment response of chronic myeloid leukemia (CML). However, in vivo data are limited and the molecular mechanism of autophagy regulators in the process of leukemogenesis is not completely understood. Here we show that Beclin-1 knockdown, but not Atg5 deletion in a murine CML model leads to a reduced leukemic burden and results in a significantly prolonged median survival of targeted mice. Further analyses of murine cell lines and primary patient material indicate that active BCR-ABL directly interacts with BECLIN-1 and phosphorylates its tyrosine residues 233 and 352, resulting in autophagy suppression. By using phosphorylation-deficient and phosphorylation-mimic mutants, we identify BCR-ABL induced BECLIN-1 phosphorylation as a crucial mechanism for BECLIN-1 complex formation: interaction analyses exhibit diminished binding of the positive autophagy regulators UVRAG, VPS15, ATG14 and VPS34 and enhanced binding of the negative regulator Rubicon to BCR-ABL-phosphorylated BECLIN-1. Taken together, our findings show interaction of BCR-ABL and BECLIN-1 thereby highlighting the importance of BECLIN-1-mediated autophagy in BCR-ABL+ cells.




ph

Appropriation of GPIb{alpha} from platelet-derived extracellular vesicles supports monocyte recruitment in systemic inflammation

Interactions between platelets, leukocytes and the vessel wall provide alternative pathological routes of thrombo-inflammatory leukocyte recruitment. We found that when platelets were activated by a range of agonists in whole blood, they shed platelet-derived extracellular vesicles which rapidly and preferentially bound to blood monocytes compared to other leukocytes. Platelet-derived extracellular vesicle binding to monocytes was initiated by P-selectin-dependent adhesion and was stabilised by binding of phosphatidylserine. These interactions resulted in the progressive transfer of the platelet adhesion receptor GPIbα to monocytes. GPIbα+-monocytes tethered and rolled on immobilised von Willebrand Factor or were recruited and activated on endothelial cells treated with TGF-β1 to induce the expression of von Willebrand Factor. In both models monocyte adhesion was ablated by a function-blocking antibody against GPIbα. Monocytes could also bind platelet-derived extracellular vesicle in mouse blood in vitro and in vivo. Intratracheal instillations of diesel nanoparticles, to model chronic pulmonary inflammation, induced accumulation of GPIbα on circulating monocytes. In intravital experiments, GPIbα+-monocytes adhered to the microcirculation of the TGF-β1-stimulated cremaster muscle, while in the ApoE–/– model of atherosclerosis, GPIbα+-monocytes adhered to the carotid arteries. In trauma patients, monocytes bore platelet markers within 1 hour of injury, the levels of which correlated with severity of trauma and resulted in monocyte clearance from the circulation. Thus, we have defined a novel thrombo-inflammatory pathway in which platelet-derived extracellular vesicles transfer a platelet adhesion receptor to monocytes, allowing their recruitment in large and small blood vessels, and which is likely to be pathogenic.




ph

Genetics of "high-risk" chronic lymphocytic leukemia in the times of chemoimmunotherapy




ph

A post-stem cell transplant risk score for Philadelphia-negative acute lymphoblastic leukemia




ph

Severe treatment-refractory T-cell-mediated immune skin toxicities observed with obinutuzumab/rituximab-atezo-pola in two patients with follicular lymphoma




ph

Phase I/Ib study of carfilzomib and panobinostat with or without dexamethasone in patients with relapsed/refractory multiple myeloma




ph

CRISPR/Cas9-mediated gene deletion efficiently retards the progression of Philadelphia-positive acute lymphoblastic leukemia in a p210 BCR-ABL1T315I mutation mouse model




ph

Disease progression in myeloproliferative neoplasms: comparing patients in accelerated phase with those in chronic phase with increased blasts (<10%) or with other types of disease progression




ph

Ruxolitinib for refractory/relapsed hemophagocytic lymphohistiocytosis




ph

Functional assessment of glucocerebrosidase modulator efficacy in primary patient-derived macrophages is essential for drug development and patient stratification




ph

A Phenotypic Screen Identifies Calcium Overload as a Key Mechanism of {beta}-Cell Glucolipotoxicity

Type 2 diabetes (T2D) is caused by loss of pancreatic β-cell mass and failure of the remaining β-cells to deliver sufficient insulin to meet demand. β-Cell glucolipotoxicity (GLT), which refers to combined, deleterious effects of elevated glucose and fatty acid levels on β-cell function and survival, contributes to T2D-associated β-cell failure. Drugs and mechanisms that protect β-cells from GLT stress could potentially improve metabolic control in patients with T2D. In a phenotypic screen seeking low-molecular-weight compounds that protected β-cells from GLT, we identified compound A that selectively blocked GLT-induced apoptosis in rat insulinoma cells. Compound A and its optimized analogs also improved viability and function in primary rat and human islets under GLT. We discovered that compound A analogs decreased GLT-induced cytosolic calcium influx in islet cells, and all measured β-cell–protective effects correlated with this activity. Further studies revealed that the active compound from this series largely reversed GLT-induced global transcriptional changes. Our results suggest that taming cytosolic calcium overload in pancreatic islets can improve β-cell survival and function under GLT stress and thus could be an effective strategy for T2D treatment.




ph

Risk Factors for Diabetic Peripheral Neuropathy and Cardiovascular Autonomic Neuropathy in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study

