eve Heavy Pot Use Linked to Mental Problems, Even After Quitting By www.medicinenet.com Published On :: Fri, 1 May 2020 00:00:00 PDT Title: Heavy Pot Use Linked to Mental Problems, Even After QuittingCategory: Health NewsCreated: 4/30/2020 12:00:00 AMLast Editorial Review: 5/1/2020 12:00:00 AM Full Article
eve High Testosterone Levels Have Different Health Impact for Men and Women By www.medicinenet.com Published On :: Tue, 11 Feb 2020 00:00:00 PDT Title: High Testosterone Levels Have Different Health Impact for Men and WomenCategory: Health NewsCreated: 2/10/2020 12:00:00 AMLast Editorial Review: 2/11/2020 12:00:00 AM Full Article
eve Cuddling Brings Two Minds Together, MRI Study Reveals By www.medicinenet.com Published On :: Mon, 4 May 2020 00:00:00 PDT Title: Cuddling Brings Two Minds Together, MRI Study RevealsCategory: Health NewsCreated: 5/4/2020 12:00:00 AMLast Editorial Review: 5/4/2020 12:00:00 AM Full Article
eve Many Car Crash Deaths Involve Alcohol Levels Below Legal Limit: Study By www.medicinenet.com Published On :: Tue, 17 Mar 2020 00:00:00 PDT Title: Many Car Crash Deaths Involve Alcohol Levels Below Legal Limit: StudyCategory: Health NewsCreated: 3/16/2020 12:00:00 AMLast Editorial Review: 3/17/2020 12:00:00 AM Full Article
eve Magnetic Brain 'Zap' Shows Promise Against Severe Depression By www.medicinenet.com Published On :: Wed, 8 Apr 2020 00:00:00 PDT Title: Magnetic Brain 'Zap' Shows Promise Against Severe DepressionCategory: Health NewsCreated: 4/7/2020 12:00:00 AMLast Editorial Review: 4/8/2020 12:00:00 AM Full Article
eve Shun the Sun to Prevent Skin Cancer By www.medicinenet.com Published On :: Mon, 4 May 2020 00:00:00 PDT Title: Shun the Sun to Prevent Skin CancerCategory: Health NewsCreated: 5/2/2020 12:00:00 AMLast Editorial Review: 5/4/2020 12:00:00 AM Full Article
eve Dengue Fever By www.medicinenet.com Published On :: Fri, 26 Jul 2019 00:00:00 PDT Title: Dengue FeverCategory: Diseases and ConditionsCreated: 5/31/1998 12:00:00 AMLast Editorial Review: 7/26/2019 12:00:00 AM Full Article
eve Typhoid Fever By www.medicinenet.com Published On :: Mon, 28 Oct 2019 00:00:00 PDT Title: Typhoid FeverCategory: Diseases and ConditionsCreated: 12/31/1997 12:00:00 AMLast Editorial Review: 10/28/2019 12:00:00 AM Full Article
eve Development of a Dental School Strategic Plan to Inform Interprofessional Education By www.jdentaled.org Published On :: 2019-12-01T06:00:18-08:00 Changes in U.S. health care delivery systems and Commission on Dental Accreditation standards provide impetus for interprofessional education (IPE) and collaborative practice, but roadmaps for engaging dental and dental hygiene faculty to incorporate IPE in a systematic manner are limited. The purpose of this report is to describe the process for creating a strategy and gathering a variety of baseline data to use for determining objectives and metrics and the subsequent development of an IPE strategic plan at the University of North Carolina (UNC) at Chapel Hill Adams School of Dentistry (SOD). SOD IPE committee members included representation from the UNC Schools of Dentistry, Medicine, Pharmacy, and Business. A three-phase framework was developed. Phase 1 (IPE assessment) was an internal environmental scan including a 2017 faculty survey, departmental mapping of IPE activities, comparison of UNC with national results on the IPE component of the American Dental Education Association (ADEA) survey of dental school seniors (2016 graduating class), identification of faculty joint/adjunct appointments at other UNC schools, and a strengths, weaknesses, opportunities, threats (SWOT) analysis. Phase 2 (visioning) consisted of development of IPE mission, vision, and priorities. In Phase 3 (implementation), priorities were developed. Data-gathering led to a strategic plan with three objectives: 1) increase faculty engagement and recognition, 2) develop predoctoral dentistry and dental hygiene IPE curricula, and 3) develop an infrastructure that supports IPE. Specific initiatives and activities, supporting metrics, and estimated costs were developed for each objective. The framework guided a systematic, transparent, and organized process for collecting and monitoring the evidence and directing activities. A three-year strategic plan for IPE was developed in 2017, and implementation is ongoing. Full Article
eve Evaluation of Faculty Mentoring Practices in Seven U.S. Dental Schools By www.jdentaled.org Published On :: 2019-12-01T06:00:18-08:00 The aim of this cross-sectional study was to examine the faculty mentoring practices in seven dental schools in the U.S. A 34-item survey was administered electronically to dental faculty members of all ranks, tracks, and job categories in seven dental schools using faculty listservs. Survey questions addressed current mentoring practices in which the faculty members were involved; their perceptions of those mentoring practices; their perceived characteristics of an ideal mentoring program, mentor, and mentee; perceived best practices; and respondents’ demographics. The survey was conducted from October 2017 to February 2018. A total of 154 surveys were completed (response rate 22%). Over 58% (90/154) of the respondents reported receiving no mentoring; 31.9% (49/154) said they received informal mentoring; and 9.7% (15/154) received formal mentoring. Of the 64 respondents who received mentoring, both formal and informal, 92.2% (59/64) were full-time faculty, and 7.8% (5/64) were part-time faculty (p=0.001). Approximately 39% of the respondents indicated that their mentoring program was not overseen by anyone and that participation was voluntary. The top three perceived benefits of mentoring were increased overall professional development, development of a career plan, and increased professional networks. The three most important characteristics of an ideal mentoring program for the respondents were a program based on the needs of the mentee, a mentor who has the desire to help the mentee, and a mentee who is eager to learn. The results of this study showed a very low level of formal or informal faculty mentoring programs in the dental schools surveyed. Future studies are needed to determine best practices and strategies to expand and enhance mentoring of faculty members. Full Article
eve Vitamin E does not prevent Western diet-induced NASH progression and increases metabolic flux dysregulation in mice [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Fatty liver involves ectopic lipid accumulation and dysregulated hepatic oxidative metabolism, which can progress to a state of elevated inflammation and fibrosis referred to as nonalcoholic steatohepatitis (NASH). The factors that control progression from simple steatosis to NASH are not fully known. Here, we tested the hypothesis that dietary vitamin E (VitE) supplementation would prevent NASH progression and associated metabolic alterations induced by a Western diet (WD). Hyperphagic melanocortin-4 receptor-deficient (MC4R–/–) mice were fed chow, chow+VitE, WD, or WD+VitE starting at 8 or 20 weeks of age. All groups exhibited extensive hepatic steatosis by the end of the study (28 weeks of age). WD feeding exacerbated liver disease severity without inducing proportional changes in liver triglycerides. Eight weeks of WD accelerated liver pyruvate cycling, and 20 weeks of WD extensively upregulated liver glucose and oxidative metabolism assessed by 2H/13C flux analysis. VitE supplementation failed to reduce the histological features of NASH. Rather, WD+VitE increased the abundance and saturation of liver ceramides and accelerated metabolic flux dysregulation compared with 8 weeks of WD alone. In summary, VitE did not limit NASH pathogenesis in genetically obese mice, but instead increased some indicators of metabolic dysfunction. Full Article
