cell

Generating a mucin-producing cell from an umbilical cord amniotic membrane epithelial stem cell

The present invention relates to the generation of a mucin-producing cell using stem/progenitor cells obtained from the amniotic membrane of umbilical cord and therapeutic uses of such mucin-producing cells.




cell

Method of washing adherent cell using trehalose-containing cell-washing solution

Methods of washing adherent cells, capable of effectively suppressing cell death due to proteolytic enzyme treatment for detaching the adherent cell from a culture vessel and subsequent cell treatment; cell-washing solutions used for the washing method; methods of producing cell suspensions for transplantation using the cell-washing solution; and kits comprising the cell-washing solution. Trehalose or its derivative or a salt thereof is added to physiological aqueous solutions to prepare cell-washing solutions containing trehalose or its derivative or a salt thereof as an active ingredient. The cell-washing solutions can be used to wash adherent cells before detaching the adherent cells from a culture vessel by proteolytic enzyme treatment to suppress cell death due to the proteolytic enzyme treatment. The concentration of trehalose applied to the cell-washing solution may be a concentration capable of suppressing the cell death due to the proteolytic enzyme treatment, such as 0.1 to 20 (w/v) %.




cell

Nanofibers and morphology shifting micelles

The invention discloses novel morphology shifting micelles and amphiphilic coated metal nanofibers. Methods of using and making the same are also disclosed.




cell

Vigilant cells

The invention concerns a system for modulating tissue physiology, for example, to prevent or reverse tissue damage caused by disease. The system utilizes vigilant cells that include stable vectors containing a gene switch/biosensor and a gene amplification system. The vectors allow expression of a transgene (such as a cardioprotective gene) in the vigilant cells to be regulated in response to a physiological signal, to be switched on or off, and to provide sufficient levels of the transgene product to achieve a desired result, e.g., prevention or reversal of myocardial cell damage. In addition to myocardial infarction, the vectors can be used to treat cells in a number of other disease states, including diabetes, cancer, stroke, and atherosclerosis. These approaches to stem cell-based gene therapy provide a novel strategy not only for treatment but for prevention of cell destruction.




cell

Chimeric T1R taste receptor polypeptides and nucleic acid sequences encoding and cell lines that express said chimeric T1R polypeptides

The invention relates to compounds that specifically bind a T1R1/T1R3 or T1R2/T1R3 receptor or fragments or sub-units thereof. The present invention also relates to the use of hetero-oligomeric and chimeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli. Further, the invention relates to the constitutive of cell lines that stably or transiently co-express a combination of T1R1 and T1R3; or T1R2 and T1R3; under constitutive or inducible conditions. The use of these cells lines in cell-based assays to identify umami and sweet taste modulatory compounds is also provided, particularly high throughput screening assays that detect receptor activity by use of fluorometric imaging.




cell

Defined cell culturing surfaces and methods of use

In one aspect, there is provided a cell culturing substrate including: a cell culture surface having a film attached thereto, wherein the film includes one or more plasma polymerized monomers; and a coating on the film-coated surface, the coating deposited from a coating solution comprising one or more extracellular matrix proteins and an aqueous solvent, where the total extracellular matrix protein concentration in the coating solution is about 1 ng/mL to about 1 mg/mL.




cell

Chair with integrated back plate cell

A chair capable of allowing positions of armrests and a back plate to be simultaneously adjusted having an integrated back plate cell including a backrest portion and armrest portions extending forward from the backrest portion, a lower frame including a seat plat support portion and an armrest support portion which extends upward from the seat plat support portion and is coupled to each of the armrest portions, and a fixing lever which fixes the armrest portion to the armrest support portion, wherein the integrated back plate cell is obliquely movable relative to the lower frame.