The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study demonstrated that intensive glucose control reduced the risk of developing diabetic peripheral neuropathy (DPN) and cardiovascular autonomic neuropathy (CAN). We evaluated multiple risk factors and phenotypes associated with DPN and CAN in this large, well-characterized cohort of participants with type 1 diabetes, followed for >23 years. DPN was defined by symptoms, signs, and nerve conduction study abnormalities in ≥2 nerves; CAN was assessed using standardized cardiovascular reflex tests. Generalized estimating equation models assessed the association of DPN and CAN with individual risk factors measured repeatedly. During DCCT/EDIC, 33% of participants developed DPN and 44% CAN. Higher mean HbA1c was the most significant risk factor for DPN, followed by older age, longer duration, greater height, macroalbuminuria, higher mean pulse rate, β-blocker use, and sustained albuminuria. The most significant risk factor for CAN was older age, followed by higher mean HbA1c, sustained albuminuria, longer duration of type 1 diabetes, higher mean pulse rate, higher mean systolic blood pressure, β-blocker use, estimated glomerular filtration rate <60 mL/min/1.73 m2, higher most recent pulse rate, and cigarette smoking. These findings identify risk factors and phenotypes of participants with diabetic neuropathy that can be used in the design of new interventional trials and for personalized approaches to neuropathy prevention.




ph

Protection Against Insulin Resistance by Apolipoprotein M/Sphingosine-1-Phosphate

Subjects with low serum HDL cholesterol levels are reported to be susceptible to diabetes, with insulin resistance believed to be the underlying pathological mechanism. Apolipoprotein M (apoM) is a carrier of sphingosine-1-phosphate (S1P), a multifunctional lipid mediator, on HDL, and the pleiotropic effects of HDL are believed to be mediated by S1P. In the current study, we attempted to investigate the potential association between apoM/S1P and insulin resistance. We observed that the serum levels of apoM were lower in patients with type 2 diabetes and that they were negatively correlated with BMI and the insulin resistance index. While deletion of apoM in mice was associated with worsening of insulin resistance, overexpression of apoM was associated with improvement of insulin resistance. Presumably, apoM/S1P exerts its protective effect against insulin resistance by activating insulin signaling pathways, such as the AKT and AMPK pathways, and also by improving the mitochondrial functions through upregulation of SIRT1 protein levels. These actions of apoM/S1P appear to be mediated via activation of S1P1 and/or S1P3. These results suggest that apoM/S1P exerts protective roles against the development of insulin resistance.




ph

Apolipoprotein M and Sphingosine-1-Phosphate: A Potentially Antidiabetic Tandem Carried by HDL




ph

The Peripheral Peril: Injected Insulin Induces Insulin Insensitivity in Type 1 Diabetes

Insulin resistance is an underappreciated facet of type 1 diabetes that occurs with remarkable consistency and considerable magnitude. Although therapeutic innovations are continuing to normalize dysglycemia, a sizable body of data suggests a second metabolic abnormality—iatrogenic hyperinsulinemia—principally drives insulin resistance and its consequences in this population and has not been addressed. We review this evidence to show that injecting insulin into the peripheral circulation bypasses first-pass hepatic insulin clearance, which leads to the unintended metabolic consequence of whole-body insulin resistance. We propose restructuring insulin therapy to restore the physiological insulin balance between the hepatic portal and peripheral circulations and thereby avoid the complications of life-long insulin resistance. As technology rapidly advances and our ability to ensure euglycemia improves, iatrogenic insulin resistance will become the final barrier to overcome to restore normal physiology, health, and life in type 1 diabetes.




ph

"Take Me To Your Leader": An Electrophysiological Appraisal of the Role of Hub Cells in Pancreatic Islets

The coordinated electrical activity of β-cells within the pancreatic islet drives oscillatory insulin secretion. A recent hypothesis postulates that specially equipped "hub" or "leader" cells within the β-cell network drive islet oscillations and that electrically silencing or optically ablating these cells suppresses coordinated electrical activity (and thus insulin secretion) in the rest of the islet. In this Perspective, we discuss this hypothesis in relation to established principles of electrophysiological theory. We conclude that whereas electrical coupling between β-cells is sufficient for the propagation of excitation across the islet, there is no obvious electrophysiological mechanism that explains how hyperpolarizing a hub cell results in widespread inhibition of islet electrical activity and disruption of their coordination. Thus, intraislet diffusible factors should perhaps be considered as an alternate mechanism.




ph

Nucleolar stress in Drosophila neuroblasts, a model for human ribosomopathies [RESEARCH ARTICLE]

Sonu Shrestha Baral, Molly E. Lieux, and Patrick J. DiMario

Different stem cells or progenitor cells display variable threshold requirements for functional ribosomes. This is particularly true for several human ribosomopathies in which select embryonic neural crest cells or adult bone marrow stem cells, but not others, show lethality due to failures in ribosome biogenesis or function (now known as nucleolar stress). To determine if various Drosophila neuroblasts display differential sensitivities to nucleolar stress, we used CRISPR-Cas9 to disrupt the Nopp140 gene that encodes two splice variant ribosome biogenesis factors (RBFs). Disruption of Nopp140 induced nucleolar stress that arrested larvae in the second instar stage. While the majority of larval neuroblasts arrested development, the mushroom body (MB) neuroblasts continued to proliferate as shown by their maintenance of deadpan, a neuroblast-specific transcription factor, and by their continued EdU incorporation. MB neuroblasts in wild-type larvae appeared to contain more fibrillarin and Nopp140 in their nucleoli as compared to other neuroblasts, indicating that MB neuroblasts stockpile RBFs as they proliferate in late embryogenesis while other neuroblasts normally enter quiescence. A greater abundance of Nopp140 encoded by maternal transcripts in Nopp140-/- MB neuroblasts of 1­­­–2-day-old larvae likely rendered these cells more resilient to nucleolar stress.