eve Modulation of Monocyte-Driven Myositis in Alphavirus Infection Reveals a Role for CX3CR1+ Macrophages in Tissue Repair By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Arthritogenic alphaviruses such as Ross River and Chikungunya viruses cause debilitating muscle and joint pain and pose significant challenges in the light of recent outbreaks. How host immune responses are orchestrated after alphaviral infections and lead to musculoskeletal inflammation remains poorly understood. Here, we show that myositis induced by Ross River virus (RRV) infection is driven by CD11bhi Ly6Chi inflammatory monocytes and followed by the establishment of a CD11bhi Ly6Clo CX3CR1+ macrophage population in the muscle upon recovery. Selective modulation of CD11bhi Ly6Chi monocyte migration to infected muscle using immune-modifying microparticles (IMP) reduced disease score, tissue damage, and inflammation and promoted the accumulation of CX3CR1+ macrophages, enhancing recovery and resolution. Here, we detail the role of immune pathology, describing a poorly characterized muscle macrophage subset as part of the dynamics of alphavirus-induced myositis and tissue recovery and identify IMP as an effective immunomodulatory approach. Given the lack of specific treatments available for alphavirus-induced pathologies, this study highlights a therapeutic potential for simple immune modulation by IMP in infected individuals in the event of large alphavirus outbreaks. IMPORTANCE Arthritogenic alphaviruses cause debilitating inflammatory disease, and current therapies are restricted to palliative approaches. Here, we show that following monocyte-driven muscle inflammation, tissue recovery is associated with the accumulation of CX3CR1+ macrophages in the muscle. Modulating inflammatory monocyte infiltration using immune-modifying microparticles (IMP) reduced tissue damage and inflammation and enhanced the formation of tissue repair-associated CX3CR1+ macrophages in the muscle. This shows that modulating key effectors of viral inflammation using microparticles can alter the outcome of disease by facilitating the accumulation of macrophage subsets associated with tissue repair. Full Article
eve Repurposed Drugs That Block the Gonococcus-Complement Receptor 3 Interaction Can Prevent and Cure Gonococcal Infection of Primary Human Cervical Epithelial Cells By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT In the absence of a vaccine, multidrug-resistant Neisseria gonorrhoeae has emerged as a major human health threat, and new approaches to treat gonorrhea are urgently needed. N. gonorrhoeae pili are posttranslationally modified by a glycan that terminates in a galactose. The terminal galactose is critical for initial contact with the human cervical mucosa via an interaction with the I-domain of complement receptor 3 (CR3). We have now identified the I-domain galactose-binding epitope and characterized its galactose-specific lectin activity. Using surface plasmon resonance and cellular infection assays, we found that a peptide mimic of this galactose-binding region competitively inhibited the N. gonorrhoeae-CR3 interaction. A compound library was screened for potential drugs that could similarly prohibit the N. gonorrhoeae-CR3 interaction and be repurposed as novel host-targeted therapeutics for multidrug-resistant gonococcal infections in women. Two drugs, methyldopa and carbamazepine, prevented and cured cervical cell infection by multidrug-resistant gonococci by blocking the gonococcal-CR3 I-domain interaction. IMPORTANCE Novel therapies that avert the problem of Neisseria gonorrhoeae with acquired antibiotic resistance are urgently needed. Gonococcal infection of the human cervix is initiated by an interaction between a galactose modification made to its surface appendages, pili, and the I-domain region of (host) complement receptor 3 (CR3). By targeting this crucial gonococcal–I-domain interaction, it may be possible to prevent cervical infection in females. To this end, we identified the I-domain galactose-binding epitope of CR3 and characterized its galactose lectin activity. Moreover, we identified two drugs, carbamazepine and methyldopa, as effective host-targeted therapies for gonorrhea treatment. At doses below those currently used for their respective existing indications, both carbamazepine and methyldopa were more effective than ceftriaxone in curing cervical infection ex vivo. This host-targeted approach would not be subject to N. gonorrhoeae drug resistance mechanisms. Thus, our data suggest a long-term solution to the growing problem of multidrug-resistant N. gonorrhoeae infections. Full Article
eve Bacterial Transformation Buffers Environmental Fluctuations through the Reversible Integration of Mobile Genetic Elements By mbio.asm.org Published On :: 2020-03-03T01:30:27-08:00 ABSTRACT Horizontal gene transfer (HGT) promotes the spread of genes within bacterial communities. Among the HGT mechanisms, natural transformation stands out as being encoded by the bacterial core genome. Natural transformation is often viewed as a way to acquire new genes and to generate genetic mixing within bacterial populations. Another recently proposed function is the curing of bacterial genomes of their infectious parasitic mobile genetic elements (MGEs). Here, we propose that these seemingly opposing theoretical points of view can be unified. Although costly for bacterial cells, MGEs can carry functions that are at points in time beneficial to bacteria under stressful conditions (e.g., antibiotic resistance genes). Using computational modeling, we show that, in stochastic environments, an intermediate transformation rate maximizes bacterial fitness by allowing the reversible integration of MGEs carrying resistance genes, although these MGEs are costly for host cell replication. Based on this dual function (MGE acquisition and removal), transformation would be a key mechanism for stabilizing the bacterial genome in the long term, and this would explain its striking conservation. IMPORTANCE Natural transformation is the acquisition, controlled by bacteria, of extracellular DNA and is one of the most common mechanisms of horizontal gene transfer, promoting the spread of resistance genes. However, its evolutionary function remains elusive, and two main roles have been proposed: (i) the new gene acquisition and genetic mixing within bacterial populations and (ii) the removal of infectious parasitic mobile genetic elements (MGEs). While the first one promotes genetic diversification, the other one promotes the removal of foreign DNA and thus genome stability, making these two functions apparently antagonistic. Using a computational model, we show that intermediate transformation rates, commonly observed in bacteria, allow the acquisition then removal of MGEs. The transient acquisition of costly MGEs with resistance genes maximizes bacterial fitness in environments with stochastic stress exposure. Thus, transformation would ensure both a strong dynamic of the bacterial genome in the short term and its long-term stabilization. Full Article
eve In Vivo Assay Reveals Microbial OleA Thiolases Initiating Hydrocarbon and {beta}-Lactone Biosynthesis By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT OleA, a member of the thiolase superfamily, is known to catalyze the Claisen condensation of long-chain acyl coenzyme A (acyl-CoA) substrates, initiating metabolic pathways in bacteria for the production of membrane lipids and β-lactone natural products. OleA homologs are found in diverse bacterial phyla, but to date, only one homodimeric OleA has been successfully purified to homogeneity and characterized in vitro. A major impediment for the identification of new OleA enzymes has been protein instability and time-consuming in vitro assays. Here, we developed a bioinformatic pipeline to identify OleA homologs and a new rapid assay to screen OleA enzyme activity in vivo and map their taxonomic diversity. The screen is based on the discovery that OleA displayed surprisingly high rates of p-nitrophenyl ester hydrolysis, an activity not shared by other thiolases, including FabH. The high rates allowed activity to be determined in vitro and with heterologously expressed OleA in vivo via the release of the yellow p-nitrophenol product. Seventy-four putative oleA genes identified in the genomes of diverse bacteria were heterologously expressed in Escherichia coli, and 25 showed activity with p-nitrophenyl esters. The OleA proteins tested were encoded in variable genomic contexts from seven different phyla and are predicted to function in distinct membrane lipid and β-lactone natural product metabolic pathways. This study highlights the diversity of unstudied OleA proteins and presents a rapid method for their identification and characterization. IMPORTANCE Microbially produced β-lactones are found in antibiotic, antitumor, and antiobesity drugs. Long-chain olefinic membrane hydrocarbons have potential utility as fuels and specialty chemicals. The metabolic pathway to both end products share bacterial enzymes denoted as OleA, OleC, and OleD that transform acyl-CoA cellular intermediates into β-lactones. Bacteria producing membrane hydrocarbons via the Ole pathway additionally express a β-lactone decarboxylase, OleB. Both β-lactone and olefin biosynthesis pathways are initiated by OleA enzymes that define the overall structure of the final product. There is currently very limited information on OleA enzymes apart from the single representative from Xanthomonas campestris. In this study, bioinformatic analysis identified hundreds of new, putative OleA proteins, 74 proteins were screened via a rapid whole-cell method, leading to the identification of 25 stably expressed OleA proteins representing seven bacteria phyla. Full Article