cell

Memory cell based array of tuning circuit

A method applied in a tuning circuit comprising a plurality of turning cells is disclosed. the method comprises: laying out a array of tuning cells in a matrix configuration, the matrix comprising a first dimension and a second dimension; assigning a first index associated with the first dimension and a second index associated with the second dimension to each tuning cell; controlling each tuning cell using a word line and a bit line; and summing up outputs from all tuning cells to form a combined output. The tuning cell provides a first circuit value or a second circuit value according to the logical value of the bit line, and the difference between the first circuit value and the second circuit value is determined such that a turning resolution of the tuning circuit is determined.




cell

Welding metal having excellent low-temperature toughness and drop-weight characteristics

Provided is a welding metal in which the chemical component composition thereof is appropriately controlled; an A value that is specified by a predetermined relational expression satisfies the requirement of being 3.8% to 9.0%; an X value that is specified by a predetermined relational expression satisfies the requirement of being 0.5% or greater; the area percentage of carbide particles having a circle-equivalent diameter of 0.20 μm or greater in the welding metal is 4.0% or less; and the number of carbide particles having a circle-equivalent diameter of 1.0 μm or greater is 1000 particles/mm2 or less. This welding metal, which can exhibit not only high strength but also good low-temperature toughness and good drop-weight characteristics, is useful as a material for a pressure vessel in a nuclear power plant.




cell

Bake hardening steel with excellent surface properties and resistance to secondary work embrittlement, and preparation method thereof

Provided are a bake hardening steel having a crystalline grain size of ASTM No. 9 or more and a method for preparing the bake hardening steel by controlling the winding, rolling and cooling conditions. The bake hardening steel includes: C:0.0016˜0.0025%, Si:0.02% or less, P:0.01˜0.05%, S:0.01% or less, sol.Al:0.08˜0.12%, N:0.0025% or less, Ti:0.003% or less, Nb:0.003˜0.011%, Mo:0.01˜0.1%, B:0.0005˜0.0015% or less, balance Fe and other inevitable impurities, wherein % is weight %, and Mn and P satisfy the relation of −30(° C.)≧803P−24.4Mn−58.




cell

Low-power dual-edge-triggered storage cell with scan test support and clock gating circuit therefore

A storage cell having a pulse generator and a storage element is proposed. The storage element input is connected to receive a data input signal. The storage element output is connected to provide a data output signal. The storage element is operable in one of a data retention state and a data transfer state in response to a storage control signal received from the pulse generator. The pulse generator is connected to receive a clock signal with rising and falling clock signal edges and is adapted to provide control pulses in the storage control signal. Each control pulse has a leading edge and a trailing edge. The control pulses have a polarity suited to invoke the data transfer state on their leading edges. The novel feature is that the pulse generator is adapted to initiate a rising-edge control pulse when receiving a rising clock signal edge and to initiate a falling-edge control pulse when receiving a falling clock signal edge. In this way, a dual-edge-triggered flip-flop may be made using only combinatorial logic circuitry and one level- or single-edge-triggered storage element. The storage cell has low power consumption, facilitates scan testing and can be used by existing design tools and test equipment.




cell

Catalytic reactor including one cellular area having controlled macroporosity and a controlled microstructure and one area having a standard microstructure

The invention relates to a catalytic reactor including: at least one first architecture/microstructure including a ceramic and/or metal cellular architecture having a pore size of 2 to 80 ppi and a macroporosity of more than 85%, and a microstructure having a grain size of 100 nm to 5 microns, and skeleton densification of more than 95%, and a catalytic layer; and at least one second architecture/microstructure including a spherical or cylindrical architecture having a pore size of 0.1 to 100 μm and a macroporosity of less than 60%, and a microstructure having a grain size of 20 nm to 10 μm and a skeleton densification of 20% to 90%, and a catalytic layer; the first and second architecture/microstructure being stacked inside said reactor.




cell

Fuel cell system and desulfurization system

One embodiment of the present invention is a unique fuel cell system. Another embodiment is a unique desulfurization system. Yet another embodiment is a method of operating a fuel cell system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for fuel cell systems and desulfurization systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.