This article has an associated First Person interview with the first author of the paper.




ph

Digital medical photography recording: a personal view




ph

Caring for Rohingya Refugees With Diphtheria and Measles: On the Ethics of Humanity [Reflections]

Hundreds of thousands of Rohingya refugees arrived in Bangladesh within weeks in fall 2017, quickly forming large settlements without any basic support. Humanitarian first responders provided basic necessities including food, shelter, water, sanitation, and health care. However, the challenge before them—a vast camp ravaged by diphtheria and measles superimposed on a myriad of common pathologies—was disproportionate to the resources. The needs were endless, resources finite, inadequacies abundant, and premature death inevitable. While such confines force unimaginable choices in resource allocation, they do not define the humanitarian purpose—to alleviate suffering and not allow such moral violations to become devoid of their horrifying meaning. As humanitarian workers, we maintain humanity when we care, commit, and respond to moral injustices. This refusal to abandon others in desperate situations is an attempt to rectify injustices through witnessing and solidarity. When people are left behind, we must not leave them alone.




ph

Impacts of Operational Failures on Primary Care Physicians Work: A Critical Interpretive Synthesis of the Literature [Systematic Review]

PURPOSE

Operational failures are system-level errors in the supply of information, equipment, and materials to health care personnel. We aimed to review and synthesize the research literature to determine how operational failures in primary care affect the work of primary care physicians.

METHODS

We conducted a critical interpretive synthesis. We searched 7 databases for papers published in English from database inception until October 2017 for primary research of any design that addressed problems interfering with primary care physicians’ work. All potentially eligible titles/abstracts were screened by 1 reviewer; 30% were subject to second screening. We conducted an iterative critique, analysis, and synthesis of included studies.

RESULTS

Our search retrieved 8,544 unique citations. Though no paper explicitly referred to "operational failures," we identified 95 papers that conformed to our general definition. The included studies show a gap between what physicians perceived they should be doing and what they were doing, which was strongly linked to operational failures—including those relating to technology, information, and coordination—over which physicians often had limited control. Operational failures actively configured physicians’ work by requiring significant compensatory labor to deliver the goals of care. This labor was typically unaccounted for in scheduling or reward systems and had adverse consequences for physician and patient experience.

CONCLUSIONS

Primary care physicians’ efforts to compensate for suboptimal work systems are often concealed, risking an incomplete picture of the work they do and problems they routinely face. Future research must identify which operational failures are highest impact and tractable to improvement.




ph

Maternity Care and Buprenorphine Prescribing in New Family Physicians [Research Brief]

The American Board of Family Medicine routinely surveys its Diplomates in each national graduating cohort 3 years out of training. These data were used to characterize early career family physicians whose services include management of pregnancy and prescribing buprenorphine. A total of 261 (5.1%) respondents both provide maternity care and prescribe buprenorphine. Family physicians who care for pregnant women and also prescribe buprenorphine represented 50.4% of all buprenorphine prescribers. The family physicians in this group were trained in a small number of residency programs, with only 15 programs producing at least 25% of graduates who do this work.




ph

Assessing Risks of Polypharmacy Involving Medications With Anticholinergic Properties [Original Research]

PURPOSE

Anticholinergic burden (ACB), the cumulative effect of anticholinergic medications, is associated with adverse outcomes in older people but is less studied in middle-aged populations. Numerous scales exist to quantify ACB. The aims of this study were to quantify ACB in a large cohort using the 10 most common anticholinergic scales, to assess the association of each scale with adverse outcomes, and to assess overlap in populations identified by each scale.

METHODS

We performed a longitudinal analysis of the UK Biobank community cohort (502,538 participants, baseline age: 37-73 years, median years of follow-up: 6.2). The ACB was calculated at baseline using 10 scales. Baseline data were linked to national mortality register records and hospital episode statistics. The primary outcome was a composite of all-cause mortality and major adverse cardiovascular event (MACE). Secondary outcomes were all-cause mortality, MACE, hospital admission for fall/fracture, and hospital admission with dementia/delirium. Cox proportional hazards models (hazard ratio [HR], 95% CI) quantified associations between ACB scales and outcomes adjusted for age, sex, socioeconomic status, body mass index, smoking status, alcohol use, physical activity, and morbidity count.

RESULTS

Anticholinergic medication use varied from 8% to 17.6% depending on the scale used. For the primary outcome, ACB was significantly associated with all-cause mortality/MACE for each scale. The Anticholinergic Drug Scale was most strongly associated with mortality/MACE (HR = 1.12; 95% CI, 1.11-1.14 per 1-point increase in score). The ACB was significantly associated with all secondary outcomes. The Anticholinergic Effect on Cognition scale was most strongly associated with dementia/delirium (HR = 1.45; 95% CI, 1.3-1.61 per 1-point increase).

CONCLUSIONS

The ACB was associated with adverse outcomes in a middle- to older-aged population. Populations identified and effect size differed between scales. Scale choice influenced the population identified as potentially requiring reduction in ACB in clinical practice or intervention trials.




ph

General Practitioners in US Medical Practice Compared With Family Physicians [Original Research]

PURPOSE

General practitioners (GPs) are part of the US physician workforce, but little is known about who they are, what they do, and how they differ from family physicians (FPs). We describe self-identified GPs and compare them with board-certified FPs.

METHODS

Analysis of data on 102,604 Doctor of Medicine and Doctor of Osteopathy physicians in direct patient care in the United States in 2016, who identify themselves as GPs or FPs. The study used linking databases (American Medical Association Masterfile, American Board of Family Medicine [ABFM], Area Health Resource File, Medicare Public Use File) to examine personal, professional, and practice characteristics.