eve Pyocin S5 Import into Pseudomonas aeruginosa Reveals a Generic Mode of Bacteriocin Transport By mbio.asm.org Published On :: 2020-03-10T01:30:42-07:00 ABSTRACT Pyocin S5 (PyoS5) is a potent protein bacteriocin that eradicates the human pathogen Pseudomonas aeruginosa in animal infection models, but its import mechanism is poorly understood. Here, using crystallography, biophysical and biochemical analyses, and live-cell imaging, we define the entry process of PyoS5 and reveal links to the transport mechanisms of other bacteriocins. In addition to its C-terminal pore-forming domain, elongated PyoS5 comprises two novel tandemly repeated kinked 3-helix bundle domains that structure-based alignments identify as key import domains in other pyocins. The central domain binds the lipid-bound common polysaccharide antigen, allowing the pyocin to accumulate on the cell surface. The N-terminal domain binds the ferric pyochelin transporter FptA while its associated disordered region binds the inner membrane protein TonB1, which together drive import of the bacteriocin across the outer membrane. Finally, we identify the minimal requirements for sensitizing Escherichia coli toward PyoS5, as well as other pyocins, and suggest that a generic pathway likely underpins the import of all TonB-dependent bacteriocins across the outer membrane of Gram-negative bacteria. IMPORTANCE Bacteriocins are toxic polypeptides made by bacteria to kill their competitors, making them interesting as potential antibiotics. Here, we reveal unsuspected commonalities in bacteriocin uptake pathways, through molecular and cellular dissection of the import pathway for the pore-forming bacteriocin pyocin S5 (PyoS5), which targets Pseudomonas aeruginosa. In addition to its C-terminal pore-forming domain, PyoS5 is composed of two tandemly repeated helical domains that we also identify in other pyocins. Functional analyses demonstrate that they have distinct roles in the import process. One recognizes conserved sugars projected from the surface, while the other recognizes a specific outer membrane siderophore transporter, FptA, in the case of PyoS5. Through engineering of Escherichia coli cells, we show that pyocins can be readily repurposed to kill other species. This suggests basic ground rules for the outer membrane translocation step that likely apply to many bacteriocins targeting Gram-negative bacteria. Full Article
eve Hiding in Plain Sight: an Approach to Treating Patients with Severe COVID-19 Infection By mbio.asm.org Published On :: 2020-03-20T08:59:31-07:00 ABSTRACT Patients with COVID-19 infection are at risk of acute respiratory disease syndrome (ARDS) and death. The tissue receptor for COVID-19 is ACE2, and higher levels of ACE2 can protect against ARDS. Angiotensin receptor blockers and statins upregulate ACE2. Clinical trials are needed to determine whether this drug combination might be used to treat patients with severe COVID-19 infection. Full Article
eve Glycemic Variability in Diabetes Increases the Severity of Influenza By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 ABSTRACT People with diabetes are two times more likely to die from influenza than people with no underlying medical condition. The mechanisms underlying this susceptibility are poorly understood. In healthy individuals, small and short-lived postprandial peaks in blood glucose levels occur. In diabetes mellitus, these fluctuations become greater and more frequent. This glycemic variability is associated with oxidative stress and hyperinflammation. However, the contribution of glycemic variability to the pathogenesis of influenza A virus (IAV) has not been explored. Here, we used an in vitro model of the pulmonary epithelial-endothelial barrier and novel murine models to investigate the role of glycemic variability in influenza severity. In vitro, a history of glycemic variability significantly increased influenza-driven cell death and destruction of the epithelial-endothelial barrier. In vivo, influenza virus-infected mice with a history of glycemic variability lost significantly more body weight than mice with constant blood glucose levels. This increased disease severity was associated with markers of oxidative stress and hyperinflammation both in vitro and in vivo. Together, these results provide the first indication that glycemic variability may help drive the increased risk of severe influenza in people with diabetes mellitus. IMPORTANCE Every winter, people with diabetes are at increased risk of severe influenza. At present, the mechanisms that cause this increased susceptibility are unclear. Here, we show that the fluctuations in blood glucose levels common in people with diabetes are associated with severe influenza. These data suggest that glycemic stability could become a greater clinical priority for patients with diabetes during outbreaks of influenza. Full Article
eve A Chimeric Japanese Encephalitis Vaccine Protects against Lethal Yellow Fever Virus Infection without Inducing Neutralizing Antibodies By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT Recent outbreaks of yellow fever virus (YFV) in West Africa and Brazil resulted in rapid depletion of global vaccine emergency stockpiles and raised concerns about being unprepared against future YFV epidemics. Here we report that a live attenuated virus similar to the Japanese encephalitis virus (JEV) vaccine JE-CVax/Imojev that consists of YFV-17D vaccine from which the structural (prM/E) genes have been replaced with those of the JEV SA14-14-2 vaccine strain confers full protection in mice against lethal YFV challenge. In contrast to the YFV-17D-mediated protection against YFV, this protection is not mediated by neutralizing antibodies but correlates with YFV-specific nonneutralizing antibodies and T cell responses against cell-associated YFV NS1 and other YFV nonstructural (NS) proteins. Our findings reveal the potential of YFV NS proteins to mediate protection and demonstrate that chimeric flavivirus vaccines, such as Imojev, could confer protection against two flaviviruses. This dual protection may have implications for the possible off-label use of JE-CVax in case of emergency and vaccine shortage during YFV outbreaks. In addition, populations in Asia that have been vaccinated with Imojev may already be protected against YFV should outbreaks ever occur on that continent, as several countries/regions in the Asia-Pacific are vulnerable to international spread of the YFV. IMPORTANCE Efficient and safe vaccines against yellow fever (e.g., YFV-17D) that provide long-lasting protection by rapidly inducing neutralizing antibody responses exist. However, the vaccine supply cannot cope with an increasing demand posed by urban outbreaks in recent years. Here we report that JE-CVax/Imojev, a YFV-17D-based chimeric Japanese encephalitis vaccine, also efficiently protects against YFV infection in mice. In case of shortage of the YFV vaccine during yellow fever outbreaks, (off-label) use of JE-CVax/Imojev may be considered. Moreover, wider use of JE-CVax/Imojev in Asia may lower the risk of the much-feared YFV spillover to the continent. More generally, chimeric vaccines that combine surface antigens and replication machineries of two distinct flaviviruses may be considered dual vaccines for the latter pathogen without induction of surface-specific antibodies. Following this rationale, novel flavivirus vaccines that do not hold a risk for antibody-dependent enhancement (ADE) of infection (inherent to current dengue vaccines and dengue vaccine candidates) could be designed. Full Article