cell

Device for locking an opening part of a jet engine nacelle with respect to a fixed part, and nacelle equipped with such a device

This device for locking an opening part (9) of a jet engine nacelle with respect to a fixed part (7, 17) comprises: means (13, 16) for locking said opening part (9) with respect to said fixed part (7, 17), means for actuating (21) these locking means that are mounted such that they can move on said opening part (9) between a closed position, in which they enable said locking means (13, 16) to be immobilized, and an open position, in which they enable these locking means (13, 16) to be released. Said actuating means comprise gripping means (21). This device comprises means (41, 43) for immobilizing, in the open position, said gripping means (21) with respect to said opening part (9) at least in the direction of movement of said opening part (9).




cell

Nacelle main frame structure and drive train assembly for a wind turbine

A nacelle main frame structure and drive train assembly (1) for being mounted on a tower (2) of a wind turbine. The nacelle main frame structure and drive train assembly (1) comprises a nacelle main frame structure (4) with a central part (6) connecting a first part (7) to a second part (8). The first part (7), during wind turbine operation and/or servicing activities, takes up loads of a rotor (9). A drive train (5) is at least partially located between the first and second parts (7, 8). The central part (6) of the main frame structure (4) is located substantially above at least part of the drive train (5) and is such that at least part of the drive train (5) can only be removed from the main frame structure (4) by lowering at least part of the drive train (5) from the main frame structure (4).




cell

Wind turbine nacelle with cooler top

The present invention relates to a wind turbine nacelle having a first face with a longitudinal extension in a wind direction, comprising a cooling device having a cooling area and extending from the first face of the nacelle, and a cover having at least one inner face, the cooling device being enclosed by the first face of the nacelle and the inner face of the cover. A first distance between at least one of the faces and the cooling area is at least 30 mm.




cell

Wind turbine nacelle with cooler top

The present invention relates to a wind turbine nacelle having a top face with a longitudinal extension in a wind direction, comprising a cooling device extending from the top face of the nacelle and a cover having at least one inner face. The cooling device is enclosed by the top face of the nacelle and the inner face of the cover.




cell

Method for transferring energy between at least two energy storage cells in a controllable energy store

In a method for transferring energy between at least two energy storage cells in a controllable energy store that serves to control and to supply electrical energy to an n-phase electric machine, which energy store has n power supply arms which each have at least two series-connected energy storage modules which each include at least one electrical energy storage cell with an associated controllable coupling unit, and are connected to one respective phase of the electric machine, in a charging phase, all coupling units of those energy storage modules which are to be used as an energy source are controlled in such a way that the respectively associated energy storage cells are connected into the respective power supply arm.




cell

Control system for a flow cell battery

A controller for controlling a flow cell battery system is provided. The controller operates the flow cell battery system in a plurality of states including a plating state, a charging state and a discharge state.




cell

Battery cell temperature detection

Temperature characteristics of battery cells are detected. In accordance with one or more embodiments, an intercept frequency is detected for each battery cell, at which frequency an imaginary part of a plot of impedance values of the battery cell exhibits a zero crossing. The impedance values correspond to current injected into the cell. A temperature of the cell is determined based upon the detected intercept frequency for the cell and stored data that models operation of the cell. Various approaches are implemented with different types of circuits coupled to detect the impedance values of the respective cells.




cell

Method and circuitry to calculate the state of charge of a battery/cell

The present inventions, in one aspect, are directed to techniques and/or circuitry to adapt the charging of a battery using data which is representative of an overpotential or relaxation time (full or partial) of the battery. In another aspect the present inventions are directed to techniques and/or circuitry to calculate data which is representative of an overpotential or relaxation time (full or partial) of the battery. In yet another aspect the present inventions are directed to techniques and/or circuitry to calculate data which is representative of a state of charge of the battery using an overpotential or relaxation time (full or partial) of the battery.




