wit

Self-Attention with Cross-Lingual Position Representation. (arXiv:2004.13310v2 [cs.CL] UPDATED)

Position encoding (PE), an essential part of self-attention networks (SANs), is used to preserve the word order information for natural language processing tasks, generating fixed position indices for input sequences. However, in cross-lingual scenarios, e.g. machine translation, the PEs of source and target sentences are modeled independently. Due to word order divergences in different languages, modeling the cross-lingual positional relationships might help SANs tackle this problem. In this paper, we augment SANs with emph{cross-lingual position representations} to model the bilingually aware latent structure for the input sentence. Specifically, we utilize bracketing transduction grammar (BTG)-based reordering information to encourage SANs to learn bilingual diagonal alignments. Experimental results on WMT'14 English$Rightarrow$German, WAT'17 Japanese$Rightarrow$English, and WMT'17 Chinese$Leftrightarrow$English translation tasks demonstrate that our approach significantly and consistently improves translation quality over strong baselines. Extensive analyses confirm that the performance gains come from the cross-lingual information.




wit

Cross-Lingual Semantic Role Labeling with High-Quality Translated Training Corpus. (arXiv:2004.06295v2 [cs.CL] UPDATED)

Many efforts of research are devoted to semantic role labeling (SRL) which is crucial for natural language understanding. Supervised approaches have achieved impressing performances when large-scale corpora are available for resource-rich languages such as English. While for the low-resource languages with no annotated SRL dataset, it is still challenging to obtain competitive performances. Cross-lingual SRL is one promising way to address the problem, which has achieved great advances with the help of model transferring and annotation projection. In this paper, we propose a novel alternative based on corpus translation, constructing high-quality training datasets for the target languages from the source gold-standard SRL annotations. Experimental results on Universal Proposition Bank show that the translation-based method is highly effective, and the automatic pseudo datasets can improve the target-language SRL performances significantly.




wit

Improved RawNet with Feature Map Scaling for Text-independent Speaker Verification using Raw Waveforms. (arXiv:2004.00526v2 [eess.AS] UPDATED)

Recent advances in deep learning have facilitated the design of speaker verification systems that directly input raw waveforms. For example, RawNet extracts speaker embeddings from raw waveforms, which simplifies the process pipeline and demonstrates competitive performance. In this study, we improve RawNet by scaling feature maps using various methods. The proposed mechanism utilizes a scale vector that adopts a sigmoid non-linear function. It refers to a vector with dimensionality equal to the number of filters in a given feature map. Using a scale vector, we propose to scale the feature map multiplicatively, additively, or both. In addition, we investigate replacing the first convolution layer with the sinc-convolution layer of SincNet. Experiments performed on the VoxCeleb1 evaluation dataset demonstrate the effectiveness of the proposed methods, and the best performing system reduces the equal error rate by half compared to the original RawNet. Expanded evaluation results obtained using the VoxCeleb1-E and VoxCeleb-H protocols marginally outperform existing state-of-the-art systems.




wit

Human Motion Transfer with 3D Constraints and Detail Enhancement. (arXiv:2003.13510v2 [cs.GR] UPDATED)

We propose a new method for realistic human motion transfer using a generative adversarial network (GAN), which generates a motion video of a target character imitating actions of a source character, while maintaining high authenticity of the generated results. We tackle the problem by decoupling and recombining the posture information and appearance information of both the source and target characters. The innovation of our approach lies in the use of the projection of a reconstructed 3D human model as the condition of GAN to better maintain the structural integrity of transfer results in different poses. We further introduce a detail enhancement net to enhance the details of transfer results by exploiting the details in real source frames. Extensive experiments show that our approach yields better results both qualitatively and quantitatively than the state-of-the-art methods.




wit

Lake Ice Detection from Sentinel-1 SAR with Deep Learning. (arXiv:2002.07040v2 [eess.IV] UPDATED)

Lake ice, as part of the Essential Climate Variable (ECV) lakes, is an important indicator to monitor climate change and global warming. The spatio-temporal extent of lake ice cover, along with the timings of key phenological events such as freeze-up and break-up, provide important cues about the local and global climate. We present a lake ice monitoring system based on the automatic analysis of Sentinel-1 Synthetic Aperture Radar (SAR) data with a deep neural network. In previous studies that used optical satellite imagery for lake ice monitoring, frequent cloud cover was a main limiting factor, which we overcome thanks to the ability of microwave sensors to penetrate clouds and observe the lakes regardless of the weather and illumination conditions. We cast ice detection as a two class (frozen, non-frozen) semantic segmentation problem and solve it using a state-of-the-art deep convolutional network (CNN). We report results on two winters ( 2016 - 17 and 2017 - 18 ) and three alpine lakes in Switzerland. The proposed model reaches mean Intersection-over-Union (mIoU) scores >90% on average, and >84% even for the most difficult lake. Additionally, we perform cross-validation tests and show that our algorithm generalises well across unseen lakes and winters.




wit

A Real-Time Approach for Chance-Constrained Motion Planning with Dynamic Obstacles. (arXiv:2001.08012v2 [cs.RO] UPDATED)

Uncertain dynamic obstacles, such as pedestrians or vehicles, pose a major challenge for optimal robot navigation with safety guarantees. Previous work on motion planning has followed two main strategies to provide a safe bound on an obstacle's space: a polyhedron, such as a cuboid, or a nonlinear differentiable surface, such as an ellipsoid. The former approach relies on disjunctive programming, which has a relatively high computational cost that grows exponentially with the number of obstacles. The latter approach needs to be linearized locally to find a tractable evaluation of the chance constraints, which dramatically reduces the remaining free space and leads to over-conservative trajectories or even unfeasibility. In this work, we present a hybrid approach that eludes the pitfalls of both strategies while maintaining the original safety guarantees. The key idea consists in obtaining a safe differentiable approximation for the disjunctive chance constraints bounding the obstacles. The resulting nonlinear optimization problem is free of chance constraint linearization and disjunctive programming, and therefore, it can be efficiently solved to meet fast real-time requirements with multiple obstacles. We validate our approach through mathematical proof, simulation and real experiments with an aerial robot using nonlinear model predictive control to avoid pedestrians.




wit

Games Where You Can Play Optimally with Arena-Independent Finite Memory. (arXiv:2001.03894v2 [cs.GT] UPDATED)

For decades, two-player (antagonistic) games on graphs have been a framework of choice for many important problems in theoretical computer science. A notorious one is controller synthesis, which can be rephrased through the game-theoretic metaphor as the quest for a winning strategy of the system in a game against its antagonistic environment. Depending on the specification, optimal strategies might be simple or quite complex, for example having to use (possibly infinite) memory. Hence, research strives to understand which settings allow for simple strategies.