eve YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Lipopolysaccharide (LPS) is an essential glycolipid present in the outer membrane (OM) of many Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell viability; too little LPS weakens the OM, while too much LPS is lethal. In Escherichia coli, this balance is maintained by the YciM/FtsH protease complex, which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here, we provide evidence that activity of the YciM/FtsH protease complex is inhibited by the essential protein YejM. Using strains in which LpxC activity is reduced, we show that yciM is epistatic to yejM, demonstrating that YejM acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies have shown that this toxicity can be suppressed by deleting lpp, which codes for a highly abundant OM lipoprotein. It was assumed that deletion of lpp restores lipid balance by increasing the number of acyl chains available for glycerophospholipid biosynthesis. We show that this is not the case. Rather, our data suggest that preventing attachment of lpp to the peptidoglycan sacculus allows excess LPS to be shed in vesicles. We propose that this loss of OM material allows continued transport of LPS to the OM, thus preventing lethal accumulation of LPS within the inner membrane. Overall, our data justify the commitment of three essential inner membrane proteins to avoid toxic over- or underproduction of LPS. IMPORTANCE Gram-negative bacteria are encapsulated by an outer membrane (OM) that is impermeable to large and hydrophobic molecules. As such, these bacteria are intrinsically resistant to several clinically relevant antibiotics. To better understand how the OM is established or maintained, we sought to clarify the function of the essential protein YejM in Escherichia coli. Here, we show that YejM inhibits activity of the YciM/FtsH protease complex, which regulates synthesis of the essential OM glycolipid lipopolysaccharide (LPS). Our data suggest that disrupting proper communication between LPS synthesis and transport to the OM leads to accumulation of LPS within the inner membrane (IM). The lethality associated with this event can be suppressed by increasing OM vesiculation. Our research has identified a completely novel signaling pathway that we propose coordinates LPS synthesis and transport. Full Article
eve A Sensitive Yellow Fever Virus Entry Reporter Identifies Valosin-Containing Protein (VCP/p97) as an Essential Host Factor for Flavivirus Uncoating By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT While the basic mechanisms of flavivirus entry and fusion are understood, little is known about the postfusion events that precede RNA replication, such as nucleocapsid disassembly. We describe here a sensitive, conditionally replication-defective yellow fever virus (YFV) entry reporter, YFVSK/Nluc, to quantitively monitor the translation of incoming, virus particle-delivered genomes. We validated that YFVSK/Nluc gene expression can be neutralized by YFV-specific antisera and requires known flavivirus entry pathways and cellular factors, including clathrin- and dynamin-mediated endocytosis, endosomal acidification, YFV E glycoprotein-mediated fusion, and cellular LY6E and RPLP1 expression. The initial round of YFV translation was shown to require cellular ubiquitylation, consistent with recent findings that dengue virus capsid protein must be ubiquitylated in order for nucleocapsid uncoating to occur. Importantly, translation of incoming YFV genomes also required valosin-containing protein (VCP)/p97, a cellular ATPase that unfolds and extracts ubiquitylated client proteins from large complexes. RNA transfection and washout experiments showed that VCP/p97 functions at a postfusion, pretranslation step in YFV entry. Finally, VCP/p97 activity was required by other flaviviruses in mammalian cells and by YFV in mosquito cells. Together, these data support a critical role for VCP/p97 in the disassembly of incoming flavivirus nucleocapsids during a postfusion step in virus entry. IMPORTANCE Flaviviruses are an important group of RNA viruses that cause significant human disease. The mechanisms by which flavivirus nucleocapsids are disassembled during virus entry remain unclear. Here, we used a yellow fever virus entry reporter, which expresses a sensitive reporter enzyme but does not replicate, to show that nucleocapsid disassembly requires the cellular protein-disaggregating enzyme valosin-containing protein, also known as p97. Full Article
eve Erratum for Teymournejad et al., "Isolation and Molecular Analysis of a Novel Neorickettsia Species That Causes Potomac Horse Fever" By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 Full Article
eve Optimization of an Experimental Vaccine To Prevent Escherichia coli Urinary Tract Infection By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Urinary tract infections (UTI) affect half of all women at least once during their lifetime. The rise in the numbers of extended-spectrum beta-lactamase-producing strains and the potential for carbapenem resistance within uropathogenic Escherichia coli (UPEC), the most common causative agent of UTI, create an urgent need for vaccine development. Intranasal immunization of mice with UPEC outer membrane iron receptors FyuA, Hma, IreA, and IutA, conjugated to cholera toxin, provides protection in the bladder or kidneys under conditions of challenge with UPEC strain CFT073 or strain 536. On the basis of these data, we sought to optimize the vaccination route (intramuscular, intranasal, or subcutaneous) in combination with adjuvants suitable for human use, including aluminum hydroxide gel (alum), monophosphoryl lipid A (MPLA), unmethylated CpG synthetic oligodeoxynucleotides (CpG), polyinosinic:polycytidylic acid (polyIC), and mutated heat-labile E. coli enterotoxin (dmLT). Mice intranasally vaccinated with dmLT-IutA and dmLT-Hma displayed significant reductions in bladder colonization (86-fold and 32-fold, respectively), with 40% to 42% of mice having no detectable CFU. Intranasal vaccination of mice with CpG-IutA and polyIC-IutA significantly reduced kidney colonization (131-fold) and urine CFU (22-fold), respectively. dmLT generated the most consistently robust antibody response in intranasally immunized mice, while MPLA and alum produced greater concentrations of antigen-specific serum IgG with intramuscular immunization. On the basis of these results, we conclude that intranasal administration of Hma or IutA formulated with dmLT adjuvant provides the greatest protection from UPEC UTI. This report advances our progress toward a vaccine against uncomplicated UTI, which will significantly improve the quality of life for women burdened by recurrent UTI and enable better antibiotic stewardship. IMPORTANCE Urinary tract infections (UTI) are among the most common bacterial infection in humans, affecting half of all women at least once during their lifetimes. The rise in antibiotic resistance and health care costs emphasizes the need to develop a vaccine against the most common UTI pathogen, Escherichia coli. Vaccinating mice intranasally with a detoxified heat-labile enterotoxin and two surface-exposed receptors, Hma or IutA, significantly reduced bacterial burden in the bladder. This work highlights progress in the development of a UTI vaccine formulated with adjuvants suitable for human use and antigens that encode outer membrane iron receptors required for infection in the iron-limited urinary tract. Full Article