RESULTS

Of the physicians identified, 6,661 self-designated as GPs and 95,943 self-designated as FPs. Of the self-designated GPs, 116 had been ABFM certified and were excluded from the study. Of the remaining 102,488 physicians, those who self-designated as GPs but were never ABFM certified constituted the GP group (n = 6,545, 6%). Self-designated FPs that were ABFM certified made up the FP group (n = 79,449, 78%). The remaining self-designated FPs not ABFM certified constituted the uncertified group (n = 16,494, 16%). GPs differed from FPs in every characteristic examined. Compared with FPs, GPs are more likely to be older, male, Doctors of Osteopathy, graduates of non-US medical schools, and have no family medicine residency training. GPs practice location is similar to FPs, but GPs are less likely to participate in Medicare or to work in hospitals.

CONCLUSIONS

GPs in the United States are a varied group that differ from FPs. Researchers, educators, and policy makers should not lump GPs together with FPs in data collection, analysis, and reporting.




ph

Impacts of Operational Failures on Primary Care Physicians Work: A Critical Interpretive Synthesis of the Literature [Departments]




ph

Pilot Study of Return of Genetic Results to Patients in Adult Nephrology

Background and objectives

Actionable genetic findings have implications for care of patients with kidney disease, and genetic testing is an emerging tool in nephrology practice. However, there are scarce data regarding best practices for return of results and clinical application of actionable genetic findings for kidney patients.

Design, setting, participants, & measurements

We developed a return of results workflow in collaborations with clinicians for the retrospective recontact of adult nephrology patients who had been recruited into a biobank research study for exome sequencing and were identified to have medically actionable genetic findings.

Results

Using this workflow, we attempted to recontact a diverse pilot cohort of 104 nephrology research participants with actionable genetic findings, encompassing 34 different monogenic etiologies of nephropathy and five single-gene disorders recommended by the American College of Medical Genetics and Genomics for return as medically actionable secondary findings. We successfully recontacted 64 (62%) participants and returned results to 41 (39%) individuals. In each case, the genetic diagnosis had meaningful implications for the patients’ nephrology care. Through implementation efforts and qualitative interviews with providers, we identified over 20 key challenges associated with returning results to study participants, and found that physician knowledge gaps in genomics was a recurrent theme. We iteratively addressed these challenges to yield an optimized workflow, which included standardized consultation notes with tailored management recommendations, monthly educational conferences on core topics in genomics, and a curated list of expert clinicians for patients requiring extranephrologic referrals.

Conclusions

Developing the infrastructure to support return of genetic results in nephrology was resource-intensive, but presented potential opportunities for improving patient care.

Podcast

This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2020_04_16_12481019.mp3




ph

A Pharmacologic "Stress Test" for Assessing Select Antioxidant Defenses in Patients with CKD

Background and objectives

Oxidative stress is a hallmark and mediator of CKD. Diminished antioxidant defenses are thought to be partly responsible. However, there is currently no way to prospectively assess antioxidant defenses in humans. Tin protoporphyrin (SnPP) induces mild, transient oxidant stress in mice, triggering increased expression of select antioxidant proteins (e.g., heme oxygenase 1 [HO-1], NAD[P]H dehydrogenase [quinone] 1 [NQO1], ferritin, p21). Hence, we tested the hypothesis that SnPP can also variably increase these proteins in humans and can thus serve as a pharmacologic "stress test" for gauging gene responsiveness and antioxidant reserves.

Design, setting, participants, & measurements

A total of 18 healthy volunteers and 24 participants with stage 3 CKD (n=12; eGFR 30–59 ml/min per 1.73 m2) or stage 4 CKD (n=12; eGFR 15–29 ml/min per 1.73 m2) were injected once with SnPP (9, 27, or 90 mg). Plasma and/or urinary antioxidant proteins were measured at baseline and for up to 4 days post-SnPP dosing. Kidney safety was gauged by serial measurements of BUN, creatinine, eGFR, albuminuria, and four urinary AKI biomarkers (kidney injury molecule 1, neutrophil gelatinase-associated lipocalin, cystatin C, and N-acetyl glucosaminidase).

Results

Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (r=–0.85 to –0.95). All four proteins manifested statistically significant dose- and time-dependent elevations after SnPP injection. However, marked intersubject differences were observed. p21 responses to high-dose SnPP and HO-1 responses to low-dose SnPP were significantly suppressed in participants with CKD versus healthy volunteers. SnPP was well tolerated by all participants, and no evidence of nephrotoxicity was observed.

Conclusions

SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.

Clinical Trial registry name and registration number

A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3–4 Chronic Kidney Disease, NCT0363002 and NCT03893799




ph

Clinical Journal of the American Society of Nephrology




ph

RIPK3 Orchestrates Fatty Acid Metabolism in Tumor-Associated Macrophages and Hepatocarcinogenesis

Metabolic reprogramming is critical for the polarization and function of tumor-associated macrophages (TAM) and hepatocarcinogenesis, but how this reprogramming occurs is unknown. Here, we showed that receptor-interacting protein kinase 3 (RIPK3), a central factor in necroptosis, is downregulated in hepatocellular carcinoma (HCC)–associated macrophages, which correlated with tumorigenesis and enhanced the accumulation and polarization of M2 TAMs. Mechanistically, RIPK3 deficiency in TAMs reduced reactive oxygen species and significantly inhibited caspase1-mediated cleavage of PPAR. These effects enabled PPAR activation and facilitated fatty acid metabolism, including fatty acid oxidation (FAO), and induced M2 polarization in the tumor microenvironment. RIPK3 upregulation or FAO blockade reversed the immunosuppressive activity of TAMs and dampened HCC tumorigenesis. Our findings provide molecular basis for the regulation of RIPK3-mediated, lipid metabolic reprogramming of TAMs, thus highlighting a potential strategy for targeting the immunometabolism of HCC.




ph

IL1{alpha} Antagonizes IL1{beta} and Promotes Adaptive Immune Rejection of Malignant Tumors