In 2005, Gimbert and Zielonka provided a complete characterization of preference relations (a formal framework to model specifications and game objectives) that admit memoryless optimal strategies for both players. In the last fifteen years however, practical applications have driven the community toward games with complex or multiple objectives, where memory -- finite or infinite -- is almost always required. Despite much effort, the exact frontiers of the class of preference relations that admit finite-memory optimal strategies still elude us.

In this work, we establish a complete characterization of preference relations that admit optimal strategies using arena-independent finite memory, generalizing the work of Gimbert and Zielonka to the finite-memory case. We also prove an equivalent to their celebrated corollary of great practical interest: if both players have optimal (arena-independent-)finite-memory strategies in all one-player games, then it is also the case in all two-player games. Finally, we pinpoint the boundaries of our results with regard to the literature: our work completely covers the case of arena-independent memory (e.g., multiple parity objectives, lower- and upper-bounded energy objectives), and paves the way to the arena-dependent case (e.g., multiple lower-bounded energy objectives).




wit

Intra-Variable Handwriting Inspection Reinforced with Idiosyncrasy Analysis. (arXiv:1912.12168v2 [cs.CV] UPDATED)

In this paper, we work on intra-variable handwriting, where the writing samples of an individual can vary significantly. Such within-writer variation throws a challenge for automatic writer inspection, where the state-of-the-art methods do not perform well. To deal with intra-variability, we analyze the idiosyncrasy in individual handwriting. We identify/verify the writer from highly idiosyncratic text-patches. Such patches are detected using a deep recurrent reinforcement learning-based architecture. An idiosyncratic score is assigned to every patch, which is predicted by employing deep regression analysis. For writer identification, we propose a deep neural architecture, which makes the final decision by the idiosyncratic score-induced weighted average of patch-based decisions. For writer verification, we propose two algorithms for patch-fed deep feature aggregation, which assist in authentication using a triplet network. The experiments were performed on two databases, where we obtained encouraging results.




wit

Safe non-smooth black-box optimization with application to policy search. (arXiv:1912.09466v3 [math.OC] UPDATED)

For safety-critical black-box optimization tasks, observations of the constraints and the objective are often noisy and available only for the feasible points. We propose an approach based on log barriers to find a local solution of a non-convex non-smooth black-box optimization problem $min f^0(x)$ subject to $f^i(x)leq 0,~ i = 1,ldots, m$, at the same time, guaranteeing constraint satisfaction while learning an optimal solution with high probability. Our proposed algorithm exploits noisy observations to iteratively improve on an initial safe point until convergence. We derive the convergence rate and prove safety of our algorithm. We demonstrate its performance in an application to an iterative control design problem.




wit

SCAttNet: Semantic Segmentation Network with Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images. (arXiv:1912.09121v2 [cs.CV] UPDATED)

High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic segmentation, which is an important task for element extraction, has been widely used in processing mass HRRSIs. However, HRRSIs often exhibit large intraclass variance and small interclass variance due to the diversity and complexity of ground objects, thereby bringing great challenges to a semantic segmentation task. In this paper, we propose a new end-to-end semantic segmentation network, which integrates lightweight spatial and channel attention modules that can refine features adaptively. We compare our method with several classic methods on the ISPRS Vaihingen and Potsdam datasets. Experimental results show that our method can achieve better semantic segmentation results. The source codes are available at https://github.com/lehaifeng/SCAttNet.




wit

t-SS3: a text classifier with dynamic n-grams for early risk detection over text streams. (arXiv:1911.06147v2 [cs.CL] UPDATED)

A recently introduced classifier, called SS3, has shown to be well suited to deal with early risk detection (ERD) problems on text streams. It obtained state-of-the-art performance on early depression and anorexia detection on Reddit in the CLEF's eRisk open tasks. SS3 was created to deal with ERD problems naturally since: it supports incremental training and classification over text streams, and it can visually explain its rationale. However, SS3 processes the input using a bag-of-word model lacking the ability to recognize important word sequences. This aspect could negatively affect the classification performance and also reduces the descriptiveness of visual explanations. In the standard document classification field, it is very common to use word n-grams to try to overcome some of these limitations. Unfortunately, when working with text streams, using n-grams is not trivial since the system must learn and recognize which n-grams are important "on the fly". This paper introduces t-SS3, an extension of SS3 that allows it to recognize useful patterns over text streams dynamically. We evaluated our model in the eRisk 2017 and 2018 tasks on early depression and anorexia detection. Experimental results suggest that t-SS3 is able to improve both current results and the richness of visual explanations.




wit

Establishing the Quantum Supremacy Frontier with a 281 Pflop/s Simulation. (arXiv:1905.00444v2 [quant-ph] UPDATED)

Noisy Intermediate-Scale Quantum (NISQ) computers are entering an era in which they can perform computational tasks beyond the capabilities of the most powerful classical computers, thereby achieving "Quantum Supremacy", a major milestone in quantum computing. NISQ Supremacy requires comparison with a state-of-the-art classical simulator. We report HPC simulations of hard random quantum circuits (RQC), which have been recently used as a benchmark for the first experimental demonstration of Quantum Supremacy, sustaining an average performance of 281 Pflop/s (true single precision) on Summit, currently the fastest supercomputer in the World. These simulations were carried out using qFlex, a tensor-network-based classical high-performance simulator of RQCs. Our results show an advantage of many orders of magnitude in energy consumption of NISQ devices over classical supercomputers. In addition, we propose a standard benchmark for NISQ computers based on qFlex.