cell

Monitor and control circuitry for charging a battery/cell, and methods of operating same

Circuitry and techniques to measure, at the battery's terminals, characteristic(s) of the charging signal applied to the battery/cell during the recharging operation and, in response to feedback data which indicates the charging signal is out-of-specification, control or instruct the charging circuitry to adjust characteristic(s) of the recharging signal (e.g., the amplitude of the voltage of and/or current applied to or removed from the battery during the charging operation). For example, a rechargeable battery pack comprising a battery, and controllable switch(es), a current meter and voltmeter, all of which are fixed to the battery. Control circuitry generates control signal(s) to adjust a current and/or voltage of the charging signal using the feedback data from the current meter and/or voltmeter, respectively.




cell

Systems and methods for detecting ultracapacitor cell short circuits

A system for detecting a short-circuited ultracapacitor cell in a machine is disclosed. The system may have a memory that stores instructions and one or more processors capable of executing the instructions. The one or more processors may be configured to perform cell balancing among ultracapacitor cells arranged within two or more ultracapacitor modules, each ultracapacitor module including at least two ultracapacitor cells connected in series. The one or more processors may be further configured to measure a module voltage generated by each of the plurality of ultracapacitor modules after performing the cell balancing and before applying a load of the machine to the ultracapacitor modules, and determine whether an ultracapacitor cell among the plurality of ultracapacitor cells is short-circuited based on a comparison of the measured module voltages.




cell

Systems and methods for determining cell capacity values in a multi-cell battery

Systems and methods to determine cell capacities of a vehicle battery pack. Cell capacities may be determined using state of charge (SOC) estimates for the cells and a charge count for the battery pack. The SOC estimates may be determined when the SOC of the battery pack is below a lower threshold and above an upper threshold. Error values may also be generated for the cell capacity values.




cell

Cell attachment method

A method of manufacturing an electrical device comprises the steps of providing a substrate, providing an electrical component on the substrate, providing a first electrical contact on the substrate that is electrically connected to the electrical component, and providing an electrochemical cell on or integrating the substrate for providing electrical energy to said electrical component. The electrochemical cell comprises at least one electrochemical layer comprising a cured or dried ink and a first electrode contact electrically connected to said at least one electrochemical layer. The method further includes the step of securing the electrochemical cell to the substrate through an electrically conductive connection that provides both a structural connection and an electrical connection between the first electrical contact and the first electrode contact.




cell

Fuel cell stack with combined flow patterns in a fuel cell stack or an electrolysis cell stack

A cell stack comprising a plurality of fuel cells or electrolysis cells has a combination of flow patterns between anode gas and cathode gas internally in each of the cells and between the cells relative to each other such that cathode and anode gas internally in a cell flows in either co-flow, counter-flow or cross-flow and further that anode and cathode gas flow in one cell has co-flow, counter-flow or cross-flow relative to the anode and cathode gas flow in adjacent cells.




cell

Microfluidic cell

A microfluidic cell for the dielectrophoretic separation, accumulation, and/or lysis of polarizable bioparticles, including an interdigital electrode system composed of two electrode groups having interdigitated electrodes, and a micromixer having microchannels and microelevations. The interdigital electrode system and the micromixer are situated on the same side of the cell to improve the separation, accumulation, and/or lysis characteristics. Moreover, also described is a microfluidic system which includes such a microfluidic cell, and use thereof, and a method for separating, accumulating, and/or lysing polarizable bioparticles.




cell

Particle characterization cell and particle characterization instrument

The present invention is configured to be provided with: a bottom-equipped tubular cell main body that forms an internal space S1 that extends in a longer direction, and has one end part that is opened; a pair of applying electrodes that are arranged so as to face to each other in the internal space; and a fixing spacer that intervenes between the pair of applying electrodes to thereby define a distance between the applying electrodes, and fixes the pair of applying electrodes, wherein in a state where the fixing spacer is inserted into the cell main body, in a lower part of the internal space of the cell main body, a zeta potential measuring space in which the pair of applying electrodes are exposed is formed.