We assessed the contribution of IL1 signaling molecules to malignant tumor growth using IL1β–/–, IL1α–/–, and IL1R1–/– mice. Tumors grew progressively in IL1R–/– and IL1α–/– mice but were often absent in IL1β–/– mice. This was observed whether tumors were implanted intradermally or injected intravenously and was true across multiple distinct tumor lineages. Antibodies to IL1β prevented tumor growth in wild-type (WT) mice but not in IL1R1–/– or IL1α–/– mice. Antibodies to IL1α promoted tumor growth in IL1β–/– mice and reversed the tumor-suppressive effect of anti-IL1β in WT mice. Depletion of CD8+ T cells and blockade of lymphocyte mobilization abrogated the IL1β–/– tumor suppressive effect, as did crossing IL1β–/– mice to SCID or Rag1–/– mice. Finally, blockade of IL1β synergized with blockade of PD-1 to inhibit tumor growth in WT mice. These results suggest that IL1β promotes tumor growth, whereas IL1α inhibits tumor growth by enhancing T-cell–mediated antitumor immunity.




ph

Deciphering the Immunomodulatory Capacity of Oncolytic Vaccinia Virus to Enhance the Immune Response to Breast Cancer

Vaccinia virus (VACV) is a double-stranded DNA virus that devotes a large portion of its 200 kbp genome to suppressing and manipulating the immune response of its host. Here, we investigated how targeted removal of immunomodulatory genes from the VACV genome impacted immune cells in the tumor microenvironment with the intention of improving the therapeutic efficacy of VACV in breast cancer. We performed a head-to-head comparison of six mutant oncolytic VACVs, each harboring deletions in genes that modulate different cellular pathways, such as nucleotide metabolism, apoptosis, inflammation, and chemokine and interferon signaling. We found that even minor changes to the VACV genome can impact the immune cell compartment in the tumor microenvironment. Viral genome modifications had the capacity to alter lymphocytic and myeloid cell compositions in tumors and spleens, PD-1 expression, and the percentages of virus-targeted and tumor-targeted CD8+ T cells. We observed that while some gene deletions improved responses in the nonimmunogenic 4T1 tumor model, very little therapeutic improvement was seen in the immunogenic HER2/neu TuBo model with the various genome modifications. We observed that the most promising candidate genes for deletion were those that interfere with interferon signaling. Collectively, this research helped focus attention on the pathways that modulate the immune response in the context of VACV oncolytic virotherapy. They also suggest that the greatest benefits to be obtained with these treatments may not always be seen in "hot tumors."




ph

Single-Cell Immune Competency Signatures Associate with Survival in Phase II GVAX and CRS-207 Randomized Studies in Patients with Metastatic Pancreatic Cancer

The identification of biomarkers for patient stratification is fundamental to precision medicine efforts in oncology. Here, we identified two baseline, circulating immune cell subsets associated with overall survival in patients with metastatic pancreatic cancer who were enrolled in two phase II randomized studies of GVAX pancreas and CRS-207 immunotherapy. Single-cell mass cytometry was used to simultaneously measure 38 cell surface or intracellular markers in peripheral blood mononuclear cells obtained from a phase IIa patient subcohort (N = 38). CITRUS, an algorithm for identification of stratifying subpopulations in multidimensional cytometry datasets, was used to identify single-cell signatures associated with clinical outcome. Patients with a higher abundance of CD8+CD45ROCCR7CD57+ cells and a lower abundance of CD14+CD33+CD85j+ cells had improved overall survival [median overall survival, range (days) 271, 43–1,247] compared with patients with a lower abundance of CD8+CD45ROCCR7CD57+ cells and higher abundance of CD14+CD33+CD85j+ cells (77, 24–1,247 days; P = 0.0442). The results from this prospective–retrospective biomarker analysis were validated by flow cytometry in 200 patients with pancreatic cancer enrolled in a phase IIb study (P = 0.0047). The identified immune correlates provide potential prognostic or predictive signatures that could be employed for patient stratification.




ph

The Role of Fnr Paralogs in Controlling Anaerobic Metabolism in the Diazotroph Paenibacillus polymyxa WLY78 [Environmental Microbiology]

Fnr is a transcriptional regulator that controls the expression of a variety of genes in response to oxygen limitation in bacteria. Genome sequencing revealed four genes (fnr1, fnr3, fnr5, and fnr7) coding for Fnr proteins in Paenibacillus polymyxa WLY78. Fnr1 and Fnr3 showed more similarity to each other than to Fnr5 and Fnr7. Also, Fnr1 and Fnr3 exhibited high similarity with Bacillus cereus Fnr and Bacillus subtilis Fnr in sequence and structures. Both the aerobically purified His-tagged Fnr1 and His-tagged Fnr3 in Escherichia coli could bind to the specific DNA promoter. Deletion analysis showed that the four fnr genes, especially fnr1 and fnr3, have significant impacts on growth and nitrogenase activity. Single deletion of fnr1 or fnr3 led to a 50% reduction in nitrogenase activity, and double deletion of fnr1 and fnr3 resulted to a 90% reduction in activity. Genome-wide transcription analysis showed that Fnr1 and Fnr3 indirectly activated expression of nif (nitrogen fixation) genes and Fe transport genes under anaerobic conditions. Fnr1 and Fnr3 inhibited expression of the genes involved in the aerobic respiratory chain and activated expression of genes responsible for anaerobic electron acceptor genes.