wit

A Fast and Accurate Algorithm for Spherical Harmonic Analysis on HEALPix Grids with Applications to the Cosmic Microwave Background Radiation. (arXiv:1904.10514v4 [math.NA] UPDATED)

The Hierarchical Equal Area isoLatitude Pixelation (HEALPix) scheme is used extensively in astrophysics for data collection and analysis on the sphere. The scheme was originally designed for studying the Cosmic Microwave Background (CMB) radiation, which represents the first light to travel during the early stages of the universe's development and gives the strongest evidence for the Big Bang theory to date. Refined analysis of the CMB angular power spectrum can lead to revolutionary developments in understanding the nature of dark matter and dark energy. In this paper, we present a new method for performing spherical harmonic analysis for HEALPix data, which is a central component to computing and analyzing the angular power spectrum of the massive CMB data sets. The method uses a novel combination of a non-uniform fast Fourier transform, the double Fourier sphere method, and Slevinsky's fast spherical harmonic transform (Slevinsky, 2019). For a HEALPix grid with $N$ pixels (points), the computational complexity of the method is $mathcal{O}(Nlog^2 N)$, with an initial set-up cost of $mathcal{O}(N^{3/2}log N)$. This compares favorably with $mathcal{O}(N^{3/2})$ runtime complexity of the current methods available in the HEALPix software when multiple maps need to be analyzed at the same time. Using numerical experiments, we demonstrate that the new method also appears to provide better accuracy over the entire angular power spectrum of synthetic data when compared to the current methods, with a convergence rate at least two times higher.




wit

Deterministic Sparse Fourier Transform with an ell_infty Guarantee. (arXiv:1903.00995v3 [cs.DS] UPDATED)

In this paper we revisit the deterministic version of the Sparse Fourier Transform problem, which asks to read only a few entries of $x in mathbb{C}^n$ and design a recovery algorithm such that the output of the algorithm approximates $hat x$, the Discrete Fourier Transform (DFT) of $x$. The randomized case has been well-understood, while the main work in the deterministic case is that of Merhi et al.@ (J Fourier Anal Appl 2018), which obtains $O(k^2 log^{-1}k cdot log^{5.5}n)$ samples and a similar runtime with the $ell_2/ell_1$ guarantee. We focus on the stronger $ell_{infty}/ell_1$ guarantee and the closely related problem of incoherent matrices. We list our contributions as follows.

1. We find a deterministic collection of $O(k^2 log n)$ samples for the $ell_infty/ell_1$ recovery in time $O(nk log^2 n)$, and a deterministic collection of $O(k^2 log^2 n)$ samples for the $ell_infty/ell_1$ sparse recovery in time $O(k^2 log^3n)$.

2. We give new deterministic constructions of incoherent matrices that are row-sampled submatrices of the DFT matrix, via a derandomization of Bernstein's inequality and bounds on exponential sums considered in analytic number theory. Our first construction matches a previous randomized construction of Nelson, Nguyen and Woodruff (RANDOM'12), where there was no constraint on the form of the incoherent matrix.

Our algorithms are nearly sample-optimal, since a lower bound of $Omega(k^2 + k log n)$ is known, even for the case where the sensing matrix can be arbitrarily designed. A similar lower bound of $Omega(k^2 log n/ log k)$ is known for incoherent matrices.




wit

Mutli-task Learning with Alignment Loss for Far-field Small-Footprint Keyword Spotting. (arXiv:2005.03633v1 [eess.AS])

In this paper, we focus on the task of small-footprint keyword spotting under the far-field scenario. Far-field environments are commonly encountered in real-life speech applications, and it causes serve degradation of performance due to room reverberation and various kinds of noises. Our baseline system is built on the convolutional neural network trained with pooled data of both far-field and close-talking speech. To cope with the distortions, we adopt the multi-task learning scheme with alignment loss to reduce the mismatch between the embedding features learned from different domains of data. Experimental results show that our proposed method maintains the performance on close-talking speech and achieves significant improvement on the far-field test set.




wit

Delayed approximate matrix assembly in multigrid with dynamic precisions. (arXiv:2005.03606v1 [cs.MS])

The accurate assembly of the system matrix is an important step in any code that solves partial differential equations on a mesh. We either explicitly set up a matrix, or we work in a matrix-free environment where we have to be able to quickly return matrix entries upon demand. Either way, the construction can become costly due to non-trivial material parameters entering the equations, multigrid codes requiring cascades of matrices that depend upon each other, or dynamic adaptive mesh refinement that necessitates the recomputation of matrix entries or the whole equation system throughout the solve. We propose that these constructions can be performed concurrently with the multigrid cycles. Initial geometric matrices and low accuracy integrations kickstart the multigrid, while improved assembly data is fed to the solver as and when it becomes available. The time to solution is improved as we eliminate an expensive preparation phase traditionally delaying the actual computation. We eliminate algorithmic latency. Furthermore, we desynchronise the assembly from the solution process. This anarchic increase of the concurrency level improves the scalability. Assembly routines are notoriously memory- and bandwidth-demanding. As we work with iteratively improving operator accuracies, we finally propose the use of a hierarchical, lossy compression scheme such that the memory footprint is brought down aggressively where the system matrix entries carry little information or are not yet available with high accuracy.




wit

NH-HAZE: An Image Dehazing Benchmark with Non-Homogeneous Hazy and Haze-Free Images. (arXiv:2005.03560v1 [cs.CV])

Image dehazing is an ill-posed problem that has been extensively studied in the recent years. The objective performance evaluation of the dehazing methods is one of the major obstacles due to the lacking of a reference dataset. While the synthetic datasets have shown important limitations, the few realistic datasets introduced recently assume homogeneous haze over the entire scene. Since in many real cases haze is not uniformly distributed we introduce NH-HAZE, a non-homogeneous realistic dataset with pairs of real hazy and corresponding haze-free images. This is the first non-homogeneous image dehazing dataset and contains 55 outdoor scenes. The non-homogeneous haze has been introduced in the scene using a professional haze generator that imitates the real conditions of hazy scenes. Additionally, this work presents an objective assessment of several state-of-the-art single image dehazing methods that were evaluated using NH-HAZE dataset.