eve The Cellular Response to Lanthanum Is Substrate Specific and Reveals a Novel Route for Glycerol Metabolism in Pseudomonas putida KT2440 By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Ever since the discovery of the first rare earth element (REE)-dependent enzyme, the physiological role of lanthanides has become an emerging field of research due to the environmental implications and biotechnological opportunities. In Pseudomonas putida KT2440, the two pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ-ADHs) PedE and PedH are inversely regulated in response to REE availability. This transcriptional switch is orchestrated by a complex regulatory network that includes the PedR2/PedS2 two-component system and is important for efficient growth on several alcoholic volatiles. To study whether cellular responses beyond the REE switch exist, the differential proteomic responses that occur during growth on various model carbon sources were analyzed. Apart from the Ca2+-dependent enzyme PedE, the differential abundances of most identified proteins were conditional. During growth on glycerol—and concomitant with the proteomic changes—lanthanum (La3+) availability affected different growth parameters, including the onset of logarithmic growth and final optical densities. Studies with mutant strains revealed a novel metabolic route for glycerol utilization, initiated by PedE and/or PedH activity. Upon oxidation to glycerate via glyceraldehyde, phosphorylation by the glycerate kinase GarK most likely yields glycerate-2-phosphate, which is eventually channeled into the central metabolism of the cell. This new route functions in parallel with the main degradation pathway encoded by the glpFKRD operon and provides a growth advantage to the cells by allowing an earlier onset of growth with glycerol as the sole source of carbon and energy. IMPORTANCE The biological role of REEs has long been underestimated, and research has mainly focused on methanotrophic and methylotrophic bacteria. We have recently demonstrated that P. putida, a plant growth-promoting bacterium that thrives in the rhizosphere of various food crops, possesses a REE-dependent alcohol dehydrogenase (PedH), but knowledge about REE-specific effects on physiological traits in nonmethylotrophic bacteria is still scarce. This study demonstrates that the cellular response of P. putida to lanthanum (La3+) is mostly substrate specific and that La3+ availability highly affects the growth of cells on glycerol. Further, a novel route for glycerol metabolism is identified, which is initiated by PedE and/or PedH activity and provides a growth advantage to this biotechnologically relevant organism by allowing a faster onset of growth. Overall, these findings demonstrate that lanthanides can affect physiological traits in nonmethylotrophic bacteria and might influence their competitiveness in various environmental niches. Full Article
eve Complete Structure of the Enterococcal Polysaccharide Antigen (EPA) of Vancomycin-Resistant Enterococcus faecalis V583 Reveals that EPA Decorations Are Teichoic Acids Covalently Linked to a Rhamnopolysaccharide Backbone By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT All enterococci produce a complex polysaccharide called the enterococcal polysaccharide antigen (EPA). This polymer is required for normal cell growth and division and for resistance to cephalosporins and plays a critical role in host-pathogen interaction. The EPA contributes to host colonization and is essential for virulence, conferring resistance to phagocytosis during the infection. Recent studies revealed that the "decorations" of the EPA polymer, encoded by genetic loci that are variable between isolates, underpin the biological activity of this surface polysaccharide. In this work, we investigated the structure of the EPA polymer produced by the high-risk enterococcal clonal complex Enterococcus faecalis V583. We analyzed purified EPA from the wild-type strain and a mutant lacking decorations and elucidated the structure of the EPA backbone and decorations. We showed that the rhamnan backbone of EPA is composed of a hexasaccharide repeat unit of C2- and C3-linked rhamnan chains, partially substituted in the C3 position by α-glucose (α-Glc) and in the C2 position by β-N-acetylglucosamine (β-GlcNAc). The so-called "EPA decorations" consist of phosphopolysaccharide chains corresponding to teichoic acids covalently bound to the rhamnan backbone. The elucidation of the complete EPA structure allowed us to propose a biosynthetic pathway, a first essential step toward the design of antimicrobials targeting the synthesis of this virulence factor. IMPORTANCE Enterococci are opportunistic pathogens responsible for hospital- and community-acquired infections. All enterococci produce a surface polysaccharide called EPA (enterococcal polysaccharide antigen) required for biofilm formation, antibiotic resistance, and pathogenesis. Despite the critical role of EPA in cell growth and division and as a major virulence factor, no information is available on its structure. Here, we report the complete structure of the EPA polymer produced by the model strain E. faecalis V583. We describe the structure of the EPA backbone, made of a rhamnan hexasaccharide substituted by Glc and GlcNAc residues, and show that teichoic acids are covalently bound to this rhamnan chain, forming the so-called "EPA decorations" essential for host colonization and pathogenesis. This report represents a key step in efforts to identify the structural properties of EPA that are essential for its biological activity and to identify novel targets to develop preventive and therapeutic approaches against enterococci. Full Article
eve Federal funding for gun violence prevention research sparks hopes: Priorities, direction being explored By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 After more than 20 years of minimal funding, the U.S. is opening its purse strings to research on gun violence prevention. Full Article
eve Why the ABCs Matter More than Ever in Medical Education By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 Addressing social drivers of health in medical education—through community engagement experiences—is essential for health equity and the development of future physicians. While this was written before the COVID-19 pandemic, these practices will gain even more importance as we come together to better understand its health and community implications in North Carolina and the United States. Full Article
eve Developing a Workforce for Health in North Carolina: Planning for the Future By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 Among the many trends influencing health and health care delivery over the next decade, three are particularly important: the transition to value-based care and increased focus on population health; the shift of care from acute to community-based settings; and addressing the vulnerability of rural health care systems in North Carolina. Full Article
eve Polygenic risk scores of several subtypes of epilepsies in a founder population By ng.neurology.org Published On :: 2020-03-27T13:08:21-07:00 Objective Polygenic risk scores (PRSs) are used to quantify the cumulative effects of a number of genetic variants, which may individually have a very small effect on susceptibility to a disease; we used PRSs to better understand the genetic contribution to common epilepsy and its subtypes. Methods We first replicated previous single associations using 373 unrelated patients. We then calculated PRSs in the same French Canadian patients with epilepsy divided into 7 epilepsy subtypes and population-based controls. We fitted a logistic mixed model to calculate the variance explained by the PRS using pseudo-R2 statistics. Results We show that the PRS explains more of the variance in idiopathic generalized epilepsy than in patients with nonacquired focal epilepsy. We also demonstrate that the variance explained is different within each epilepsy subtype. Conclusions Globally, we support the notion that PRSs provide a reliable measure to rightfully estimate the contribution of genetic factors to the pathophysiologic mechanism of epilepsies, but further studies are needed on PRSs before they can be used clinically. Full Article