IMPORTANCE The members of the nitrogen-fixing Paenibacillus spp. have great potential to be used as a bacterial fertilizer in agriculture. However, the functions of the fnr gene(s) in nitrogen fixation and other metabolisms in Paenibacillus spp. are not known. Here, we found that in P. polymyxa WLY78, Fnr1 and Fnr3 were responsible for regulation of numerous genes in response to changes in oxygen levels, but Fnr5 and Fnr7 exhibited little effect. Fnr1 and Fnr3 indirectly or directly regulated many types of important metabolism, such as nitrogen fixation, Fe uptake, respiration, and electron transport. This study not only reveals the function of the fnr genes of P. polymyxa WLY78 in nitrogen fixation and other metabolisms but also will provide insight into the evolution and regulatory mechanisms of fnr in Paenibacillus.




ph

Different Effects of Soil Fertilization on Bacterial Community Composition in the Penicillium canescens Hyphosphere and in Bulk Soil [Environmental Microbiology]

This study investigated the effects of long-term soil fertilization on the composition and potential for phosphorus (P) and nitrogen (N) cycling of bacterial communities associated with hyphae of the P-solubilizing fungus Penicillium canescens. Using a baiting approach, hyphosphere bacterial communities were recovered from three soils that had received long-term amendment in the field with mineral or mineral plus organic fertilizers. P. canescens hyphae recruited bacterial communities with a decreased diversity and an increased abundance of Proteobacteria relative to what was observed in soil communities. As core bacterial taxa, Delftia and Pseudomonas spp. were present in all hyphosphere samples irrespective of soil fertilization. However, the type of fertilization showed significant impacts on the diversity, composition, and distinctive taxa/operational taxonomic units (OTUs) of hyphosphere communities. The soil factors P (Olsen method), exchangeable Mg, exchangeable K, and pH were important for shaping soil and hyphosphere bacterial community compositions. An increased relative abundance of organic P metabolism genes was found in hyphosphere communities from soil that had not received P fertilizers, which could indicate P limitation near the fungal hyphae. Additionally, P. canescens hyphae recruited bacterial communities with a higher abundance of N fixation genes than found in soil communities, which might imply a role of hyphosphere communities for fungal N nutrition. Furthermore, the relative abundances of denitrification genes were greater in several hyphosphere communities, indicating an at least partly anoxic microenvironment with a high carbon-to-N ratio around the hyphae. In conclusion, soil fertilization legacy shapes P. canescens hyphosphere microbiomes and their functional potential related to P and N cycling.

IMPORTANCE P-solubilizing Penicillium strains are introduced as biofertilizers to agricultural soils to improve plant P nutrition. Currently, little is known about the ecology of these biofertilizers, including their interactions with other soil microorganisms. This study shows that communities dominated by Betaproteobacteria and Gammaproteobacteria colonize P. canescens hyphae in soil and that the compositions of these communities depend on the soil conditions. The potential of these communities for N and organic P cycling is generally higher than that of soil communities. The high potential for organic P metabolism might complement the ability of the fungus to solubilize inorganic P, and it points to the hyphosphere as a hot spot for P metabolism. Furthermore, the high potential for N fixation could indicate that P. canescens recruits bacteria that are able to improve its N nutrition. Hence, this community study identifies functional groups relevant for the future optimization of next-generation biofertilizer consortia for applications in soil.




ph

Comparative Whole-Genome Phylogeny of Animal, Environmental, and Human Strains Confirms the Genogroup Organization and Diversity of the Stenotrophomonas maltophilia Complex [Public and Environmental Health Microbiology]

The Stenotrophomonas maltophilia complex (Smc) comprises opportunistic environmental Gram-negative bacilli responsible for a variety of infections in both humans and animals. Beyond its large genetic diversity, its genetic organization in genogroups was recently confirmed through the whole-genome sequencing of human and environmental strains. As they are poorly represented in these analyses, we sequenced the whole genomes of 93 animal strains to determine their genetic background and characteristics. Combining these data with 81 newly sequenced human strains and the genomes available from RefSeq, we performed a genomic analysis that included 375 nonduplicated genomes with various origins (animal, 104; human, 226; environment, 30; unknown, 15). Phylogenetic analysis and clustering based on genome-wide average nucleotide identity confirmed and specified the genetic organization of Smc in at least 20 genogroups. Two new genogroups were identified, and two previously described groups were further divided into two subgroups each. Comparing the strains isolated from different host types and their genogroup affiliation, we observed a clear disequilibrium in certain groups. Surprisingly, some antimicrobial resistance genes, integrons, and/or clusters of attC sites lacking integron-integrase (CALIN) sequences targeting antimicrobial compounds extensively used in animals were mainly identified in animal strains. We also identified genes commonly found in animal strains coding for efflux systems. The result of a large whole-genome analysis performed by us supports the hypothesis of the putative contribution of animals as a reservoir of Stenotrophomonas maltophilia complex strains and/or resistance genes for strains in humans.

IMPORTANCE Given its naturally large antimicrobial resistance profile, the Stenotrophomonas maltophilia complex (Smc) is a set of emerging pathogens of immunosuppressed and cystic fibrosis patients. As it is group of environmental microorganisms, this adaptation to humans is an opportunity to understand the genetic and metabolic selective mechanisms involved in this process. The previously reported genomic organization was incomplete, as data from animal strains were underrepresented. We added the missing piece of the puzzle with whole-genome sequencing of 93 strains of animal origin. Beyond describing the phylogenetic organization, we confirmed the genetic diversity of the Smc, which could not be estimated through routine phenotype- or matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF)-based laboratory tests. Animals strains seem to play a key role in the diversity of Smc and could act as a reservoir for mobile resistance genes. Some genogroups seem to be associated with particular hosts; the genetic support of this association and the role of the determinants/corresponding genes need to be explored.




ph

Genetic Influences of the Microbiota on the Life Span of Drosophila melanogaster [Invertebrate Microbiology]