cell

Working electrode, method for fabricating the same and dye-sensitized solar cell containing the same

The present invention provides a method for fabricating a working electrode. The method comprises the following steps: providing a photoelectrode, which comprises a conductive substrate with a semiconductor material; providing a dye solution, which comprises a dye dissolved in a solvent; and applying a voltage for conducting an electrophoresis to adsorb said dye onto a surface of said semiconductor material. The method of present invention makes the dye adsorbed fast to a surface of a semiconductor material by electrophoresis, and therefore, significantly reduces the time for fabricating a dye-sensitized solar cell.




cell

Method and apparatus for manipulating single cells and small aggregates thereof

A well, in particular an open well (14) with an upper end having a vertical axis (101), for containing a liquid and particles contained within said liquid, characterized by comprising at least two manipulation electrodes (1, 2, 3, 31, 32, 36, 17, 40, 41) able to be powered by electrical voltages, in particular alternating electrical voltages, so as to manoeuvre particles within the well by means of the dielectrophoretic effect. A platform comprising a plurality of wells as described above and a method for using said well.




cell

Phase change memory cell with self-aligned vertical heater and low resistivity interface

A low resistivity interface material is provided between a self-aligned vertical heater element and a contact region of a selection device. A phase change chalcogenide material is deposited directly on the vertical heater element. In an embodiment, the vertical heater element in L-shaped, having a curved vertical wall along the wordline direction and a horizontal base. In an embodiment, the low resistivity interface material is deposited into a trench with a negative profile using a PVD technique. An upper surface of the low resistivity interface material may have a tapered bird-beak extension.




cell

Method for connecting solar cells

A method of connecting two solar cells is disclosed. In one embodiment, the method comprises gripping an interconnect with a head of positioning device, heating the interconnect with the head of the positioning device to between two predetermined temperatures, where one is higher than the other, positioning the interconnect so as to overlay two adjacent solar cells, coupling the interconnect to each of the two adjacent solar cells, and releasing the interconnect from the head.




cell

Semiconductor device, in particular solar cell

A semiconductor device, in particular a solar cell, comprises a semiconductor substrate having a semiconductor substrate surface and a passivation composed of at least one passivation layer which surface-passivates the semiconductor substrate surface, wherein the passivation layer comprises a compound composed of aluminum oxide, aluminum nitride or aluminum oxynitride and at least one further element.




cell

Solar-cell-integrated gas production device

The present invention provides a solar-cell-integrated gas production device that can generate a first gas and a second gas by utilizing an electromotive force of a solar cell, and that can supply power to an external circuit by utilizing the same solar cell. The solar-cell-integrated gas production device according to the present invention comprises: a photoelectric conversion part having a light acceptance surface and its back surface; a first electrolysis electrode provided on the back surface of the photoelectric conversion part so as to be capable of being immersed into an electrolytic solution; a second electrolysis electrode provided on the back surface of the photoelectric conversion part so as to be capable of being immersed into the electrolytic solution; and a changeover part, wherein the first electrolysis electrode and the second electrolysis electrode are provided to be capable of electrolyzing the electrolytic solution to generate a first gas and a second gas by utilizing an electromotive force generated by irradiating the photoelectric conversion part with light, and the changeover part makes a changeover between a circuit that outputs the electromotive force, generated by irradiating the photoelectric conversion part outputs the electromotive force, generated by irradiating the photoelectric conversion part with light, to the first electrolysis electrode and the second electrolysis electrode.




cell

Tellurium inorganic reaction systems for conductive thick film paste for solar cell contacts