eve RNA Interference-Based Screen Reveals Concerted Functions of MEKK2 and CRCK3 in Plant Cell Death Regulation By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 A wide variety of intrinsic and extrinsic cues lead to cell death with unclear mechanisms. The infertility of some death mutants often hurdles the classical suppressor screens for death regulators. We have developed a transient RNA interference (RNAi)-based screen using a virus-induced gene silencing approach to understand diverse cell death pathways in Arabidopsis (Arabidopsis thaliana). One death pathway is due to the depletion of a MAP kinase (MAPK) cascade, consisting of MAPK kinase kinase 1 (MEKK1), MKK1/2, and MPK4, which depends on a nucleotide-binding site Leu-rich repeat (NLR) protein SUMM2. Silencing of MEKK1 by virus-induced gene silencing resembles the mekk1 mutant with autoimmunity and defense activation. The RNAi-based screen toward Arabidopsis T-DNA insertion lines identified SUMM2, MEKK2, and Calmodulin-binding receptor-like cytoplasmic kinase 3 (CRCK3) to be vital regulators of RNAi MEKK1-induced cell death, consistent with the reports of their requirement in the mekk1-mkk1/2-mpk4 death pathway. Similar with MEKK2, overexpression of CRCK3 caused dosage- and SUMM2-dependent cell death, and the transcripts of CRCK3 were up-regulated in mekk1, mkk1/2, and mpk4. MEKK2-induced cell death depends on CRCK3. Interestingly, CRCK3-induced cell death also depends on MEKK2, consistent with the biochemical data that MEKK2 complexes with CRCK3. Furthermore, the kinase activity of CRCK3 is essential, whereas the kinase activity of MEKK2 is dispensable, for triggering cell death. Our studies suggest that MEKK2 and CRCK3 exert concerted functions in the control of NLR SUMM2 activation and MEKK2 may play a structural role, rather than function as a kinase, in regulating CRCK3 protein stability. Full Article
eve The Four Arabidopsis Choline/Ethanolamine Kinase Isozymes Play Distinct Roles in Metabolism and Development By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Phosphatidylcholine and phosphatidylethanolamine are two major phospholipid classes in eukaryotes. Each biosynthesis pathway starts with the phosphorylation of choline (Cho) or ethanolamine (Etn) catalyzed by either choline or ethanolamine kinase (CEK). Arabidopsis contains four CEK isoforms, but their isozyme-specific roles in metabolism and development are poorly described. Here, we showed that these four CEKs have distinct substrate specificities in vitro. While CEK1 and CEK2 showed substrate preference for Cho over Etn, CEK3 and CEK4 had clear substrate specificity for Cho and Etn, respectively. In vivo, CEK1, CEK2, and CEK3 exhibited kinase activity for Cho but not Etn, although the latter two isoforms showed rather minor contributions to total Cho kinase activity in both shoots and roots. The knockout mutants of CEK2 and CEK3 both affected root growth, and these isoforms had nonoverlapping cell-type-specific expression patterns in the root meristematic zone. In-depth phenotype analysis, as well as chemical and genetic complementation, revealed that CEK3, a Cho-specific kinase, is involved in cell elongation during root development. Phylogenetic analysis of CEK orthologs in Brassicaceae species showed evolutionary divergence between Etn kinases and Cho kinases. Collectively, our results demonstrate the distinct roles of the four CEK isoforms in Cho/Etn metabolism and plant development. Full Article
eve Severe Pulmonary Hypertension Management Across Europe (PHAROS): an ERS Clinical Research Collaboration By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 The past 20 years have seen major advances in the understanding and treatment of pulmonary arterial hypertension (PAH; group 1 of the pulmonary hypertension (PH) clinical classification) [1]. A strong basis of knowledge has been acquired in: 1) large randomised clinical trials for drug development; 2) national registries for epidemiology and outcome; and 3) smaller studies on the pathophysiological mechanisms of the disease. This knowledge has been reviewed at World Symposia on Pulmonary Hypertension (the most recent in 2018 [2]) and summarised in European Respiratory Society (ERS)/European Society of Cardiology (ESC) clinical guidelines (the most recent in 2015 [3, 4]). We are, however, much less knowledgeable on specific aspects such as 1) the implementation of guidelines and access to therapies in different European countries; 2) the management of PH crises and progressive (acute on chronic) heart failure; and 3) other groups of PH, such as PH due to lung diseases. Therapeutic strategies also need to be optimised, in particular regarding the combination of drugs, the use of anticoagulants, the place for new medications targeting different pathophysiological pathways, etc. Full Article
eve Looking back to go forward: adherence to inhaled therapy before biologic therapy in severe asthma By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 For decades inhaled corticosteroids have been central to the management of asthma and are proven to be effective in maintaining symptom control, reducing exacerbations and preserving quality of life through mediation of airway inflammation. However, a small minority of patients have disease which is refractory to high dose inhaled corticosteroid (ICS) therapy and require additional oral corticosteroids to achieve acceptable control of symptoms and exacerbations. Severe asthma represents less than 10% of the total asthma population [1] but is the most serious, life-affecting and costly form of the condition [2]. Full Article
eve Adherence to corticosteroids and clinical outcomes in mepolizumab therapy for severe asthma By erj.ersjournals.com Published On :: 2020-05-07T01:15:55-07:00 Introduction Inhaled corticosteroids (ICS) achieve disease control in the majority of asthmatic patients, although adherence to prescribed ICS is often poor. Patients with severe eosinophilic asthma may require treatment with oral corticosteroids (OCS) and/or biologic agents such as mepolizumab. It is unknown if ICS adherence changes on, or alters clinical response to, biologic therapy. Methods We examined ICS adherence and clinical outcomes in OCS-dependent severe eosinophilic asthma patients who completed 1 year of mepolizumab therapy. The ICS medicines possession ratio (MPR) was calculated (the number of doses of ICS issued on prescription/expected number) for the year before and the year after biologic initiation. Good adherence was defined as MPR >0.75, intermediate 0.74–0.51 and poor <0.5. We examined outcomes after 12 months of biologic therapy, including OCS reduction and annualised exacerbation rate (AER), stratified by adherence to ICS on mepolizumab. Results Out of 109 patients commencing mepolizumab, 91 who had completed 12 months of treatment were included in the final analysis. While receiving mepolizumab, 68% had good ICS adherence, with 16 (18%) having poor ICS adherence. ICS use within the cohort remained similar before (MPR 0.81±0.32) and during mepolizumab treatment (0.82±0.32; p=0.78). Patients with good adherence had greater reductions in OCS dose (median (interquartile range) OCS reduction 100 (74–100)% versus 60 (27–100)%; p=0.031) and exacerbations (AER change –2.1±3.1 versus 0.3±2.5; p=0.011) than those with poor adherence. Good ICS adherence predicted the likelihood of stopping maintenance OCS (adjusted OR 3.19, 95% CI 1.02–9.94; p=0.045). Conclusion ICS nonadherence is common in severe eosinophilic asthma patients receiving mepolizumab, and is associated with a lesser reduction in OCS requirements and AER. Full Article
eve Cerebral venous thrombosis: Associations between disease severity and cardiac markers By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 Background Plasma cardiac troponin (cTn) elevation occurs in acute ischemic stroke and intracranial hemorrhage and can suggest a poor prognosis. Because acute cerebral venous thrombosis (CVT) might lead to venous stasis, which could result in cardiac stress, it is important to evaluate whether cTn elevation occurs in patients with CVT. Methods Inpatients at Johns Hopkins Hospital from 2005 to 2015 meeting the following criteria were included: CVT (ICD-9 codes with radiologic confirmation) and available admission electrocardiogram (ECG) and cTn level. In regression models, presence of ECG abnormalities and cTn elevation (>0.06 ng/mL) were evaluated as dependent variables in separate models, with location and severity of CVT involvement as independent variables, adjusted for age, sex, and hypertension. Results Of 81 patients with CVST, 53 (66%) met the inclusion criteria. Participants were, on average, aged 42 years, white (71%), and female (66%). The left transverse sinus was most commonly thrombosed (47%), with 66% having >2 veins thrombosed. Twenty-two (41%) had cTn elevation. Odds of cTn elevation increased per each additional vein thrombosed (adjusted OR 2.79, 95% CI [1.08–7.23]). Of those with deep venous involvement, 37.5% had cTn elevation compared with 4.4% without deep clots (p = 0.02). Venous infarction (n = 15) was associated with a higher mean cTn (0.14 vs 0.02 ng/mL, p = 0.009) and was predictive of a higher cTn in adjusted models (β = 0.15, 95% CI [0.06–0.25]). Conclusions In this single-center cohort study, markers of CVT severity were associated with increased odds of cTn elevation; further investigation is needed to elucidate causality and significance. Full Article