To better understand how associated microorganisms ("microbiota") influence organismal aging, we focused on the model organism Drosophila melanogaster. We conducted a metagenome-wide association (MGWA) as a screen to identify bacterial genes associated with variation in the D. melanogaster life span. The results of the MGWA predicted that bacterial cysteine and methionine metabolism genes influence fruit fly longevity. A mutant analysis, in which flies were inoculated with Escherichia coli strains bearing mutations in various methionine cycle genes, confirmed a role for some methionine cycle genes in extending or shortening fruit fly life span. Initially, we predicted these genes might influence longevity by mimicking or opposing methionine restriction, an established mechanism for life span extension in fruit flies. However, follow-up transcriptome sequencing (RNA-seq) and metabolomic experiments were generally inconsistent with this conclusion and instead implicated glucose and vitamin B6 metabolism in these influences. We then tested if bacteria could influence life span through methionine restriction using a different set of bacterial strains. Flies reared with a bacterial strain that ectopically expressed bacterial transsulfuration genes and lowered the methionine content of the fly diet also extended female D. melanogaster life span. Taken together, the microbial influences shown here overlap with established host genetic mechanisms for aging and therefore suggest overlapping roles for host and microbial metabolism genes in organismal aging.

IMPORTANCE Associated microorganisms ("microbiota") are intimately connected to the behavior and physiology of their animal hosts, and defining the mechanisms of these interactions is an urgent imperative. This study focuses on how microorganisms influence the life span of a model host, the fruit fly Drosophila melanogaster. First, we performed a screen that suggested a strong influence of bacterial methionine metabolism on host life span. Follow-up analyses of gene expression and metabolite abundance identified stronger roles for vitamin B6 and glucose than methionine metabolism among the tested mutants, possibly suggesting a more limited role for bacterial methionine metabolism genes in host life span effects. In a parallel set of experiments, we created a distinct bacterial strain that expressed life span-extending methionine metabolism genes and showed that this strain can extend fly life span. Therefore, this work identifies specific bacterial genes that influence host life span, including in ways that are consistent with the expectations of methionine restriction.




ph

Diazotrophs Show Signs of Restoration in Amazon Rain Forest Soils with Ecosystem Rehabilitation [Microbial Ecology]

Biological nitrogen fixation can be an important source of nitrogen in tropical forests that serve as a major CO2 sink. Extensive deforestation of the Amazon is known to influence microbial communities and the biogeochemical cycles they mediate. However, it is unknown how diazotrophs (nitrogen-fixing microorganisms) respond to deforestation and subsequent ecosystem conversion to agriculture, as well as whether they can recover in secondary forests that are established after agriculture is abandoned. To address these knowledge gaps, we combined a spatially explicit sampling approach with high-throughput sequencing of nifH genes. The main objectives were to assess the functional distance decay relationship of the diazotrophic bacterial community in a tropical forest ecosystem and to quantify the roles of various factors that drive the observed changes in the diazotrophic community structure. We observed an increase in local diazotrophic diversity (α-diversity) with a decrease in community turnover (β-diversity), associated with a shift in diazotrophic community structure as a result of the forest-to-pasture conversion. Both diazotrophic community turnover and structure showed signs of recovery in secondary forests. Changes in the diazotrophic community were primarily driven by the change in land use rather than differences in geochemical characteristics or geographic distances. The diazotroph communities in secondary forests resembled those in primary forests, suggesting that at least partial recovery of diazotrophs is possible following agricultural abandonment.

IMPORTANCE The Amazon region is a major tropical forest region that is being deforested at an alarming rate to create space for cattle ranching and agriculture. Diazotrophs (nitrogen-fixing microorganisms) play an important role in supplying soil N for plant growth in tropical forests. It is unknown how diazotrophs respond to deforestation and whether they can recover in secondary forests that establish after agriculture is abandoned. Using high-throughput sequencing of nifH genes, we characterized the response of diazotrophs’ β-diversity and identified major drivers of changes in diazotrophs from forest-to-pasture and pasture-to-secondary-forest conversions. Studying the impact of land use change on diazotrophs is important for a better understanding of the impact of deforestation on tropical forest ecosystem functioning, and our results on the potential recovery of diazotrophs in secondary forests imply the possible restoration of ecosystem functions in secondary forests.




ph

Unexpected Abundance and Diversity of Phototrophs in Mats from Morphologically Variable Microbialites in Great Salt Lake, Utah [Microbial Ecology]

Microbial mat communities are associated with extensive (~700 km2) and morphologically variable carbonate structures, termed microbialites, in the hypersaline Great Salt Lake (GSL), Utah. However, whether the composition of GSL mat communities covaries with microbialite morphology and lake environment is unknown. Moreover, the potential adaptations that allow the establishment of these extensive mat communities at high salinity (14% to 17% total salts) are poorly understood. To address these questions, microbial mats were sampled from seven locations in the south arm of GSL representing different lake environments and microbialite morphologies. Despite the morphological differences, microbialite-associated mats were taxonomically similar and were dominated by the cyanobacterium Euhalothece and several heterotrophic bacteria. Metagenomic sequencing of a representative mat revealed Euhalothece and subdominant Thiohalocapsa populations that harbor the Calvin cycle and nitrogenase, suggesting they supply fixed carbon and nitrogen to heterotrophic bacteria. Fifteen of the next sixteen most abundant taxa are inferred to be aerobic heterotrophs and, surprisingly, harbor reaction center, rhodopsin, and/or bacteriochlorophyll biosynthesis proteins, suggesting aerobic photoheterotrophic (APH) capabilities. Importantly, proteins involved in APH are enriched in the GSL community relative to that in microbialite mat communities from lower salinity environments. These findings indicate that the ability to integrate light into energy metabolism is a key adaptation allowing for robust mat development in the hypersaline GSL.