This disclosure relates to electroconductive paste formulations useful in solar panel technology. In one aspect, the disclosure relates to an inorganic reaction system for use in electroconductive paste compositions, wherein the inorganic reaction system comprises a lead containing matrix composition and a tellurium containing matrix composition. In another aspect, the disclosure relates to an electroconductive paste composition comprising a conductive metal component, an inorganic reaction system and an organic vehicle. Another aspect of the disclosure relates to a solar cell produced by applying an electroconductive paste composition of the invention to a silicon wafer. Yet another aspect relates to a solar cell module assembled using solar cells produced by applying an electroconductive paste composition to a silicon wafer, wherein the electroconductive paste composition comprises an conductive metal component, an inorganic reaction system and an organic vehicle.




cell

Flexible solar cell photovoltaic assembly prepared with flexible substrate

This invention is directed to a flexible solar cell photovoltaic module with high light transmittance based on modified substrate, which belongs to the field of thin-film solar cell technology. The objective of the present invention to provide a technical solution for a transparent flexible solar cell module and its fabrication method. Technical features include using a stainless steel template to mold a modified polyimide PI substrate (the PI substrate). The PI substrate has light-passing through-holes, including draining holes and convergence holes, through and distributed on the PI substrate, a conductive film layer, and various stacked photoelectric conversion film layers. The creativeness of the present invention is obvious, such as reducing the short circuit and current leakage due to crystallization of the photoelectric layer interface caused by a subsequent process of laser etching the conductive film layer, reducing the composition on the surface of the solar cell, reducing steps of the fabrication process, and lowering the production cost. Further, the present invention significantly increases the conversion efficiency and load capacity of the solar cell and the quality-cost ratio. The transparent flexible solar cell photovoltaic module also has a broad range of applications.




cell

Photoelectric conversion element and solar cell

A photoelectric conversion element comprising a substrate, a first electrode, a photoelectric conversion layer comprising a semiconductor and a sensitizing dye, a hole transport layer and a second electrode, wherein the hole transport layer comprises a polymer having a repeat unit represented by Formula (1) or (2),




cell

Photovoltaic cell containing novel photoactive polymer

Novel photoactive polymers, as well as related photovoltaic cells, articles, systems, and methods, are disclosed.




cell

Preventing harmful polarization of solar cells

In one embodiment, harmful solar cell polarization is prevented or minimized by providing a conductive path that bleeds charge from a front side of a solar cell to the bulk of a wafer. The conductive path may include patterned holes in a dielectric passivation layer, a conductive anti-reflective coating, or layers of conductive material formed on the top or bottom surface of an anti-reflective coating, for example. Harmful solar cell polarization may also be prevented by biasing a region of a solar cell module on the front side of the solar cell.




cell

Layered compound-metal particle composite and production method therefor, and suspension, film and flexible solar cell using same

A layered compound-metal particle composite 3 is obtained by the addition, to an organically modified layered compound 1 formed by the intercalation of organic ions between layers of a layered compound, of both an aqueous colloidal metal solution 2 in which metal particles are dispersed as a metal colloid in water, and a nonaqueous solvent which is a poor solvent for the metal colloid and has an excellent ability to swell the organically modified layered compound 1.




cell

Dye-sensitized solar cell

The present invention provides a dye-sensitized solar cell which enhances an area of a photo electrode by arranging metal wires on a surface of a transparent substrate or a transparent conductive layer without degrading a transparency of the solar cell, allowing the metal wires to act as a collector electrode exclusively or together with a metal electrode.




cell

Crack resistant solar cell modules

A crack resistant solar cell module includes a protective package mounted on a frame. The protective package includes a polyolefin encapsulant that protectively encapsulates solar cells. The polyolefin has less than five weight percent of oxygen and nitrogen in the backbone or side chain. In other words, the combined weight percent of oxygen and nitrogen in any location in the molecular structure of the polyolefin is less than five. The polyolefin also has a complex viscosity less than 10,000 Pa second at 90° C. as measured by dynamic mechanical analysis (DMA) before any thermal processing of the polyolefin. The protective package includes a top cover, the encapsulant, and a backsheet. The solar cell module allows for shipping, installation, and maintenance with less risk of developing cracks on the surfaces of the solar cells.