wit

Checking Qualitative Liveness Properties of Replicated Systems with Stochastic Scheduling. (arXiv:2005.03555v1 [cs.LO])

We present a sound and complete method for the verification of qualitative liveness properties of replicated systems under stochastic scheduling. These are systems consisting of a finite-state program, executed by an unknown number of indistinguishable agents, where the next agent to make a move is determined by the result of a random experiment. We show that if a property of such a system holds, then there is always a witness in the shape of a Presburger stage graph: a finite graph whose nodes are Presburger-definable sets of configurations. Due to the high complexity of the verification problem (non-elementary), we introduce an incomplete procedure for the construction of Presburger stage graphs, and implement it on top of an SMT solver. The procedure makes extensive use of the theory of well-quasi-orders, and of the structural theory of Petri nets and vector addition systems. We apply our results to a set of benchmarks, in particular to a large collection of population protocols, a model of distributed computation extensively studied by the distributed computing community.




wit

Credulous Users and Fake News: a Real Case Study on the Propagation in Twitter. (arXiv:2005.03550v1 [cs.SI])

Recent studies have confirmed a growing trend, especially among youngsters, of using Online Social Media as favourite information platform at the expense of traditional mass media. Indeed, they can easily reach a wide audience at a high speed; but exactly because of this they are the preferred medium for influencing public opinion via so-called fake news. Moreover, there is a general agreement that the main vehicle of fakes news are malicious software robots (bots) that automatically interact with human users. In previous work we have considered the problem of tagging human users in Online Social Networks as credulous users. Specifically, we have considered credulous those users with relatively high number of bot friends when compared to total number of their social friends. We consider this group of users worth of attention because they might have a higher exposure to malicious activities and they may contribute to the spreading of fake information by sharing dubious content. In this work, starting from a dataset of fake news, we investigate the behaviour and the degree of involvement of credulous users in fake news diffusion. The study aims to: (i) fight fake news by considering the content diffused by credulous users; (ii) highlight the relationship between credulous users and fake news spreading; (iii) target fake news detection by focusing on the analysis of specific accounts more exposed to malicious activities of bots. Our first results demonstrate a strong involvement of credulous users in fake news diffusion. This findings are calling for tools that, by performing data streaming on credulous' users actions, enables us to perform targeted fact-checking.




wit

p for political: Participation Without Agency Is Not Enough. (arXiv:2005.03534v1 [cs.HC])

Participatory Design's vision of democratic participation assumes participants' feelings of agency in envisioning a collective future. But this assumption may be leaky when dealing with vulnerable populations. We reflect on the results of a series of activities aimed at supporting agentic-future-envisionment with a group of sex-trafficking survivors in Nepal. We observed a growing sense among the survivors that they could play a role in bringing about change in their families. They also became aware of how they could interact with available institutional resources. Reflecting on the observations, we argue that building participant agency on the small and personal interactions is necessary before demanding larger Political participation. In particular, a value of PD, especially for vulnerable populations, can lie in the process itself if it helps participants position themselves as actors in the larger world.




wit

Sunny Pointer: Designing a mouse pointer for people with peripheral vision loss. (arXiv:2005.03504v1 [cs.HC])

We present a new mouse cursor designed to facilitate the use of the mouse by people with peripheral vision loss. The pointer consists of a collection of converging straight lines covering the whole screen and following the position of the mouse cursor. We measured its positive effects with a group of participants with peripheral vision loss of different kinds and we found that it can reduce by a factor of 7 the time required to complete a targeting task using the mouse. Using eye tracking, we show that this system makes it possible to initiate the movement towards the target without having to precisely locate the mouse pointer. Using Fitts' Law, we compare these performances with those of full visual field users in order to understand the relation between the accuracy of the estimated mouse cursor position and the index of performance obtained with our tool.




wit

Computing with bricks and mortar: Classification of waveforms with a doped concrete blocks. (arXiv:2005.03498v1 [cs.ET])

We present results showing the capability of concrete-based information processing substrate in the signal classification task in accordance with in materio computing paradigm. As the Reservoir Computing is a suitable model for describing embedded in materio computation, we propose that this type of presented basic construction unit can be used as a source for "reservoir of states" necessary for simple tuning of the readout layer. In that perspective, buildings constructed from computing concrete could function as a highly parallel information processor for smart architecture. We present an electrical characterization of the set of samples with different additive concentrations followed by a dynamical analysis of selected specimens showing fingerprints of memfractive properties. Moreover, on the basis of obtained parameters, classification of the signal waveform shapes can be performed in scenarios explicitly tuned for a given device terminal.




wit

Bundle Recommendation with Graph Convolutional Networks. (arXiv:2005.03475v1 [cs.IR])

Bundle recommendation aims to recommend a bundle of items for a user to consume as a whole. Existing solutions integrate user-item interaction modeling into bundle recommendation by sharing model parameters or learning in a multi-task manner, which cannot explicitly model the affiliation between items and bundles, and fail to explore the decision-making when a user chooses bundles. In this work, we propose a graph neural network model named BGCN (short for extit{ extBF{B}undle extBF{G}raph extBF{C}onvolutional extBF{N}etwork}) for bundle recommendation. BGCN unifies user-item interaction, user-bundle interaction and bundle-item affiliation into a heterogeneous graph. With item nodes as the bridge, graph convolutional propagation between user and bundle nodes makes the learned representations capture the item level semantics. Through training based on hard-negative sampler, the user's fine-grained preferences for similar bundles are further distinguished. Empirical results on two real-world datasets demonstrate the strong performance gains of BGCN, which outperforms the state-of-the-art baselines by 10.77\% to 23.18\%.




wit

A combination of 'pooling' with a prediction model can reduce by 73% the number of COVID-19 (Corona-virus) tests. (arXiv:2005.03453v1 [cs.LG])