IMPORTANCE The earliest evidence of life on Earth is from organosedimentary structures, termed microbialites, preserved in 3.481-billion-year-old (Ga) rocks. Phototrophic microbial mats form in association with an ~700-km2 expanse of morphologically diverse microbialites in the hypersaline Great Salt Lake (GSL), Utah. Here, we show taxonomically similar microbial mat communities are associated with morphologically diverse microbialites across the lake. Metagenomic sequencing reveals an abundance and diversity of autotrophic and heterotrophic taxa capable of harvesting light energy to drive metabolism. The unexpected abundance of and diversity in the mechanisms of harvesting light energy observed in GSL mat populations likely function to minimize niche overlap among coinhabiting taxa, provide a mechanism(s) to increase energy yield and osmotic balance during salt stress, and enhance fitness. Together, these physiological benefits promote the formation of robust mats that, in turn, influence the formation of morphologically diverse microbialite structures that can be imprinted in the rock record.




ph

Inactivation of Pseudomonas aeruginosa Biofilms by 405-Nanometer-Light-Emitting Diode Illumination [Physiology]

Biofilm formation by Pseudomonas aeruginosa contributes to its survival on surfaces and represents a major clinical threat because of the increased tolerance of biofilms to disinfecting agents. This study aimed to investigate the efficacy of 405-nm light-emitting diode (LED) illumination in eliminating P. aeruginosa biofilms formed on stainless steel coupons under different temperatures. Time-dependent killing assays using planktonic and biofilm cells were used to determine the antimicrobial and antibiofilm activities of LED illumination. We also evaluated the effects of LED illumination on the disinfectant susceptibility, biofilm structure, extracellular polymeric substance (EPS) structure and composition, and biofilm-related gene expression of P. aeruginosa biofilm cells. Results showed that the abundance of planktonic P. aeruginosa cells was reduced by 0.88, 0.53, and 0.85 log CFU/ml following LED treatment for 2 h compared with untreated controls at 4, 10, and 25°C, respectively. For cells in biofilms, significant reductions (1.73, 1.59, and 1.68 log CFU/cm2) were observed following LED illumination for 2 h at 4, 10, and 25°C, respectively. Moreover, illuminated P. aeruginosa biofilm cells were more sensitive to benzalkonium chloride or chlorhexidine than untreated cells. Scanning electron microscopy and confocal laser scanning microscopic observation indicated that both the biofilm structure and EPS structure were disrupted by LED illumination. Further, reverse transcription-quantitative PCR revealed that LED illumination downregulated the transcription of several genes associated with biofilm formation. These findings suggest that LED illumination has the potential to be developed as an alternative method for prevention and control of P. aeruginosa biofilm contamination.

IMPORTANCE Pseudomonas aeruginosa can form biofilms on medical implants, industrial equipment, and domestic surfaces, contributing to high morbidity and mortality rates. This study examined the antibiofilm activity of 405-nm light-emitting diode (LED) illumination against mature biofilms formed on stainless steel coupons. We found that the disinfectant susceptibility, biofilm structure, and extracellular polymeric substance structure and composition were disrupted by LED illumination. We then investigated the transcription of several critical P. aeruginosa biofilm-related genes and analyzed the effect of illumination temperature on the above characteristics. Our results confirmed that LED illumination could be developed into an effective and safe method to counter P. aeruginosa biofilm contamination. Further research will be focused on the efficacy and application of LED illumination for elimination of complicated biofilms in the environment.




ph

The Iron Deficiency Response of Corynebacterium glutamicum and a Link to Thiamine Biosynthesis [Physiology]

The response to iron limitation of the Gram-positive soil bacterium Corynebacterium glutamicum was analyzed with respect to secreted metabolites, the transcriptome, and the proteome. During growth in glucose minimal medium, iron limitation caused a shift from lactate to pyruvate as the major secreted organic acid complemented by l-alanine and 2-oxoglutarate. Transcriptome and proteome analyses revealed that a pronounced iron starvation response governed by the transcriptional regulators DtxR and RipA was detectable in the late, but not in the early, exponential-growth phase. A link between iron starvation and thiamine pyrophosphate (TPP) biosynthesis was uncovered by the strong upregulation of thiC. As phosphomethylpyrimidine synthase (ThiC) contains an iron-sulfur cluster, limiting activities of the TPP-dependent pyruvate–2-oxoglutarate dehydrogenase supercomplex probably cause the excretion of pyruvate and 2-oxoglutarate. In line with this explanation, thiamine supplementation could strongly diminish the secretion of these acids. The upregulation of thiC and other genes involved in thiamine biosynthesis and transport is presumably due to TPP riboswitches present at the 5' end of the corresponding operons. The results obtained in this study provide new insights into iron homeostasis in C. glutamicum and demonstrate that the metabolic consequences of iron limitation can be due to the iron dependency of coenzyme biosynthesis.

IMPORTANCE Iron is an essential element for most organisms but causes problems due to poor solubility under oxic conditions and due to toxicity by catalyzing the formation of reactive oxygen species (ROS). Therefore, bacteria have evolved complex regulatory networks for iron homeostasis aiming at a sufficient iron supply while minimizing ROS formation. In our study, the responses of the actinobacterium Corynebacterium glutamicum to iron limitation were analyzed, resulting in a detailed view on the processes involved in iron homeostasis in this model organism. In particular, we provide evidence that iron limitation causes TPP deficiency, presumably due to insufficient activity of the iron-dependent phosphomethylpyrimidine synthase (ThiC). TPP deficiency was deduced from the upregulation of genes controlled by a TPP riboswitch and secretion of metabolites caused by insufficient activity of the TPP-dependent enzymes pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase. To our knowledge, the link between iron starvation and thiamine synthesis has not been elaborated previously.