cell

Back electrode type solar cell, back electrode type solar cell with interconnection sheet, solar cell module, method of manufacturing back electrode type solar cell with interconnection sheet, and method of manufacturing solar cell module

A back electrode type solar cell in which a no-electrode-formed region where no electrode is placed is provided in a part of a peripheral portion of a back surface of the back electrode type solar cell such that a line connecting end portions of a plurality of electrodes to one another includes a partially inwardly recessed region and the no-electrode-formed region is located adjacent to each of an electrode for n-type and an electrode for p-type adjacent to each other, a solar cell module, a method of manufacturing a back electrode type solar cell with interconnection sheet, and a method of manufacturing a solar cell module are provided.




cell

Gel-type polymer electrolyte for dye-sensitized solar cell and dye-sensitized solar cell comprising the same

The present disclosure relates to gel-type polymer electrolyte for a dye-sensitized solar cell, a dye-sensitized solar cell comprising the gel-type polymer electrolyte, and a method for manufacturing the dye-sensitized solar cell.




cell

Conductive paste and electronic device, and solar cell including an electrode formed using the conductive paste

A conductive paste may include a conductive component and an organic vehicle. The conductive component may include an amorphous metal. The amorphous metal may have a lower resistivity after a crystallization process than before the crystallization process, and at least one of a weight gain of about 4 mg/cm2 or less and a thickness increase of about 30 μm or less after being heated in a process furnace at a firing temperature.




cell

Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste

According to example embodiments, a conductive paste includes a conductive component that contains a conductive powder and a titanium (Ti)-based metallic glass. The titanium-based metallic glass has a supercooled liquid region of about 5K or more, a resistivity after crystallization that is less than a resistivity before crystallization by about 50% or more, and a weight increase by about 0.5 mg/cm2 or less after being heated in a process furnace at a firing temperature. According to example embodiments, an electronic device and a solar cell may include at least one electrode formed using the conductive paste according to example embodiments.




cell

Photoplating of metal electrodes for solar cells

A method of photoplating a metal contact onto a surface of a cathode of a photovoltaic device is provided using light induced plating technique. The method comprises: a) immersing the photovoltaic device in a solution of metal ions, where the metal ions are a species which is to be plated onto the surface of the cathode of the photovoltaic device; and b) illuminating the photovoltaic device, using a light source of time varying intensity. This results in nett plating which is faster in a direction normal to the surface of the cathode than in a direction in a plane of the surface of the cathode.




cell

Photovoltaic cell and manufacturing method thereof

A photovoltaic cell comprises a top subcell having a first band gap; a middle subcell comprising a substrate and having a second band gap, wherein the substrate comprises a first side and a second side opposite to the first side; and a bottom subcell having a third band gap, wherein the top subcell is grown on the first side of the substrate and the bottom subcell is grown on the second side of the substrate, wherein the first band gap is larger than the second band gap and the second band gap is larger than the third band gap.




cell

Nano power cell and method of use

A nano power cell and method of use are described wherein the nano power cell absorbs electromagnetic energy is nano particles in an optical fluid that flow in microchannels of the nano power cell.




cell

Solar cell module

The solar cell module includes a solar panel that includes a transparent substrate and is configured by aligning solar cells, a reinforcing frame arranged on the back surface of the solar panel, and a shock absorbing unit arranged between the solar panel and the reinforcing frame, where the shock absorbing unit has the first main surface facing the solar panel, which is a flat surface, and a second main surface facing the reinforcing frame, which is a curved surface bowed in the longitudinal direction of the reinforcing frame, having an arc shape in cross section, and convexed toward the reinforcing frame side.