We show that combining a prediction model (based on neural networks), with a new method of test pooling (better than the original Dorfman method, and better than double-pooling) called 'Grid', we can reduce the number of Covid-19 tests by 73%.




wit

AutoSOS: Towards Multi-UAV Systems Supporting Maritime Search and Rescue with Lightweight AI and Edge Computing. (arXiv:2005.03409v1 [cs.RO])

Rescue vessels are the main actors in maritime safety and rescue operations. At the same time, aerial drones bring a significant advantage into this scenario. This paper presents the research directions of the AutoSOS project, where we work in the development of an autonomous multi-robot search and rescue assistance platform capable of sensor fusion and object detection in embedded devices using novel lightweight AI models. The platform is meant to perform reconnaissance missions for initial assessment of the environment using novel adaptive deep learning algorithms that efficiently use the available sensors and computational resources on drones and rescue vessel. When drones find potential objects, they will send their sensor data to the vessel to verity the findings with increased accuracy. The actual rescue and treatment operation are left as the responsibility of the rescue personnel. The drones will autonomously reconfigure their spatial distribution to enable multi-hop communication, when a direct connection between a drone transmitting information and the vessel is unavailable.




wit

Scheduling with a processing time oracle. (arXiv:2005.03394v1 [cs.DS])

In this paper we study a single machine scheduling problem on a set of independent jobs whose execution time is not known, but guaranteed to be either short or long, for two given processing times. At every time step, the scheduler has the possibility either to test a job, by querying a processing time oracle, which reveals its processing time, and occupies one time unit on the schedule. Or the scheduler can execute a job, might it be previously tested or not. The objective value is the total completion time over all jobs, and is compared with the objective value of an optimal schedule, which does not need to test. The resulting competitive ratio measures the price of hidden processing time.

Two models are studied in this paper. In the non-adaptive model, the algorithm needs to decide before hand which jobs to test, and which jobs to execute untested. However in the adaptive model, the algorithm can make these decisions adaptively to the outcomes of the job tests. In both models we provide optimal polynomial time two-phase algorithms, which consist of a first phase where jobs are tested, and a second phase where jobs are executed untested. Experiments give strong evidence that optimal algorithms have this structure. Proving this property is left as an open problem.




wit

Playing Minecraft with Behavioural Cloning. (arXiv:2005.03374v1 [cs.AI])

MineRL 2019 competition challenged participants to train sample-efficient agents to play Minecraft, by using a dataset of human gameplay and a limit number of steps the environment. We approached this task with behavioural cloning by predicting what actions human players would take, and reached fifth place in the final ranking. Despite being a simple algorithm, we observed the performance of such an approach can vary significantly, based on when the training is stopped. In this paper, we detail our submission to the competition, run further experiments to study how performance varied over training and study how different engineering decisions affected these results.




wit

DramaQA: Character-Centered Video Story Understanding with Hierarchical QA. (arXiv:2005.03356v1 [cs.CL])

Despite recent progress on computer vision and natural language processing, developing video understanding intelligence is still hard to achieve due to the intrinsic difficulty of story in video. Moreover, there is not a theoretical metric for evaluating the degree of video understanding. In this paper, we propose a novel video question answering (Video QA) task, DramaQA, for a comprehensive understanding of the video story. The DramaQA focused on two perspectives: 1) hierarchical QAs as an evaluation metric based on the cognitive developmental stages of human intelligence. 2) character-centered video annotations to model local coherence of the story. Our dataset is built upon the TV drama "Another Miss Oh" and it contains 16,191 QA pairs from 23,928 various length video clips, with each QA pair belonging to one of four difficulty levels. We provide 217,308 annotated images with rich character-centered annotations, including visual bounding boxes, behaviors, and emotions of main characters, and coreference resolved scripts. Additionally, we provide analyses of the dataset as well as Dual Matching Multistream model which effectively learns character-centered representations of video to answer questions about the video. We are planning to release our dataset and model publicly for research purposes and expect that our work will provide a new perspective on video story understanding research.




wit

Pricing under a multinomial logit model with non linear network effects. (arXiv:2005.03352v1 [cs.GT])

We study the problem of pricing under a Multinomial Logit model where we incorporate network effects over the consumer's decisions. We analyse both cases, when sellers compete or collaborate. In particular, we pay special attention to the overall expected revenue and how the behaviour of the no purchase option is affected under variations of a network effect parameter. Where for example we prove that the market share for the no purchase option, is decreasing in terms of the value of the network effect, meaning that stronger communication among costumers increases the expected amount of sales. We also analyse how the customer's utility is altered when network effects are incorporated into the market, comparing the cases where both competitive and monopolistic prices are displayed. We use tools from stochastic approximation algorithms to prove that the probability of purchasing the available products converges to a unique stationary distribution. We model that the sellers can use this stationary distribution to establish their strategies. Finding that under those settings, a pure Nash Equilibrium represents the pricing strategies in the case of competition, and an optimal (that maximises the total revenue) fixed price characterise the case of collaboration.




wit

Error estimates for the Cahn--Hilliard equation with dynamic boundary conditions. (arXiv:2005.03349v1 [math.NA])

A proof of convergence is given for bulk--surface finite element semi-discretisation of the Cahn--Hilliard equation with Cahn--Hilliard-type dynamic boundary conditions in a smooth domain. The semi-discretisation is studied in the weak formulation as a second order system. Optimal-order uniform-in-time error estimates are shown in the $L^2$ and $H^1$ norms. The error estimates are based on a consistency and stability analysis. The proof of stability is performed in an abstract framework, based on energy estimates exploiting the anti-symmetric structure of the second order system. Numerical experiments illustrate the theoretical results.




wit

Adaptive Dialog Policy Learning with Hindsight and User Modeling. (arXiv:2005.03299v1 [cs.AI])