eve Nickel Allergic Contact Dermatitis: Identification, Treatment, and Prevention By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Nickel is a ubiquitous metal added to jewelry and metallic substances for its hardening properties and because it is inexpensive. Estimates suggest that at least 1.1 million children in the United States are sensitized to nickel. Nickel allergic contact dermatitis (Ni-ACD) is the most common cutaneous delayed-type hypersensitivity reaction worldwide. The incidence among children tested has almost quadrupled over the past 3 decades. The associated morbidities include itch, discomfort, school absence, and reduced quality of life. In adulthood, individuals with Ni-ACD may have severe disabling hand eczema. The increasing rate of Ni-ACD in children has been postulated to result from early and frequent exposure to metals with high amounts of nickel release (eg, as occurs with ear piercing or with products used daily in childhood such as toys, belt buckles, and electronics). To reduce exposure to metal sources with high nickel release by prolonged and direct contact with human skin, Denmark and the European Union legislated a directive several decades ago with the goal of reducing high nickel release and the incidence of Ni-ACD. Since then, there has been a global reduction in incidence of Ni-ACD in population-based studies of adults and studies of children and young adults being tested for allergic contact dermatitis. These data point to nickel exposure as a trigger for elicitation of Ni-ACD and, further, provide evidence that legislation can have a favorable effect on the economic and medical health of a population. This policy statement reviews the epidemiology, history, and appearances of Ni-ACD. Examples of sources of high nickel release are discussed to highlight how difficult it is to avoid this metal in modern daily lives. Treatments are outlined, and avoidance strategies are presented. Long-term epidemiological interventions are addressed. Advocacy for smarter nickel use is reviewed. The American Academy of Pediatrics supports US legislation that advances safety standards (as modeled by the European Union) that protect children from early and prolonged skin exposure to high–nickel-releasing items. Our final aim for this article is to aid the pediatric community in developing nickel-avoidance strategies on both individual and global levels. Full Article
eve Children With Intellectual and Developmental Disabilities as Organ Transplantation Recipients By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 The demand for transplantable solid organs far exceeds the supply of deceased donor organs. Patient selection criteria are determined by individual transplant programs; given the scarcity of solid organs for transplant, allocation to those most likely to benefit takes into consideration both medical and psychosocial factors. Children with intellectual and developmental disabilities have historically been excluded as potential recipients of organ transplants. When a transplant is likely to provide significant health benefits, denying a transplant to otherwise eligible children with disabilities may constitute illegal and unjustified discrimination. Children with intellectual and developmental disabilities should not be excluded from the potential pool of recipients and should be referred for evaluation as recipients of solid organ transplants. Full Article
eve Ahmed A, Fend PI, Gaensbauer JT, Reves RR, Khurana R, Salcedo K, Punnoose R, Katz DJ, for the TUBERCULOSIS EPIDEMIOLOGIC STUDIES CONSORTIUM. Interferon-{gamma} Release Assays in Children <15 Years of Age. Pediatrics. 2020:145(1):e20191930 By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
eve Every Child Counts: The Importance of the 2020 Census for Pediatric Health Equity By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
eve In Utero Antidepressants and Neurodevelopmental Outcomes in Kindergarteners By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 OBJECTIVES: To determine if in utero selective serotonin reuptake inhibitor (SSRI) or selective serotonin norepinephrine inhibitor (SNRI) exposure is associated with developmental vulnerability in kindergarten among children whose mothers were diagnosed with prenatal mood or anxiety disorder. METHODS: Linkable administrative data were used to create a population-based cohort of 266 479 mother-child dyads of children born in Manitoba, Canada, between 1996 and 2014, with follow-up through 2015. The sample was restricted to mothers who had a mood or anxiety disorder diagnosis between 90 days before conception (N = 13 818). Exposed women had ≥2 SSRI or SNRI dispensations during pregnancy (n = 2055); unexposed mothers did not have a dispensation of an SSRI or SNRI during pregnancy (n = 10 017). The Early Development Instrument (EDI) was used to assess developmental health in kindergarten children. The EDI is a 104-component kindergarten teacher-administered questionnaire, encompassing 5 developmental domains. RESULTS: Of the 3048 children included in the study who met inclusion criteria and had an EDI, 21.43% of children in the exposed group were assessed as vulnerable on 2 or more domains versus 16.16% of children in the unexposed group (adjusted odds ratio = 1.43; 95% confidence interval 1.08–1.90). Children in the exposed group also had a significant risk of being vulnerable in language and/or cognition (adjusted odds ratio = 1.40; 95% confidence interval 1.03–1.90). CONCLUSIONS: Exposure to SSRIs or SNRIs during pregnancy was associated with an increased risk of developmental vulnerability and an increased risk of deficits in language and/or cognition. Replication of results is necessary before clinical implications can be reached. Full Article
eve Developmental Support for Infants With Genetic Disorders By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 As the technical ability for genetic diagnosis continues to improve, an increasing number of diagnoses are made in infancy or as early as the neonatal period. Many of these diagnoses are known to be associated with developmental delay and intellectual disability, features that would not be clinically detectable at the time of diagnosis. Others may be associated with cognitive impairment, but the incidence and severity are yet to be fully described. These neonates and infants with genetic diagnoses therefore represent an emerging group of patients who are at high risk for neurodevelopmental disabilities. Although there are well-established developmental supports for high-risk infants, particularly preterm infants, after discharge from the NICU, programs specifically for infants with genetic diagnoses are rare. And although previous research has demonstrated the positive effect of early developmental interventions on outcomes among preterm infants, the impact of such supports for infants with genetic disorders who may be born term, remains to be understood. We therefore review the literature regarding existing developmental assessment and intervention approaches for children with genetic disorders, evaluating these in the context of current developmental supports postdischarge for preterm infants. Further research into the role of developmental support programs for early assessment and intervention in high-risk neonates diagnosed with rare genetic disorders is needed. Full Article