Reinforcement learning methods have been used to compute dialog policies from language-based interaction experiences. Efficiency is of particular importance in dialog policy learning, because of the considerable cost of interacting with people, and the very poor user experience from low-quality conversations. Aiming at improving the efficiency of dialog policy learning, we develop algorithm LHUA (Learning with Hindsight, User modeling, and Adaptation) that, for the first time, enables dialog agents to adaptively learn with hindsight from both simulated and real users. Simulation and hindsight provide the dialog agent with more experience and more (positive) reinforcements respectively. Experimental results suggest that, in success rate and policy quality, LHUA outperforms competitive baselines from the literature, including its no-simulation, no-adaptation, and no-hindsight counterparts.




wit

Cotatron: Transcription-Guided Speech Encoder for Any-to-Many Voice Conversion without Parallel Data. (arXiv:2005.03295v1 [eess.AS])

We propose Cotatron, a transcription-guided speech encoder for speaker-independent linguistic representation. Cotatron is based on the multispeaker TTS architecture and can be trained with conventional TTS datasets. We train a voice conversion system to reconstruct speech with Cotatron features, which is similar to the previous methods based on Phonetic Posteriorgram (PPG). By training and evaluating our system with 108 speakers from the VCTK dataset, we outperform the previous method in terms of both naturalness and speaker similarity. Our system can also convert speech from speakers that are unseen during training, and utilize ASR to automate the transcription with minimal reduction of the performance. Audio samples are available at https://mindslab-ai.github.io/cotatron, and the code with a pre-trained model will be made available soon.




wit

Continuous maximal covering location problems with interconnected facilities. (arXiv:2005.03274v1 [math.OC])

In this paper we analyze a continuous version of the maximal covering location problem, in which the facilities are required to be interconnected by means of a graph structure in which two facilities are allowed to be linked if a given distance is not exceed. We provide a mathematical programming framework for the problem and different resolution strategies. First, we propose a Mixed Integer Non Linear Programming formulation, and derive properties of the problem that allow us to project the continuous variables out avoiding the nonlinear constraints, resulting in an equivalent pure integer programming formulation. Since the number of constraints in the integer programming formulation is large and the constraints are, in general, difficult to handle, we propose two branch-&-cut approaches that avoid the complete enumeration of the constraints resulting in more efficient procedures. We report the results of an extensive battery of computational experiments comparing the performance of the different approaches.




wit

Adaptive Feature Selection Guided Deep Forest for COVID-19 Classification with Chest CT. (arXiv:2005.03264v1 [eess.IV])

Chest computed tomography (CT) becomes an effective tool to assist the diagnosis of coronavirus disease-19 (COVID-19). Due to the outbreak of COVID-19 worldwide, using the computed-aided diagnosis technique for COVID-19 classification based on CT images could largely alleviate the burden of clinicians. In this paper, we propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images. Specifically, we first extract location-specific features from CT images. Then, in order to capture the high-level representation of these features with the relatively small-scale data, we leverage a deep forest model to learn high-level representation of the features. Moreover, we propose a feature selection method based on the trained deep forest model to reduce the redundancy of features, where the feature selection could be adaptively incorporated with the COVID-19 classification model. We evaluated our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP). The accuracy (ACC), sensitivity (SEN), specificity (SPE) and AUC achieved by our method are 91.79%, 93.05%, 89.95% and 96.35%, respectively. Experimental results on the COVID-19 dataset suggest that the proposed AFS-DF achieves superior performance in COVID-19 vs. CAP classification, compared with 4 widely used machine learning methods.




wit

Constructing Accurate and Efficient Deep Spiking Neural Networks with Double-threshold and Augmented Schemes. (arXiv:2005.03231v1 [cs.NE])

Spiking neural networks (SNNs) are considered as a potential candidate to overcome current challenges such as the high-power consumption encountered by artificial neural networks (ANNs), however there is still a gap between them with respect to the recognition accuracy on practical tasks. A conversion strategy was thus introduced recently to bridge this gap by mapping a trained ANN to an SNN. However, it is still unclear that to what extent this obtained SNN can benefit both the accuracy advantage from ANN and high efficiency from the spike-based paradigm of computation. In this paper, we propose two new conversion methods, namely TerMapping and AugMapping. The TerMapping is a straightforward extension of a typical threshold-balancing method with a double-threshold scheme, while the AugMapping additionally incorporates a new scheme of augmented spike that employs a spike coefficient to carry the number of typical all-or-nothing spikes occurring at a time step. We examine the performance of our methods based on MNIST, Fashion-MNIST and CIFAR10 datasets. The results show that the proposed double-threshold scheme can effectively improve accuracies of the converted SNNs. More importantly, the proposed AugMapping is more advantageous for constructing accurate, fast and efficient deep SNNs as compared to other state-of-the-art approaches. Our study therefore provides new approaches for further integration of advanced techniques in ANNs to improve the performance of SNNs, which could be of great merit to applied developments with spike-based neuromorphic computing.




wit

Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent Multi-View Representation Learning. (arXiv:2005.03227v1 [eess.IV])

Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world. Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed, and could largely reduce the efforts of clinicians and accelerate the diagnosis process. Chest computed tomography (CT) has been recognized as an informative tool for diagnosis of the disease. In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images. To fully explore multiple features describing CT images from different views, a unified latent representation is learned which can completely encode information from different aspects of features and is endowed with promising class structure for separability. Specifically, the completeness is guaranteed with a group of backward neural networks (each for one type of features), while by using class labels the representation is enforced to be compact within COVID-19/community-acquired pneumonia (CAP) and also a large margin is guaranteed between different types of pneumonia. In this way, our model can well avoid overfitting compared to the case of directly projecting highdimensional features into classes. Extensive experimental results show that the proposed method outperforms all comparison methods, and rather stable performances are observed when varying the numbers of training data.




wit

Shared Autonomy with Learned Latent Actions. (arXiv:2005.03210v1 [cs.RO])

Assistive robots enable people with disabilities to conduct everyday tasks on their own. However, these tasks can be complex, containing both coarse reaching motions and fine-grained manipulation. For example, when eating, not only does one need to move to the correct food item, but they must also precisely manipulate the food in different ways (e.g., cutting, stabbing, scooping). Shared autonomy methods make robot teleoperation safer and more precise by arbitrating user inputs with robot controls. However, these works have focused mainly on the high-level task of reaching a goal from a discrete set, while largely ignoring manipulation of objects at that goal. Meanwhile, dimensionality reduction techniques for teleoperation map useful high-dimensional robot actions into an intuitive low-dimensional controller, but it is unclear if these methods can achieve the requisite precision for tasks like eating. Our insight is that---by combining intuitive embeddings from learned latent actions with robotic assistance from shared autonomy---we can enable precise assistive manipulation. In this work, we adopt learned latent actions for shared autonomy by proposing a new model structure that changes the meaning of the human's input based on the robot's confidence of the goal. We show convergence bounds on the robot's distance to the most likely goal, and develop a training procedure to learn a controller that is able to move between goals even in the presence of shared autonomy. We evaluate our method in simulations and an eating user study.




wit

ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context. (arXiv:2005.03191v1 [eess.AS])

Convolutional neural networks (CNN) have shown promising results for end-to-end speech recognition, albeit still behind other state-of-the-art methods in performance. In this paper, we study how to bridge this gap and go beyond with a novel CNN-RNN-transducer architecture, which we call ContextNet. ContextNet features a fully convolutional encoder that incorporates global context information into convolution layers by adding squeeze-and-excitation modules. In addition, we propose a simple scaling method that scales the widths of ContextNet that achieves good trade-off between computation and accuracy. We demonstrate that on the widely used LibriSpeech benchmark, ContextNet achieves a word error rate (WER) of 2.1\%/4.6\% without external language model (LM), 1.9\%/4.1\% with LM and 2.9\%/7.0\% with only 10M parameters on the clean/noisy LibriSpeech test sets. This compares to the previous best published system of 2.0\%/4.6\% with LM and 3.9\%/11.3\% with 20M parameters. The superiority of the proposed ContextNet model is also verified on a much larger internal dataset.




wit

A Proposal for Intelligent Agents with Episodic Memory. (arXiv:2005.03182v1 [cs.AI])

In the future we can expect that artificial intelligent agents, once deployed, will be required to learn continually from their experience during their operational lifetime. Such agents will also need to communicate with humans and other agents regarding the content of their experience, in the context of passing along their learnings, for the purpose of explaining their actions in specific circumstances or simply to relate more naturally to humans concerning experiences the agent acquires that are not necessarily related to their assigned tasks. We argue that to support these goals, an agent would benefit from an episodic memory; that is, a memory that encodes the agent's experience in such a way that the agent can relive the experience, communicate about it and use its past experience, inclusive of the agents own past actions, to learn more effective models and policies. In this short paper, we propose one potential approach to provide an AI agent with such capabilities. We draw upon the ever-growing body of work examining the function and operation of the Medial Temporal Lobe (MTL) in mammals to guide us in adding an episodic memory capability to an AI agent composed of artificial neural networks (ANNs). Based on that, we highlight important aspects to be considered in the memory organization and we propose an architecture combining ANNs and standard Computer Science techniques for supporting storage and retrieval of episodic memories. Despite being initial work, we hope this short paper can spark discussions around the creation of intelligent agents with memory or, at least, provide a different point of view on the subject.




wit

Lattice-based public key encryption with equality test in standard model, revisited. (arXiv:2005.03178v1 [cs.CR])

Public key encryption with equality test (PKEET) allows testing whether two ciphertexts are generated by the same message or not. PKEET is a potential candidate for many practical applications like efficient data management on encrypted databases. Potential applicability of PKEET leads to intensive research from its first instantiation by Yang et al. (CT-RSA 2010). Most of the followup constructions are secure in the random oracle model. Moreover, the security of all the concrete constructions is based on number-theoretic hardness assumptions which are vulnerable in the post-quantum era. Recently, Lee et al. (ePrint 2016) proposed a generic construction of PKEET schemes in the standard model and hence it is possible to yield the first instantiation of PKEET schemes based on lattices. Their method is to use a $2$-level hierarchical identity-based encryption (HIBE) scheme together with a one-time signature scheme. In this paper, we propose, for the first time, a direct construction of a PKEET scheme based on the hardness assumption of lattices in the standard model. More specifically, the security of the proposed scheme is reduces to the hardness of the Learning With Errors problem.




wit

Fact-based Dialogue Generation with Convergent and Divergent Decoding. (arXiv:2005.03174v1 [cs.CL])

Fact-based dialogue generation is a task of generating a human-like response based on both dialogue context and factual texts. Various methods were proposed to focus on generating informative words that contain facts effectively. However, previous works implicitly assume a topic to be kept on a dialogue and usually converse passively, therefore the systems have a difficulty to generate diverse responses that provide meaningful information proactively. This paper proposes an end-to-end Fact-based dialogue system augmented with the ability of convergent and divergent thinking over both context and facts, which can converse about the current topic or introduce a new topic. Specifically, our model incorporates a novel convergent and divergent decoding that can generate informative and diverse responses considering not only given inputs (context and facts) but also inputs-related topics. Both automatic and human evaluation results on DSTC7 dataset show that our model significantly outperforms state-of-the-art baselines, indicating that our model can generate more appropriate, informative, and diverse responses.




wit

A Separation Theorem for Joint Sensor and Actuator Scheduling with Guaranteed Performance Bounds. (arXiv:2005.03143v1 [eess.SY])

We study the problem of jointly designing a sparse sensor and actuator schedule for linear dynamical systems while guaranteeing a control/estimation performance that approximates the fully sensed/actuated setting. We further prove a separation principle, showing that the problem can be decomposed into finding sensor and actuator schedules separately. However, it is shown that this problem cannot be efficiently solved or approximated in polynomial, or even quasi-polynomial time for time-invariant sensor/actuator schedules; instead, we develop deterministic polynomial-time algorithms for a time-varying sensor/actuator schedule with guaranteed approximation bounds. Our main result is to provide a polynomial-time joint actuator and sensor schedule that on average selects only a constant number of sensors and actuators at each time step, irrespective of the dimension of the system. The key idea is to sparsify the controllability and observability Gramians while providing approximation guarantees for Hankel singular values. This idea is inspired by recent results in theoretical computer science literature on sparsification.