eve Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean [Genetics of Complex Traits] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Multienvironment trials (METs) are widely used to assess the performance of promising crop germplasm. Though seldom designed to elucidate genetic mechanisms, MET data sets are often much larger than could be duplicated for genetic research and, given proper interpretation, may offer valuable insights into the genetics of adaptation across time and space. The Cooperative Dry Bean Nursery (CDBN) is a MET for common bean (Phaseolus vulgaris) grown for > 70 years in the United States and Canada, consisting of 20–50 entries each year at 10–20 locations. The CDBN provides a rich source of phenotypic data across entries, years, and locations that is amenable to genetic analysis. To study stable genetic effects segregating in this MET, we conducted genome-wide association studies (GWAS) using best linear unbiased predictions derived across years and locations for 21 CDBN phenotypes and genotypic data (1.2 million SNPs) for 327 CDBN genotypes. The value of this approach was confirmed by the discovery of three candidate genes and genomic regions previously identified in balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power to detect significant correlated effects, found significant effects for all phenotypes. Mash found two large genomic regions with effects on multiple phenotypes, supporting a hypothesis of pleiotropic or linked effects that were likely selected on in pursuit of a crop ideotype. Overall, our results demonstrate that statistical genomics approaches can be used on MET phenotypic data to discover significant genetic effects and to define genomic regions associated with crop improvement. Full Article
eve Development of the Proximal-Anterior Skeletal Elements in the Mouse Hindlimb Is Regulated by a Transcriptional and Signaling Network Controlled by Sall4 [Developmental and Behavioral Genetics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 The vertebrate limb serves as an experimental paradigm to study mechanisms that regulate development of the stereotypical skeletal elements. In this study, we simultaneously inactivated Sall4 using Hoxb6Cre and Plzf in mouse embryos, and found that their combined function regulates development of the proximal-anterior skeletal elements in hindlimbs. The Sall4; Plzf double knockout exhibits severe defects in the femur, tibia, and anterior digits, distinct defects compared to other allelic series of Sall4; Plzf. We found that Sall4 regulates Plzf expression prior to hindlimb outgrowth. Further expression analysis indicated that Hox10 genes and GLI3 are severely downregulated in the Sall4; Plzf double knockout hindlimb bud. In contrast, PLZF expression is reduced but detectable in Sall4; Gli3 double knockout limb buds, and SALL4 is expressed in the Plzf; Gli3 double knockout limb buds. These results indicate that Plzf, Gli3, and Hox10 genes downstream of Sall4, regulate femur and tibia development. In the autopod, we show that Sall4 negatively regulates Hedgehog signaling, which allows for development of the most anterior digit. Collectively, our study illustrates genetic systems that regulate development of the proximal-anterior skeletal elements in hindlimbs. Full Article
eve Pits and CtBP Control Tissue Growth in Drosophila melanogaster with the Hippo Pathway Transcription Repressor Tgi [Developmental and Behavioral Genetics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 The Hippo pathway is an evolutionarily conserved signaling network that regulates organ size, cell fate, and tumorigenesis. In the context of organ size control, the pathway incorporates a large variety of cellular cues, such as cell polarity and adhesion, into an integrated transcriptional response. The central Hippo signaling effector is the transcriptional coactivator Yorkie, which controls gene expression in partnership with different transcription factors, most notably Scalloped. When it is not activated by Yorkie, Scalloped can act as a repressor of transcription, at least in part due to its interaction with the corepressor protein Tgi. The mechanism by which Tgi represses transcription is incompletely understood, and therefore we sought to identify proteins that potentially operate together with Tgi. Using an affinity purification and mass-spectrometry approach we identified Pits and CtBP as Tgi-interacting proteins, both of which have been linked to transcriptional repression. Both Pits and CtBP were required for Tgi to suppress the growth of the Drosophila melanogaster eye and CtBP loss suppressed the undergrowth of yorkie mutant eye tissue. Furthermore, as reported previously for Tgi, overexpression of Pits repressed transcription of Hippo pathway target genes. These findings suggest that Tgi might operate together with Pits and CtBP to repress transcription of genes that normally promote tissue growth. The human orthologs of Tgi, CtBP, and Pits (VGLL4, CTBP2, and IRF2BP2) have previously been shown to physically and functionally interact to control transcription, implying that the mechanism by which these proteins control transcriptional repression is conserved throughout evolution. Full Article
eve Alcohol Causes Lasting Differential Transcription in Drosophila Mushroom Body Neurons [Developmental and Behavioral Genetics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Repeated alcohol experiences can produce long-lasting memories for sensory cues associated with intoxication. These memories can problematically trigger relapse in individuals recovering from alcohol use disorder (AUD). The molecular mechanisms by which ethanol changes memories to become long-lasting and inflexible remain unclear. New methods to analyze gene expression within precise neuronal cell types can provide further insight toward AUD prevention and treatment. Here, we used genetic tools in Drosophila melanogaster to investigate the lasting consequences of ethanol on transcription in memory-encoding neurons. Drosophila rely on mushroom body (MB) neurons to make associative memories, including memories of ethanol-associated sensory cues. Differential expression analyses revealed that distinct transcripts, but not genes, in the MB were associated with experiencing ethanol alone compared to forming a memory of an odor cue associated with ethanol. Adult MB-specific knockdown of spliceosome-associated proteins demonstrated the necessity of RNA-processing in ethanol memory formation. These findings highlight the dynamic, context-specific regulation of transcription in cue-encoding neurons, and the lasting effect of ethanol on transcript usage during memory formation. Full Article
eve Development of IFN-Stimulated Gene Expression from Embryogenesis through Adulthood, with and without Constitutive MDA5 Pathway Activation [INNATE IMMUNITY AND INFLAMMATION] By www.jimmunol.org Published On :: 2020-05-04T13:00:28-07:00 Key Points The augmented ISG profile of RdRP mice develops largely postnatally. Elevated ISG expression is then maintained through adulthood. The ISG signature in adults requires persistent type I IFN signaling. Full Article
eve Development and Characterization of an Avirulent Leishmania major Strain [INFECTIOUS DISEASE AND HOST RESPONSE] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points Virulent and avirulent parasites significantly differ in their proteome profiles. Avirulent parasites fail to inhibit CD40 signaling. Avirulent parasite strain is a potential antileishmanial vaccine candidate. Full Article
eve GRASP55 Is Dispensable for Normal Hematopoiesis but Necessary for Myc-Dependent Leukemic Growth [IMMUNE SYSTEM DEVELOPMENT] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points Golgi morphology and Grasp55 expression are regulated during hematopoiesis. Hematopoiesis is not affected in Grasp55-deficient mice. Grasp55 regulates Myc-transformed leukemic cell survival. Full Article
eve Innate-like CD27+CD45RBhigh {gamma}{delta} T Cells Require TCR Signaling for Homeostasis in Peripheral Lymphoid Organs [IMMUNE SYSTEM DEVELOPMENT] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points E4 is an enhancer element that regulates transcriptions of TCR genes. E4–/– mice have fewer CD27+CD45RBhigh V2+ T cells in peripheral organs. Attenuation of TCR signal impairs homeostasis of T cells in peripheral organs. Full Article
eve Serine Phosphorylation of the STAT1 Transactivation Domain Promotes Autoreactive B Cell and Systemic Autoimmunity Development [AUTOIMMUNITY] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points STAT1-pS727 is required for SLE-associated AFC, GC, and autoantibody responses. STAT1-pS727 in B cells promotes autoimmune AFC, GC, and autoantibody responses. STAT1-pS727 is not required for foreign Ag– or gut microbiota–driven responses. Full Article