wit

A Gentle Introduction to Quantum Computing Algorithms with Applications to Universal Prediction. (arXiv:2005.03137v1 [quant-ph])

In this technical report we give an elementary introduction to Quantum Computing for non-physicists. In this introduction we describe in detail some of the foundational Quantum Algorithms including: the Deutsch-Jozsa Algorithm, Shor's Algorithm, Grocer Search, and Quantum Counting Algorithm and briefly the Harrow-Lloyd Algorithm. Additionally we give an introduction to Solomonoff Induction, a theoretically optimal method for prediction. We then attempt to use Quantum computing to find better algorithms for the approximation of Solomonoff Induction. This is done by using techniques from other Quantum computing algorithms to achieve a speedup in computing the speed prior, which is an approximation of Solomonoff's prior, a key part of Solomonoff Induction. The major limiting factors are that the probabilities being computed are often so small that without a sufficient (often large) amount of trials, the error may be larger than the result. If a substantial speedup in the computation of an approximation of Solomonoff Induction can be achieved through quantum computing, then this can be applied to the field of intelligent agents as a key part of an approximation of the agent AIXI.




wit

Unsupervised Multimodal Neural Machine Translation with Pseudo Visual Pivoting. (arXiv:2005.03119v1 [cs.CL])

Unsupervised machine translation (MT) has recently achieved impressive results with monolingual corpora only. However, it is still challenging to associate source-target sentences in the latent space. As people speak different languages biologically share similar visual systems, the potential of achieving better alignment through visual content is promising yet under-explored in unsupervised multimodal MT (MMT). In this paper, we investigate how to utilize visual content for disambiguation and promoting latent space alignment in unsupervised MMT. Our model employs multimodal back-translation and features pseudo visual pivoting in which we learn a shared multilingual visual-semantic embedding space and incorporate visually-pivoted captioning as additional weak supervision. The experimental results on the widely used Multi30K dataset show that the proposed model significantly improves over the state-of-the-art methods and generalizes well when the images are not available at the testing time.




wit

Inference with Choice Functions Made Practical. (arXiv:2005.03098v1 [cs.AI])

We study how to infer new choices from previous choices in a conservative manner. To make such inferences, we use the theory of choice functions: a unifying mathematical framework for conservative decision making that allows one to impose axioms directly on the represented decisions. We here adopt the coherence axioms of De Bock and De Cooman (2019). We show how to naturally extend any given choice assessment to such a coherent choice function, whenever possible, and use this natural extension to make new choices. We present a practical algorithm to compute this natural extension and provide several methods that can be used to improve its scalability.




wit

Near-optimal Detector for SWIPT-enabled Differential DF Relay Networks with SER Analysis. (arXiv:2005.03096v1 [cs.IT])

In this paper, we analyze the symbol error rate (SER) performance of the simultaneous wireless information and power transfer (SWIPT) enabled three-node differential decode-and-forward (DDF) relay networks, which adopt the power splitting (PS) protocol at the relay. The use of non-coherent differential modulation eliminates the need for sending training symbols to estimate the instantaneous channel state informations (CSIs) at all network nodes, and therefore improves the power efficiency, as compared with the coherent modulation. However, performance analysis results are not yet available for the state-of-the-art detectors such as the approximate maximum-likelihood detector. Existing works rely on Monte-Carlo simulation to show that there exists an optimal PS ratio that minimizes the overall SER. In this work, we propose a near-optimal detector with linear complexity with respect to the modulation size. We derive an accurate approximate SER expression, based on which the optimal PS ratio can be accurately estimated without requiring any Monte-Carlo simulation.




wit

Categorical Vector Space Semantics for Lambek Calculus with a Relevant Modality. (arXiv:2005.03074v1 [cs.CL])

We develop a categorical compositional distributional semantics for Lambek Calculus with a Relevant Modality !L*, which has a limited edition of the contraction and permutation rules. The categorical part of the semantics is a monoidal biclosed category with a coalgebra modality, very similar to the structure of a Differential Category. We instantiate this category to finite dimensional vector spaces and linear maps via "quantisation" functors and work with three concrete interpretations of the coalgebra modality. We apply the model to construct categorical and concrete semantic interpretations for the motivating example of !L*: the derivation of a phrase with a parasitic gap. The effectiveness of the concrete interpretations are evaluated via a disambiguation task, on an extension of a sentence disambiguation dataset to parasitic gap phrase one, using BERT, Word2Vec, and FastText vectors and Relational tensors.




wit

Learning, transferring, and recommending performance knowledge with Monte Carlo tree search and neural networks. (arXiv:2005.03063v1 [cs.LG])

Making changes to a program to optimize its performance is an unscalable task that relies entirely upon human intuition and experience. In addition, companies operating at large scale are at a stage where no single individual understands the code controlling its systems, and for this reason, making changes to improve performance can become intractably difficult. In this paper, a learning system is introduced that provides AI assistance for finding recommended changes to a program. Specifically, it is shown how the evaluative feedback, delayed-reward performance programming domain can be effectively formulated via the Monte Carlo tree search (MCTS) framework. It is then shown that established methods from computational games for using learning to expedite tree-search computation can be adapted to speed up computing recommended program alterations. Estimates of expected utility from MCTS trees built for previous problems are used to learn a sampling policy that remains effective across new problems, thus demonstrating transferability of optimization knowledge. This formulation is applied to the Apache Spark distributed computing environment, and a preliminary result is observed that the time required to build a search tree for finding recommendations is reduced by up to a factor of 10x.




wit

Fault Tree Analysis: Identifying Maximum Probability Minimal Cut Sets with MaxSAT. (arXiv:2005.03003v1 [cs.AI])

In this paper, we present a novel MaxSAT-based technique to compute Maximum Probability Minimal Cut Sets (MPMCSs) in fault trees. We model the MPMCS problem as a Weighted Partial MaxSAT problem and solve it using a parallel SAT-solving architecture. The results obtained with our open source tool indicate that the approach is effective and efficient.




wit

Football High: Keeping Up with the Joneses

Competition is steep in games like football. The desire to win often trumps safety.